Impact of heat stress on the immune response of fishes

Mariana S.¹; Alfons¹; Gamal Badr²,³*

Received: May 2018 Accepted: August 2018

Abstract
Changes in the environmental temperature mediate oxidative stress state that affects the survival rate of fishes. In general, stressors could affect directly as fish death or indirectly through inhibiting immunity thus allowing pathogen invasion and disease incidence. Rapid temperature fluctuations cause severe physiological stress on fish so any temperature change affects the immune system. Fishes elicit generalized physiological and immunological stress response against heat stress. As in other vertebrates, this generalized stress response comprises physiological responses that are common to a wide range of environmental, physical and biological stressors. This mini review provides insight into the effect of heat stress on the fishes and the immune response against heat stress.

Keywords: Apoptosis, Heat stress, Immune response, Oxidative stress.

¹-Zoology Department, Faculty of Science, New Vally University, Egypt
²-Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
³-Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
*Corresponding author's Email: badr73@yahoo.com, gamal.badr@aun.edu.eg
Introduction

The aquatic ecosystem mainly depends on water quality, as the number and diversity of biota is affected by the physicochemical parameters of water. Measuring physiological parameters of fish could evaluate the stress caused by elevated temperature (Diaz et al., 2007; Vanlandeghem et al., 2010). Fish are ectothermic which means that external temperature could affect their immune system directly; also bony fish have a complete vertebrate immune system resembling the mammalian immune system. These reasons suggest that fish is the ideal example used to study the effect of temperature on their immune system.

Heat stress (HS) and its effect on fishes

Stress occurs when any environmental change (physical or physiological) could alter the normal animal homeostasis (Bly et al., 1997). In general, stressors could affect directly as fish death or indirectly through inhibiting immunity thus allowing pathogen invasion and disease incidence (Zelikoff et al., 1991). Rapid temperature fluctuations cause severe physiological stress on fish (Crawshaw, 1979) so any temperature change affects the immune system badly (Lillehaug et al., 1993).

Water temperature is considered one of the most important environmental factors which affect animal survival and growth aquaculture farming. In the teleost fish, any change in the culture water temperature could affect the fish survival, physiological conditions and immune responses (Bowden, 2008; Lee et al., 2014). The need to study fish reaction to sublethal temperature becomes an urge due to world climatic changes and heat stress (HS) (Hari et al., 2006). Many factors effect on water temperature fluctuation such as daily changes of air temperature, water body size, flow rate volume, degree of mixing and solar radiation exposure. Ambient temperature fluctuations could effect on the animal physiological state causing animal stress and resulting in the “general adaptation syndrome” (Selye, 1950; Iwama et al., 2004). It was found that, the sea surface temperature has risen 0.8 (Godbold and Calosi, 2013) leading to a disruption in species abundance and distribution and affecting the community and ecosystem (Vinagre et al., 2009; Peck et al., 2012; Madeira et al., 2016). Animals usually respond to high temperatures through many behaviors such as: feeding, shoaling, body color, breath function (operculum movements), swimming activity (equilibrium and swimming speed) and escaping (Ohlberger et al., 2007; Lopez-Olmeda and Sanchez-Vazquez, 2011). These behaviors are difficult to notice in marine animals leading to poor understanding of a species response to ocean warming (Healy and Schulte, 2012; Cardoso et al., 2015).

HS mediates oxidative stress and generation of reactive oxygen species (ROS)
In normal conditions, ROS production and elimination are well managed in regular cell metabolism. Although this balance between ROS production and antioxidant defense system is disturbed due to environmental stress leading to ROS overproduction which has toxic effects on cells (Achard-Joris et al., 2006; Qiu et al., 2011). In normal conditions, ROS plays many important roles in cellular metabolism such as: cell growth, apoptosis and signaling (Luo et al., 2014). Normal cellular defense systems such as enzymatic defense system and naturally antioxidant system counteract the negative effects of oxidative stress and balance the intracellular redox status. These antioxidant enzymes are considered to be the first intracellular defense against ROS and regulate redox-dependent signaling, which are essential for the innate immunity (Selvaraj et al., 2012).

HS could induce ROS overproduction leading to damage of cellular biomolecules such as proteins, lipids and DNA, which eventually cause impaired cellular functions (Liu et al., 2014; Luo et al., 2015).

HS induces apoptosis

Extensive oxidative stress leads to disruption of cell signaling, severe DNA damage and cellular apoptosis (Chandra et al., 2000). Apoptosis (programmed cell death) could be defined as a regular physiological process that is involved in the development, cellular homeostasis and immune responses. Apoptosis could be triggered through two major mechanisms: the first is the extrinsic pathway (death receptor pathway) which is induced by binding of tumor necrosis factor (TNF) family receptors (Gao et al., 2013). The second pathway is the intrinsic apoptotic pathway (mitochondrial pathway) which involves cell death signals cascade initiated from mitochondria (Luzio et al., 2013). Apoptosis plays an important role in the immune system as it is involved in enhancing the phagocytic removal of dying or infected cells (Gao et al., 2013; Luo et al., 2017), preventing autoimmune disorder (Chen et al., 2006) also inhibiting pro-inflammatory cytokines (Savill, 1997).

Immune system of fishes

Fish possess a complex immune system of innate and acquired immune defense mechanisms. The innate immune system which is considered to be the first line of defense for fish is sensitive to environmental changes that lead to disruption of immune function (Fevolden and Roed, 1993).

