Helminth parasites of sea bass (*Dicentrarchus labrax*, Linnaeus, 1758), gray mullet (*Chelon labrosus*, Aisso, 1826) from Bafa Lake, Turkey

Koc C.1; Aldemir O. S.1; Selamoglu Z.2*

Received: October 2017 Accepted: February 2018

Abstract
In this study, sea bass (*Dicentrarchus labrax*, Linnaeus, 1758), gray mullet (*Chelon labrosus*, Aisso, 1826), bream (*Spanus aurata*, L. 1785) and carp (*Cyprinus carpio*, L. 1758) supplied from Bafa Lake from October 2013 to February 2014, underwent a parasitological examination for helminth parasites. In total 86 fish were examined and four helminth species (*Diplactanum aequans*, *Helicometra* sp., *Acanthostomum* sp., *Contracaecum* sp.) were found. *Diplactanum aequans* was found as a prominent specie for sea bass and *Acanthostomum* sp. was found as a prominent specie in general. *Contracaecum* sp. was found in only one fish.

Keywords: Bafa Lake, Helminth, Monogenea, Nematoda, Trematoda

1-Department of Parasitology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydin, Turkey
2- Department of Medical Biology, Faculty of Medicine, Ömer Halisdemir University, Nigde, Turkey
*Corresponding autor's Email: zselamoglu@ohu.edu.tr
Introduction

Most of the helmith species develop on different organs and tissue of the fish, the parasitic effects are local and overall. Helminths on fresh water fish may cause serious damage to the national fishery economy.

Mass fish die-offs in Lake Bafa were seen in previous years, but the cause is as of yet not fully understood. Several speculative opinions were put forward. The analysis of the lake water, the decrease in the number of fish species, the number of effected fish and other seasonal factors could not be obtained as a result is able to give a precise idea. The fish production and serious hunting locations of Lake Bafa make this a very important site to research. Since there is water entering the lake, it is possible for different types of fish to enter the lake ecosystem (Müllenhoff et al., 2004). Thus, the lake’s parasitic fauna must be researched to identify the fish quantity and the quality and lake ecosystem.

The objective of the study is to determining the previlence of helminth species on fish in Lake Bafa. Since the number of fish species in the lake is many, only four fish species (sea bass, mullet, sea bream and carp) will be researched carried and parasitic fauna on those fish has been omitted. Due to this factor average data has been obtained.

Materials and methods

For this research, 38 sea bass (*D. labrax*) with a full length of 24-31 cm and weight of 199 to 244 grams, 41 blue mullet (*C. labrosus*) with a full length of 31-35 cm and weight of 329 to 473 grams, 6 sea bream (*S. aurata*) with a full length of 19-23 cm and weight of 195 to 244 g, and 1 carp (*C. Carpio*) with a full length of 25 cm and weight of 519 g. With the help of routine fishing, in total 86 fish were examined in Bafa Lake between October 2013 and February 2014.

The caught fish was brought to Adnan Menderes University, Faculty of Veterinary: Parasitology Department laboratory and the dissections were performed in 3-4 hours. Before starting the dissection, the fish were brought to the laboratory with the lake water where their length and weight were determined. Weight was measured with sensitive UWE brand scales. The length of fish was measured from the front of the fish to the tail beginning. After determining weight and length, they were examined with the naked eye and then with the skin and fins, were examined under binocular stereo microscope for ectoparasites. After this procedure, the dissection process began. The fish operculum and eyes were removed on both sides. Then, the gills, in accordance to the fish species were removed, and each severed gill was placed in petri dishes with 0.9% physiological saline serum. A thin needle was used to identify the parasites under a binocular stereo microscope, and small forceps on both sides of the operculum and gill lamellae were examined. The eyes were also...
examined after the lens were removed. In searching for endoparasites, the fish were opened with small scissors on the abdomen from the anus to the mouth. Fish viscera, which have different shapes and sizes, depending on species were put into separate petri dishes. These were examined under a binocular stereo microscope using a fine needle to scrape samples for the microscopic examination. After checking the internal organs, muscle tissue was examined for parasites which may have migrated. After microscopic examination, the intensity and locations of found parasites were recorded. The parasite specimens were identified using the reference keys of (Bauer, 1987; Chubb et al., 1987; Hoffman, 1999).

Results

In this study, the exterior, fins, gills, eyes and tissue and the interior organs of 86 fish, 38 sea bass (D. labrax), 41 blue gray mullet (C. labrosus), six seabream (S. aurata) and one carp (C. carpio), were examined. *Diplectanum aequans* (Wagener, 1857), *Acanthostom sp*, *Helicometra sp.* and *Contracaecum sp.* were found respectively on gills, following two in the guts and in the body cavity. The amounts and ratios of the parasites have shown in Table 1.

Table 1. Amounts and ratios of parasites.

