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Abstract. In this paper the concept of ξ-pre-continuous and ξ-regular continuous maps in ξ-topological spaces are 
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relationship by making the use of some counter examples 
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1 Introduction 

In both the pure and applied domains, the importance of general topology is quickly increasing. Information systems are 

fundamental instruments for generating information understanding in any real-life sector, and topological information 

collection structures are appropriate mathematical models for both quantitative and qualitative information mathematics. 

Initially, Mashhour et. al. [21] introduced pre-open sets and pre-continuity in topology. Levine [18] introduced the class 

of generalized closed (g-closed) sets in topological spaces. The generalized continuity was studied in recent years by 

Balachandran et.al. Devi et.al and Maki et.al [5,10,20]. Regular open sets have been introduced and investigated by Stone 

[27]. Miguel Caldas and Cueva introduced and studied the concept of semi-generalized continuous maps in topological 

spaces [7]. The authors Arya,S. P., Gupta,R Anuradha, Baby Chacko and Singh D [2-3,28] introduced the concept of 

strongly continuous functions and almost perfectly continuous functions in topological spaces and established the various 

significant results. Benchalli S.S and Umadevi I Neeli Nour T.M [4, 26] studied the concept of totally semi-continuous 

functions and semi-totally continuous functions in topological spaces and verify the certain properties of the concept.  

Bhattacharya,S, [6] introduced and studied the concept of generalized regular closed sets and establish the various 

characterizations. Nithyanantha and Thangavelu [23] introduced the concept of binary topology between two sets and 

investigate some of the basic properties, where a binary topology from X to Y is a binary structure satisfying certain 

axioms that are analogous to the axioms of topology. Jamal M. Mustafa [12] studied binary generalized topological spaces 

and investigate the various relationships of the maps so discussed with some other maps.  

 

1.1  Contribution:  

As outline, the concept ξ-pre-continuous and ξ-regular continuous map, ξ-pre-generalized closed sets, ξ-pre-generalized 

continuous maps and ξ-pre-irresolutes are introduced in ξ-topological spaces and investigate various relationships by 

making the use of some examples 

. 

1.2 Organization 

The rest of the paper structured as follows: Some require basic definitions, concepts of ξ-topological and notations are 

discussed in Section 2. In section 3, namely 𝝃-Pre-Continuous Maps we have introduced several maps and have discussed 

their relationships also. In section 4, headed by the concept of 𝝃-Regular Continuous Maps we introduced several maps 

and studied their relationships. In section 5, headed by the concept of 𝝃-Pre-Generalized Closed Sets and Maps we 

introduced several closed sets and their maps and verify their relationships. Finally, Section 6 concludes the paper with 

possible scope of the concept. Throughout the paper ℘(Υ) denotes the power set of Υ. 

 

2. Preliminaries 

Some require and important definitions and concepts of 𝜉-topological space and notations have been given in this portion 
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Definition 2.1: Let Υ1 and Υ2 be any two non-void sets. Then ξ-topology (ξT) from  Υ1 to Υ2 is a binary structure ξ ⊆
℘(Υ1) × ℘(Υ2) satisfying the conditions i.e. (∅, ∅), (Υ1, Υ2) ∈ ξ and If {(Lα, Mα) ;  α ∈ Γ} is a family of elements of ξ, 

then (⋃ Lαα∈Γ , ⋃ Mαα∈Γ ) ∈ ξ . If ξ  is ξT  from Υ1  to Υ2 , then (Υ1, Υ2, ξ)  is called a ξ -topological space (ξTS)  and the 

elements of ξ are called the ξ-open subsets of (Υ1, Υ2, ξ). The elements of Υ1 × Υ2 are called simply ξ-points. 

 

Definition 2.2: Let Υ1 and Υ2 be any two non-void set and (L1, M1), (L2, M2) are the elements of ℘(Υ1) × ℘(Υ2). Then 

(L1, M1) ⊆ (L2, M2) only if L1 ⊆ L2 and M1 ⊆ M2. 

 

Remark 2.1: Let {Tα ;  α ∈ Λ} be the family of ξT from Υ1 to Υ2. Then, ⋂ Tαα∈Λ  is also ξT from Υ1 to Υ2. Further ∪α∈Λ Tα 

need not be  ξT.  

 

Definition 2.3: Let (Υ1, Υ2, ξ) be a ξTS and L ⊆ Υ1, M ⊆ Υ2 . Then (L, M) is called ξ-closed in (Υ1 , Υ2, ξ) if (Υ1\L, Υ2\
M) ∈ ξ. 

