Microsatellite genetic differentiation between two populations of European catfish (*Silurus glanis*) in Iran

Behmanesh Sh.¹; Amiri A.²; Yarmohammadi M.³; Golshan M.^{4*}

Received: April 2020

Accepted: October 2020

Abstract

In the present study the population genetic structure of European catfish in the Anzali Lagoon and Aras Lake were examined using microsatellite markers. Sixty fin clip samples of *Silurus glanis* from two regions were collected and for genetic analysis 6 microsatellite loci were used to assess the population genetic structure of *S. glanis*. There were significant differences based on average number of alleles per locus and heterozygosity between two populations (p<0.01). The observed heterozygosity (H_o) for each population (H_e) per locus was from 0.297 to 0.733 in Aras lake and Anzali lagoon samples, respectively. The Analysis of molecular variance (AMOVA) indicated that the proportion of the genetic variation attributed to differences among populations of the *S. glanis* was highly significant for both F_{ST} and R_{ST} (F_{ST} = 0.165, R_{ST} = 0.38, p<0.001). Excess or lacks of heterozygosity was observed but most of used microsatellite loci in selected areas were at Hardy-Weinberg equilibrium. Our finding showed the two populations are genetically separated, therefore fisheries management and restocking program of this species especially in Anzali Lagoon is recommended.

Keywords: European Catfish, Genetic population, microsatellite markers

¹⁻Inland Waters Aquaculture Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandare Anzali, Iran

²⁻ Department of Biology, Faculty of Fisheries Sciences Science, Ahvaz branch, Islamic Azad University, Ahvaz, Iran

³⁻International Sturgeon Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran

⁴⁻Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran

^{*}Corresponding author's Email: mahdigolshan@yahoo.com

Introduction

Diversity plays important roles in populations due to provide necessary spectrum of genotypes for adaptive to change environmental response conditions (Webster et al., 2018). Heterozygous individuals usually are superior to less heterozygous individuals in characteristics such as growth, fertility, and disease resistance (Beardmore al.. 1997). et Microsatellites are known as a simple repeats (SSRs), simple sequence sequence length polymorphisms (SSLPs), or short tandem repeats (STR), are regions of DNA that exhibit short repetitive sequence motifs. These motifs are often composed of 1-6 base pair repeat sequences. Microsatellites have been used as genetic markers to assess population genetic structure. broodstock identify for management in hatcheries. evolutionary biology, biology conservation and genetic mapping (Triantafyllidist et al., 2002). European catfish has global distribution as a native or an introduced species (Cucherousset et al., 2018). Silurus glanis is well known as an economic important species and an for aquaculture industry (Rees et al., 2017). There are large number of studies have been conducted on reproductive cycles, genome manipulation and biology of gametes of S. glanis (Legendre et al., Smitherman 1996: et al.. 1996: Varkonyi et al., 1998; Brzuska and Adamek, 1999; Bolliet et al., 2001; Kumar et al., 2017; Zibiene and Zibas, 2019; Linhart et al., 2020) but study of population genetic structure is rare.

Although, allozyme (Triantafyllidis et al., 1999a) and mitochondrial DNA (mtDNA) (Triantafyllidis et al., 1999b; Krieg et al., 2000) were examined to study population genetic of S. glanis, neither of them were able to reveal high levels of genetic variability to separate wild and hatchery populations. Krieg et reported al. (1999)population differentiation among different species of Siluridae family using microsatellite markers. Triantafyllidis et al. (2002) showed that the genetic diversity was much higher than previous allozyme and mtDNA studied on this species by using 10 microsatellite markers in different areas. Quan et al. (2006) examined population structure and genetic variation of northern sheatfish (S. soldatovi) in wild and farmed using microsatellite populations markers. Results showed that H_0 and H_e and other heterozygosity parameters were not different between populations. Bahrami Kamangar et al. (2015) investigated the genetic diversity and genetic structure of four populations of Silurus glanis by microsatellite DNA markers.