<table>
<thead>
<tr>
<th></th>
<th>TF</th>
<th>Acanthostom sp. +</th>
<th>%</th>
<th>Contracaecum sp. +</th>
<th>%</th>
<th>Helicometra sp. +</th>
<th>%</th>
<th>D. aequans +</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Bass</td>
<td>38</td>
<td>26</td>
<td>68.42</td>
<td>1</td>
<td>2.63</td>
<td>10</td>
<td>26.31</td>
<td>30</td>
<td>78.94</td>
</tr>
<tr>
<td>Blue Gray</td>
<td>41</td>
<td>22</td>
<td>53.65</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>19.51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mullet</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seabream</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Diplectanum aequans, a specific parasite for the sea bass, in the Monogenea class, Phatyhelminthes was found on the gills of 30 of the 38 sea bass fish (34.88%). Another two parasites from Plathyhelminthes’s Trematoda were found on the sea bass and mullet fish. *Acanthostom sp.*, the primary species was found on 26 sea bass fish (68.42%) and on 22 gray mullet (53.65%) making 48 in a total. The other Trematoda, *Helicometra sp.* was found on ten bass (26.31%) and eight mullet (19.51%). Both types of parasites were found in the digestive tract. *Contracaecum sp.* from nematodes, were found in only one of the sea bass body cavity. No parasites were found on the carp and bream species.

Discussion

Diplectanum aequans, specific to seabass, were reported to be found in Norway (Sterud, 2002), Adriatic Sea (Mladineo, 2005), Greece (Vagianou et al., 2006) and in Italy (Dezfuli et al., 2007; Fioravanti et al., 2006). In Turkey the parasite was found by (Oktener et al., 2009) in Vona Bay, and in Ordu at two different seabass species.
businesses. Diplectanum aequans has the highest recorded prevalence at 34.88% for all fish. This parasite was also reported in the other researches such as (Mladineo, 2005) 62.3%, (Dezfuli et al., 2007) 73.6%, (Sterud, 2002) 100% and in Turkey (Oktener et al., 2009) 100%. Diplectanum aequans is specific to bass fish, with the ratio of 78.94% is found as most prevalent species. The results obtained by the present study demonstrate a parallel average with findings in other studies.

Acanthostom sp. was identified as the primary species due to the maximum number of fish species effected by the parasite. The parasite was found in 48 of 86 fish (55.8%) in this study, effecting 26 of the sea bass (68.42%) and 22 of the mullet (53.65%). The quantity found for the fall and winter average is 45% in Turkey (Emre, 2010) and has an even higher density in Lake Bafa. However, in a study conducted by Luangpha and friends, the parasite was found in China at a 78% rate.

In this study, Helicometra sp. was found in the gut of ten sea bass and eight mullet. The total infection rate was determined to be 20.93% in all fish. The parasite has been found in 26.31% of the sea bass and 19.51% of the mullet. However this was not observed in carp and bream. In a 2012 study, Tepeand friends showed the this parasite at a rate of 15% in the Scorpaena porcus (scorpion fish) in the Black Sea in Turkey. In a 2012 study the parasite has been identified a low ratio of 3.85% near Gökçeada.

Contracaecum sp. was recorded for the first time in Vimba vimba fish in Turkey. The parasite species could not be identified since it was at larval period. Adult individuals of this parasite was seen on fish-eating birds and marine mammals. Fish serve as paratenic hosts to this species’ larva. Contracaecum larvae is usually found as Contracaecum sp., especially from cyprinids into Bream, Rutilus, Alburnus and Barbus species an most commonly have been identified into Vimba vimba as helminth parasites. This parasite's larval form was reported by (Aydogdu et al., 2002), in Barbus plebejus escherichia in Doğancı Dam and Selver and (Aydoğan and Selver, 2005) also reported in Kocadere River. Parasite was found in Black Sea as well (Oytun, 1963). According to (Oktener, 2003), this parasite have also been reported synonymously (Hysterothylaci sp.) in different fish species in Turkey.

In this study Contracaecum sp. was found rate of 1.16% in the total fish, while 2.63% have been found in sea bass fish species. (Selver and Aydoğdu, 2005) was found in a study conducted by the rate and 3.44% in the rudd fish. In the search of (Aydoğan et al., 2007)'s 4.84% rate was determined in Gölbasi Dam Lake. (Salgado-Maldonado et al., 2004) have also found similar results. In the light of the other researches the intensity of this species could have considered in low rate.
References

Bauer, O.N., 1987. Key to the Parasites of Freshwater Fishes in the Fauna of the USSR.

Oytun, H.Ş., 1963. Nematodes found in the intestines and muscles of anchovies (Engraulis encrasicholus) caught in the Black Sea are
identified as Contracaecum sp. A.U. Journal of Veterinary Fac., 10, 201-205.