 

Proposition 2.1: Let(Υ1, Υ2, ξ)  is ξTS . Then (Υ1, Υ2)  and (∅, ∅)  are ξ-closed sets. Similarly if {(Lα, Mα): α ∈ Γ}  is a 

family of ξ-closed sets, then (⋂ Lαα∈Γ , ⋂ Mαα∈Γ ) is ξ-closed.  

 

Definition 2.4: Let(Υ1, Υ2, ξ) is ξTS and (L, M) ⊆ (Υ1, Υ2). Let (L, M)1∗

ξ
= ⋂{Lα: (Lα , Mα) is ξ-closed set and (L, M) ⊆

(Lα , Mα)} and (L, M)2∗

ξ
= ⋂{Mα: (Lα , Mα) is ξ-closed set and (L, M) ⊆ (Lα , Mα)}.Then (L, M)1∗

ξ
 , (L, M)2∗

ξ
) is ξ-

closed set and (L, M) ⊆ (L, M)1∗

ξ
 , (L, M)2∗

ξ
). The ordered pair ((L, M)1∗

ξ
 , (L, M)2∗

ξ
)) is called 𝜉-closure of (L, M) and 

is denoted Clξ(L, M) in ξTS (X, Y, μ) where (L, M) ⊆ (Υ1, Υ2).   

 

Proposition 2.2: Let(L, M) ⊆ (Υ1, Υ2). Then (L, M) is ξ-open in (Υ1, Υ2, ξ) iff (L, M) = Iξ(L, M) and (L, M) is ξ-closed in 

(Υ1, Υ2, ξ) iff (L, M) = Clξ(L, M). 

 

Proposition 2.3: Let (L, M) ⊆ (N, P) ⊆ (Υ1, Υ2) and (Υ1, Υ2, ξ)  is ξTS . Then Clξ(∅, ∅) = (∅, ∅), Clξ(X, Y) = (X, Y) , 

(L, M) ⊆ Clξ(L, M) , (L, M)1∗

ξ
⊆ (N, P)1∗

ξ  , (L, M)2∗

ξ
) ⊆ (N, P)2∗

ξ  , Clξ(L, M) ⊆ Clξ(N, P)  and Clξ(Clξ(L, M)) =

Clξ(L, M) 

 

Definition 2.5: Let(Υ1, Υ2, ξ) is ξTS and (L, M) ⊆ (Υ1, Υ2). Let (L, M)10

ξ
=∪ {Lα: (Lα , Mα)is ξ-open set and (L, M) ⊆

(Lα , Mα)}  and (L, M)20

ξ
=∪ {Mα: (Lα , Mα) is ξ -open set and (L, M) ⊆ (Lα , Mα)}.Then (L, M)10

ξ
 , (L, M)20

ξ
)  is ξ -

open set and (L, M)10

ξ
 , (L, M)20

ξ
) ⊆ (L, M). The ordered pair ((L, M)10

ξ
 , (L, M)20

ξ
)) is called 𝜉-interior of (L, M) and 

is denoted Iξ(L, M) in ξTS (X, Y, μ) where (L, M) ⊆ (Υ1 , Υ2).   

 

Proposition 2.4: Let (L, M) ⊆ (Υ1 , Υ2). Then (L, M) is ξ-open set in (Υ1, Υ2, ξ)  iff (L, M) = Iξ(L, M).    

 

Proposition 2.5: Let (L, M) ⊆ (N, P) ⊆ (Υ1, Υ2) and (Υ1, Υ2, ξ)  is ξTS . Then Iξ(∅, ∅) = (∅, ∅),  Iξ(X, Y) = (X, Y) , 

(L, M)10

ξ ⊆ (N, P)10

ξ , (L, M)20

ξ ⊆ (N, P)20

ξ , Iξ(L, M) ⊆ Iξ(N, P) and Iξ(Iξ(L, M)) = Iξ(L, M)   

 

Definition 2.6: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT. Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is called 𝜉-continuous at z ∈ Z 

if for any 𝜉-open set (L, M) ∈ (Υ1, Υ2, ξ) with ℱ(z) ∈ (L, M)  then there exists 𝒯-open G in (Z, 𝒯)  such that z ∈ G and 

ℱ(G) ⊆ (L, M). The mapping ℱ is called 𝜉-continuous if it is 𝜉-continuous at each z ∈ Z .   

 

Proposition 2.6: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT . Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is called 𝜉-continuous if 

ℱ−1(L, M) is 𝒯-open in (Z, 𝒯) for every 𝜉-open set (L, M)  in (Υ1, Υ2, ξ).  

 

3.  𝛏-Pre-Continuous Maps (𝛏𝐏𝐂𝐌) 

In this section, the concept of 𝜉-pre-continuous maps, totally 𝜉-pre-continuous maps and strongly 𝜉-pre-continuous maps 

in ξTS have been introduced and established the relationships between these maps and some other maps by making the 

use of some counter examples.  