S. glanis is one of the native species of Iran where mainly distributed in Anzali Lagoon and Aras Lake, north northwest of Iran. Due and to overfishing and poor fisheries management, the capture production has been declined over the last decades. Thus, the present study aimed to assess genetic diversity of Iranian populations of S. glanis in Anzali Lagoon and Aras Lake regions using microsatellite DNA markers.

Materials and methods

Sample collections and DNA extraction Sixty individuals of S. glanis were obtained from two selected sites, Anzali Lagoon (37°28'22"N 49°27'44"E) and Aras Lake (39°05′28″N 45°24′08″E) through trap and fin clips were taken placed 100% and in ethanol immediately. Total DNA was extracted from each individual using standard SDS proteinase-K digestion; phenol: chloroform: isoamylalcohol extraction and ethanol precipitation as described in Hillis et al. (1996). The quality and quantity of extracted DNA and Polymerase chain reaction (PCR) was examined by 1% agarose gel electrophoresis and nanodrop spectrophotometery (ND 1000, USA) respectively.

PCR profiles and primer sequences

The PCR amplifications were done according to Krieg *et al.* (1999) with

some modifies in regents and annealing temperature. Six microsatellite loci for S. glanis were used and all of the loci have been described by Krieg et al. (1999). Detailed information of these reference. microsatellite loci such forward and reverse primers, fragment size and annealing temperature was described in Table 1. The PCR amplification was performed in a final volume of 25 µL, containing 100 ng template DNA, 10 mM forward and reverse primers, 200 µm of dNTPs, 0.5 u/µL of taq DNA polymerase (Cinagen, Iran), 50 mM MgCl₂, 10X PCR buffer and distilled water using BIOER thermal cycler (XP cycler gradient, 96 plus, Bioer, China) under the following conditions: initial denaturation of 4 min at 94°C (primary denaturation) followed by 30 cycles of 30 s denaturation at 94°C, 60 s at the respective annealing temperature, and 60 s extension at 72°C, finishing with 10 min at 72°C as the elongation period.

Locus	Primer (5'-3')	Size (bp)	Annealing temp. (°C)	Reference
Sgl33INRA	F-CCACTTATGCACCTGAAGG R-GGCCAATTAAACAGGTACAG	150-200	58	
Sgl5fINRA	F-CCAATTTACCTCAGACTACTTCTG R-GCACGTGCAAAGTCCTG	125-210	55	
Sgl695INRA	F-CTTTGGTGAGTCAGAAACACG R-GCACTACTGGTAGATGCT	180-250	56	Krieg <i>et al.</i>
Sgl7159INRA	F-CTGCTCAATCAAAGTTGGTTC R-CAAACTAAGTTCAGCCAGGC	220-300	55	(1999)
Sgl7eINRA	F-GTGAATGTGCTTTAAGGGC R-GTTCATGGTGTCACTGCG	200-300	59	
Sgl7fINRA	F-GGCTGTATGTTAAGTTATTTTCAG R-CTGAGCAGTGGCCAGAATG	220-300	60	

Table 1: Information of 6 polymorphic microsatellite loci used in the present study.

Gel electrophoresis and statistical analyses

The PCR products were separated by electrophoresis through 6% (w/v) polyacrylamide gel (29:1 acrylamide: bis acrylamide; 1x TBE buffer) using a Cleaver gel electrophoresis system

(Cleaver Scientific Ltd, UK). Gel run was carried out at 120 V until the loading buffer reached the bottom of the plate. After electrophoresis, the gel was stained with a silver nitrate protocol (Fig. 1).

Figure 1: Polyacrylamide electrophoresis patterns of Silurus glanis in the locus Sg133INRA.