One of the essential components of fish immune system is the complement system. It plays an important role in the immune defense against the bacterial invasion and the inflammation. C3 is the key modulator of both classical and lectin pathways involved in various immune effector functions (Holland and Lambris, 2002). C3 mRNA expression level was found to increase due to environmental stressors (Qi et al., 2011). The complement system activation is a good indicator of fish
immuno-competence under stressors (Carroll, 2004). It was suggested that HS could activate the complement system (Cheng et al., 2018).

Effect of HS on the immune system of fishes

High temperature that is within the physiological range of the fish species could affect the immune function (Bly and Clem, 1992). For example, exposure of Catfish (Heteropneustes fossilis) to high temperature leads to mitochondrial superoxide (O$_2^-$) production in the gills (Prakash et al., 1998) and induced antibody activity in Atlantic cod, *Gadus morhua* L. (Magnadottir et al., 1999). Exposure of Atlantic halibut to high water temperature had no effect on phagocytosis, but inhibited the immune response against bacteria (Avtalion, 1981).

In teleost, blood cell plays a major role in immune defense so measuring the parameters of these blood cells could determine the physiological changes induced by stressors (Wu et al., 2015). It was demonstrated that elevated temperature fluctuation lead to reduction in blood cell count in teleost (Qi et al., 2013; Cheng et al., 2017). Ellis (1981) found that, white blood cell count could be used to evaluate some diseases and injuries in fish body; such as rearing environment affecting the number of circulating leukocytes. It was found that there was increase in the white blood cell count in rainbow trout (*Oncorhynchus mykiss*) (Houston et al., 1996) and carp (Engelsma et al., 2003) at elevated temperature and after cold shock, respectively. Ndong et al. (2007) found that, when Mozambique tilapis (*O. mossambicus*) were transferred from 27°C to 19°C or 35°C, white blood cell counts decreased significantly. The phenomenon of strong disease resistances in tilapia at optimal temperature could be explained by (Qiang et al, 2013). It was found that, under temperature stress of 19°C and 35°C from 27°C, tilapia decreased its resistance against *S. iniae*. WBC counts of sea bass *Dicentrarchus labrax* and tench were significantly elevated at suitable water temperature in summer than in winter (Pascoli et al., 2011).

Immune response of fishes against HS

Heat shock proteins (HSPs) are a group of highly conserved proteins which exist widely in all living organisms. HSPs families play a critical role in protein folding, intracellular transport, protein degradation, and cell signaling (Geething and Sambrook, 1992), which are responsible for the maintenance of cellular viability by preventing the irreversible loss of vital proteins and facilitating their subsequent regeneration due to stresses (Pörtner, 2002). It is also believed that HSPs act as biomarkers for assessing the organism’s response to environmental stressors (Dalvi et al., 2017). Among HSP family, HSP70 and HSP90 play a major role in folding newly synthesized proteins and refolding denatured proteins, also they participate in the stress immune response (Fu et al., 2011). HS on fish cause over-
expression of HSP70 and HSP90, leading cells to recover from stress and protect them from further insults (Wu et al., 2012). Overexpression of inducible HSP70 could be due to elevated protein damage and increased stress tolerance (Feder and Hofmann, 1999). HSPs were found to be heat inducible in many species, such as zebrafish (Danio rerio) (Lele et al., 1997), medaka (Oryzias latipes) (Werner et al., 2003), and sea urchins (Wu et al., 2012). It was noticed that elevated levels of HSP70 and HSP90 lasted only for some hours, may be due to energy consumption for other heat shock responses (Somero, 2002) and the available last energy was limited.

Fish could adapt to the elevated water temperature of its habitat till a specific limit, although HS occurs when the temperature exceeds the threshold extent. The temperature at which stress occurs to fish depends on a fish’s acclimation or previous experience. Additionally, there is a sub-stressful temperature at which stress occur regardless fish acclimation (Barton, 2002).

After the elevation of environmental temperature, the water oxygen concentration decreases and the metabolic rate increases thus inducing tissue oxygen demand. Fish adapt to fluctuation in environmental temperature and hypoxia by inducing their total hemoglobin content (Brix et al., 2004). As a result to the elevated metabolic rate due to HS (Campbell et al., 2008; Otto and Zahn, 2008); fish increase their fat consumption due to increased energy demand, and finally lead to reduced body mass. As fishes are poikilothermic aquatic animals, elevated water temperature could change their body temperature. This ectothermic character could affect the innate and adaptive immunity, leading to increase susceptibility to infection or death (Dittmar et al., 2013). Generally, fish could modulate their metabolism to overcome the effects of temperature fluctuations (Ibarz et al., 2010). Aquatic ectotherms usually increase the anaerobic component so as to control the damage caused by different stressors (Devi, 1996).

Reference:
on fish immune mechanisms. *Developments in Biological Standardization*, 90:33-43.

Bowden, T.J., 2008. Modulation of the immune system of fish by their environment. Fish and Shellfish Immunology, 25, 373-383.

Devi, V.U., 1996. Bioaccumulation and metabolic effects of cadmium on marine

Healy, T.M. and Schulte, P.M., 2012. Factors affecting plasticity in whole-

mucus exudation under elevated temperature. *Comparative Biochemistry and Physiology, 119* (C), 211-6.

Wu, C.X., Zhao, F.Y., Zhang, Y., Zhu, Y.J., Ma, M.S., Mao, H.L.