Microsatellite alleles were identified by their size in base pairs (Peakall and Smouse, 2006). Allele lengths were estimated by comparison with a 100 bp DNA marker ladder (Fermentas GmbH, Germany). Measures of genetic diversity were determined for each population including, number of alleles per locus, observed heterozygosity (H_o), expected heterozygosity (H_e) and deviations from Hardy-Weinberg equilibrium (HWE) between pairwise loci. The genetic distance between populations of two areas was estimated using the Nei's standard genetic distance index (Nei, 1972). The pairwise differentiation between populations of the two areas was also characterized using pairwise estimates of θ values of *Fst* were tested for significant departure. All calculations were conducted using GENALEX version 6. Analysis of molecular variance (AMOVA) was used to examine the partition of variance between and within two populations.

Results

PCR amplification

Eight microsatellite loci were successfully amplified where two sets (Sgl310INRA and Sgl325INRA) showed monomorphic bands in two populations and six sets produced polymorphic bands (Table 2). Locus Sgl5fINRA in samples of Anzali Lagoon showed highest number of alleles (12) and locus Sgl7eINRA in samples of Aras Lake presented the lowest (4) (Table 2).

Genetic variations of microsatellite loci within populations

A total of 88 unique alleles were found across the six loci in the two populations. Number of alleles (N_A) , the observed (H_o) and expected (H_e) heterozygosity of 6 polymorphic primers per population are shown in Table 3. These parameters were in the range of 4-12, 0.197-0.807 and 0.226-0.733, respectively. The mean of N_A

(9.3), H_o (0.639) and H_e (0.589) in Anzali Lagoon were significantly higher than Aras Lake (p<0.01).

$(N_A, number of alleles; H_o, observed heterozygosity; H_e, expected heterozygosity)$			
Locus	Parameters	Anzali lagoon	Aras lake
	N _A	10	6
Sgl33INRA	H_{o}	0.795	0.289
-	H_{e}	0.702	0.425
	N _A	12	6
Sgl5fINRA	H _o	0.486	0.350
	H_{e}	0.385	0.318
	N _A	8	5
Sgl695INRA	H_{o}	0.807	0.197
	H_{e}	0.733	0.380
	N _A	9	5
Sgl7159INRA	H_{o}	0.621	0.395
	H_{e}	0.640	0.226
	N _A	8	4
Sgl7eINRA	H_{o}	0.610	0.274
	He	0.505	0.297
	А	9	6
Sgl7fINRA	H_{o}	0.515	0.201
-	H _e	0.569	0.436
Mean N _A		9.3 ± 3.28	5.3 ± 2.18
Mean H _o		0.639 ± 0.055	0.284 ± 0.155
Mean H _e		0.589 ± 0.031	0.324 ± 0.098

Table 2: The genetic polymorphism of Anzali Lagoon and Aras Lake population	n
(N _A , number of alleles; H _o , observed heterozygosity; H _e , expected heterozygosit	y)

	Table 3: The computed	l genetic differentiation	parameters.
Populations	(Genetic difference (F_{st})	Genetic distance

Inzali Lagoon and Aras Lake	0.165	0.38

Population genetic differentiation

The results of AMOVA indicated significant differentiation in pair-wise F_{ST} between two populations. The F_{st} was 0.165 which showed significant differences between populations. Genetic distance calculated based on Nei (1972). Both computed parameters presented significantly differences between populations (*p*<0.01).

Hardy–Weinberg equilibrium tests (HWE)

All 6 loci used in this study were tested for deviation from Hardy–Weinberg equilibrium. The results showed that significant departures from HWE were detected using the probability test (p<0.05). Of the six markers assessed for HWE, the loci Sgl695INRA and Sgl7eINRA in Anzali Lagoon and Sgl5fINRA locus in Aras Lake showed excess heterozygosity. Sgl7159INRA in Anzali Lagoon and Sgl7eINRA and Sgl7fINRA loci in Aras Lake presented lack of heterozygosity. The other loci in two populations were at HWE test (Table 4).

 Table 4: The genetic deviation test (HWE) of
 S. glanis population.

Locus	Anzali	Aras Lake
	Lagoon	
Sgl33INRA	0.0	0.0
Sgl5fINRA	0.0	-0.02
Sgl695INRA	-0.1	0.0
Sgl7159INRA	0.205	0.0
Sgl7eINRA	-0.018	0.155
Sgl7fINRA	0.0	0.035

Discussion

Microsatellites are well known as suitable genetic markers and powerful tools for population genetic studies by their high level of allelic variability (Krieg et al., 1999; Dudu et al., 2008). S. glanis is an economic species which become popular fish with high consumption in most countries. In the present study we used six specific microsatellite loci to assess the population differentiation in two areas, Anzali Lagoon and Aras Lake from north part of Iran and all of these loci were polymorphic.

The present study found that the number of alleles per locus was in the range of 4-12 and Anzali Lagoon presented higher number of alleles (9.3 in average) compared to Aras Lake (5.3 in average). Low number of alleles in Aras lake samples may indicate bottleneck effect due to reduce of stocks, water pollution and destruction or degradation of habitat (Selkoe *et al.*, 2006). The computed heterozygosity for

Anzali Lagoon was higher than Aras Lake and the level of genetic diversity was significant higher (p < 0.01)between two populations. High level of heterozygosity in samples of Anzali Lagoon can be evidence of obtained alleles. It is worth mentioned that numerous rivers reach Anzali Lagoon and high heterozygosity could be mating between probable populations in these rivers. The present and previous studies (Bahrami Kamangar and Rostamzadeh, 2015) on the population genetic of S. glanis corroborate that there was genetic differentiation among two populations of S. glanis. Obtained alleles and heterozygosity parameters in the present study were similar to the previous studies, that so these microsatellite loci could be used as genetic markers to identify other populations of this family.

Based on the AMOVA analyses, significant genetic differentiation was found among both populations of Anzali Lagoon and Aras Lake (p<0.01). The F_{st} index based on AMOVA test is useful relative measurement of a differentiation genetic among populations, changes from 0 to 1 (Ballox and Lugan-Moulin, 2002; Quan et al., 2006). High value of F_{st} indicates larger discrepancy and vice versa. It is worth to mention that there are large number of reports in different species using $F_{\rm st}$ parameter that all others found various values of F_{st} and significant differentiations between studied populations (Norouzi et al., 2008; Chakmehdouz et al., 2011). In the other study between four populations of S.glanis in different part of Iran, Anazali Lagoon population showed a low level of diversity (Bahrami Kamangar and Rostamzadeh, 2015). In the present study the computed F_{st} value between two populations was remarkable. Sampling areas are completely isolated basins and there is migration. This level of no differentiation among S. glanis populations could be due to a mutation rate and gaps between allele sizes. Since geographical distance of selected area and significant values of F_{st} and genetic distance, it is suggested that two populations genetically are differentiated.

It is worth to mention that when the value of the genetic deviation index is closer to zero, the population is close to Hardy-Weinberg equilibrium (Quan et al., 2006). Our results were similar to those observed in other species of catfish, in which significant amounts of population structure were documented (Triantafyllidis et al., 2002). In the present study three loci in both populations were at HWE as well as excess or deficient of heterozygous (departure from HWE). There are several possible causes of deviation from Hardy-Weinberg equilibrium test such as shortage of samples, using of nonspecific primers, population substructuring, low level of polymorphism and the most probable is presence of in inheritance null alleles of microsatellite loci (Paetkau and Strobeck., 1995; Sekino et al., 2003). (2006) reported that Quan *et al*.

environmental degradation and overfishing could be the reasons of deviation from HWE. In recent years habitat deterioration and overfishing of this species in these areas are increased that could be a reasonable explanation of observed deviation from HWE in this study. In the future, these factors could be inbreeding and diminishing the population size in selected areas.

In conclusion, the findings of this study indicated that there are genetic differentiations in Anzali Lagoon and Aras lake *S. glanis*. Significant variance in microsatellite allele frequency provide evidence that Anzali Lagoon populations in the south Caspian Sea basin is genetically structured. Thus the protection of habitat areas and prevent of harvest for conservation of gene pools should be applied.

Acknowledgements

The authors would like to thank Mr. Nahrevar and Mr. Nowrouzi for providing *Silurus glanis* samples.

References

- Bahrami Kamangar, B. and Rostamzadeh, J., 2015. Genetic diversity and population genetic structure of Wels (*Silurus glanis* Linnaeus, 1758) in the northwest of Iran. *Environmental Biology of fishes*, 98, 1927-1934.
- Ballox, F. and Lugon-Moulin, N., 2002. The estimate of population differentiation with microsatellite markers. *Molecular Ecology*, 11, 155-165.

DOI: 10.18331/SFS2021.7.2.10

- Beardmore, A.L., Mair, C.G. and Lewis, C.G., 1997. Biodiversity in aquatic systems in relation to aquaculture. *Aquaculture Research*, 28, 829-839.
- Bolliet, V., Aranda, A. and Boujard, T., 2001. Demand-feeding rhythm in rainbow trout and European catfish. Synchronisation by photoperiod and food availability. *Physiology and Behavior*, 73, 625–633.
- Brzuska, E. and Adamek, J., 1999. Artificial spawning of European catfish, *Silurus glanis* L.: stimulation of ovulation using LHRH-a, Ovaprim and carp pituitary extract. *Aquaculture Research*, 30, 59–64.
- ChakmehdouzGhasemi,F.,Pourkazemi,M.,Tavakolli,M.,Yarmohammadi,M.,HassanzadehSaber,M. and Baradaran Noveiri,S.,2011.ApplicationS.,2011.Applicationmicrosatellitemarkers to determinepopulations of the Persian sturgeon(Acipenser persicus) in the South ofCaspian Sea.Iranian Journal ofFisheries Sciences, 10, 596-606.
- Cucherousset, J., Horky, P., Slavík,
 O. Ovidio, M., Arlinghaus, R.,
 Boulêtreau, S., Britton, R., García-Berthou, E. and Santoul, F., 2018.
 Ecology, behaviour and management of the European catfish. *Reviews in Fish Biology and Fisheries*, 28, 177– 190.
- Dudu, A., Georgescu, S.E., Luca, C.,Suciu, R. and Costache, M., 2008.Microsatellite DNA variation in theBlack Sea Stellate sturgeon(Acipenser stellatus).Lucrari

stiintifice Zootehnie si Biotehnologii, 41, 78-82.

- Hillis, D.M., Mable, B.K., Larson, A.,
 Davis, S.K. and Zimmer, E.A.,
 1996. Nucleic acids IV: sequencing and cloning. In: Hillis, D.M., Moritz, C., Mable, B, (Eds.), Molecular Systematics, second ed. Sinauer Associates, Sunderland. pp. 321-381.
- Krieg, F., Estoup, A., Triantafyllidis,
 A. and Guyomard, R., 1999.
 Isolation of microsatellite loci in European catfish, *Silurus glanis*. *Molecular Ecology*, 8, 1964–1967.
- Krieg, F., Triantafyllidis, A. and Guyomard, R., 2000. Mitochondrial DNA variation in European populations of Silurus glanis. Journal of Fish Biology, 56, 713– 724.
- Kumar, S., Sándor, Z.S.J., Nagy, Z.,
 Fazekas, G., Havasi, M., Sinha,
 A.K., Boeck, G.D. and Gál, D.,
 2017. Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (*Silurus glanis*): growth response and liver gene expression. *Aquaculture Nutrition*, 23, 1179–1189.
- Legendre, M., Linhart, O. and Billard, R., 1996. Spawning and management of gametes, fertilized eggs and embryos in Siluroidei. *Aquatic Living Resources*, 9, 59–80.
- Linhart, O., Cheng, Y., Rodina, M.,
 Gela, D., Tučková, V., Shelton,
 W.L., Tinkir, M., Memiş, D. and
 Xin, M., 2020. Sperm management
 of European catfish (*Silurus glanis*L.) for effective reproduction and

genetic conservation. Aquaculture, 529,

https://doi.org/10.1016/j.aquaculture. 2020.735620.

- Nei, M., 1972. Genetic distance between populations. American Naturalist, 106, 283-292.
- Norouzi. М.. Pourkazemi. **M.**. Keyvan, A., Fatemi, S.M.R. and Kazemi, **B.**, 2008. Population Structure of Stellate Genetic Sturgeon (Acipenser stellatus Pallas, 1771) in the South Caspian Sea Using Microsatellite Markers. Journal of Fisheries and Aquatic Science, 3, 158-166.
- Paetkau, D. and Strobeck, C., 1995. The molecular basis and evolutionary history of a microsatellite null allele in bears. *Molecular Ecology*, 4, 519–520.
- Peakall, R. and Smouse, P.E., 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*, 6, 288-295.
- Quan, Y.C., Sun, X.W. and Liang, L.Q., 2006. Genetic Polymorphism of Microsatellite DNA in Two Populations of Northern Sheatfish (*Silurus soldatovi*). Acta Genetica Sinica, 33, 908–916.
- Rees, E.M.A., Edmonds-Brown, V.R., Alam, M.F., Wright, R.M., Britton, J.R., Davies, G.D. and Cowx, I. G., 2017. Socio-economic drivers of specialist anglers targeting the non-native European catfish (*Silurus glanis*) in the UK. *PLoS ONE* 12(6), e0178805.

- Sekino, M., Hamaguchi, M., Aranishi, F. and Okoshi, K., 2003. Development of novel microsatellite DNA markers from the Pacific Oyster *Crassostrea gigas*. *Marine Biotechnology*, 5, 227-233.
- Selkoe, K. A., Gaines, S. D., Caselle, J.E. and Warner, R.R., 2006. Current shifts and kin aggregation explain genetic patchiness in fish recruits. *Ecology*, 87, 3082-3094.
- Smitherman, R.O., Dunham, R.A. and Whitehead, P.K., 1996. Selection, hybridization and genome manipulation in Siluroidei. *Aquatic Living Resources*, 93–102.
- Triantafyllidis, A., Ozouf-Costaz, C., Rab, P., Suciu, R. and Karakousis,
 Y., 1999a. Allozyme variation in European silurid catfishes, *Silurus* glanis and *Silurus aristotelis*. Biochemical Systematics and Ecology, 27, 487–498.
- Triantafyllidis, A., Abatzopoulos, T.J. Economidis, P.S., 1999b. and differentiation Genetic and phylogenetic relationships among Greek Silurus glanis and Silurus aristotelis (Pisces. Siluridae) populations, assessed by PCR-RFLP analysis of mitochondrial DNA segments. Heredity, 82, 503-509.
- Triantafyllidis, A., Krieg, F., Cottin,
 C., Abatzopoulos, T.J.,
 Triantafyllidis, C. and Guyomard,
 R., 2002. Genetic structure and phylogeography of European catfish (*Silurus glanis*) populations. *Molecular Ecology*, 11, 1039–1055.

- Varkonyi, E., Bercsenyi, M., Ozouf-Costaz, C. and Billard, R., 1998. Chromosomal and morphological abnormalities caused by oocyte ageing in *Silurus glanis*. *Journal of Fish Biology*, 52, 899–906.
- Webster, T.M.U., Consuegra, S.,
 Hitchings, M. and Leaniz, C.G.D.,
 2018. Interpopulation Variation in the Atlantic salmon Microbiome Reflects Environmental and Genetic Diversity. *Applied and*

Environmental Microbiology, 84 (**16**) e00691-18.

Zibiene, G. and Zibas, A. 2019. Impact of commercial probiotics on growth parameters of European catfish (*Silurus glanis*) and water quality in recirculating aquaculture systems. *Aquaculture International*, 27, 1751–1766.