 

Definition 3.1: Let (Υ1, Υ2, ξ)  is ξTS . Then (L, M)   ⊆ (Υ1, Υ2, ξ)  is said to 𝜉 -pre-open set (𝜉𝑃𝑂𝑆)  if (L, M)  ⊆
Iξ(Clξ(L, M)). The complement of 𝜉-pre-open set is 𝜉-pre-closed set denoted as (𝜉𝑃𝐶𝑆).  

Definition 3.2: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT. Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is called 𝜉-pre-continuous map 

(𝜉𝑃𝐶𝑀) if ℱ−1(L, M) is 𝒯-pre-open in (Z, 𝒯) for every 𝜉-open set (L, M)  in (Υ1 , Υ2, ξ).  

 

Definition 3.3: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT. Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is said to be  
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i) Totally 𝜉-continuous map (𝑇𝜉𝐶𝑀) if ℱ−1(L, M) is 𝒯-clopen in (Z, 𝒯) for every 𝜉-open set (L, M)  in (Υ1, Υ2, ξ).  

ii) Totally 𝜉 -pre-continuous map (𝑇𝜉𝑃𝐶𝑀)  if ℱ−1(L, M)  is  𝒯 -pre-clopen in (Z, 𝒯)  for every 𝜉 -open set (L, M)   in 

(Υ1, Υ2, ξ).  

iii) Strongly 𝜉-continuous map (𝑆𝜉𝐶𝑀) if ℱ−1(L, M) is 𝒯-clopen in (Z, 𝒯) for every 𝜉-set (L, M)  in (Υ1, Υ2, ξ).  

iv) Strongly 𝜉-pre-continuous ma(𝑆𝜉𝑃𝐶𝑀)p if ℱ−1(L, M) is 𝒯-pre-clopen in (Z, 𝒯) for every 𝜉-set (L, M)  in (Υ1, Υ2, ξ).  

 

Proposition 3.1:  

i) Every strongly 𝜉-continuous map in ξTS  is totally 𝜉-continuous map 

ii) Every strongly 𝜉-pre-continuous map in ξTS  is totally 𝜉-pre-continuous map 

iii) Every totally 𝜉-pre-continuous map in ξTS  is totally 𝜉-continuous map 

Proof: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT and the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is strongly 𝜉-continuous map. Therefore 

ℱ−1(L, M) is 𝒯-clopen in (Z, 𝒯). Thus for every 𝜉-open set (R, S), ℱ−1(R, S) is 𝒯-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) →
Υ1 × Υ2 is totally 𝜉-continuous map. The proof of (ii) and (iii) are quite analogous. 

 

Remark 3.1: The converse of Proposition 3.1 need not be true shown in Example 3.1, Example 3.2 and Example 3.3. 

 

Example 3.1: Let Z = {1, 2, 3},  Υ1 = {m1, m2} and Υ2 = {l1, l2}. Then 𝒯 = {∅, {1}, {3}, {1,2}, {1,3}, {2,3}, Z} and ξ =
{(∅, ∅), ({m1}, {l2}), ({m2}, {Υ2}), (Υ1, Υ2)} . Clearly 𝒯  is GT  on Z  and 𝜉  is ξT  from Υ1  to Υ2 . Now define ℱ: (Z, 𝒯) →
Υ1 × Υ2  by ℱ(1) = (m2, ∅) = ℱ(3) and ℱ(2) = (∅, l2) . Therefore ℱ−1(∅, ∅) = ∅ , ℱ−1({m1}, {l1}) = {∅} ,  

ℱ−1({m2}, {Υ2}) = {∅} and  ℱ−1(Υ1, Υ2) = Z. This shows that the inverse image of every 𝜉-open set in (Υ1, Υ2, ξ) is 𝒯-

clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2  is totally 𝜉-continuous map but not strongly 𝜉-continuous map because 

ℱ−1({m2}, {∅}) = {1,3} and ℱ−1({∅}, {l2}) = {2}, where {1,3} and {2} are not 𝒯-clopen in (Z, 𝒯).   

 

Example 3.2: In Example 3.1 the 𝒯 -pre-clopen in (Z, 𝒯)  are ∅, {1}, {3}, {1,2}, {2,3}  and  Z . Now ℱ−1(∅, ∅) = ∅ , 

ℱ−1({m1}, {l2}) = {∅},  ℱ−1({m2}, {Υ2}) = {∅} and ℱ−1(Υ1, Υ2) = Z.  This shows that the inverse image of every 𝜉-

open set in (Υ1 , Υ2, ξ) is  𝒯 -pre-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2  is totally 𝜉 -pre-continuous map but not 

strongly 𝜉-pre-continuous map because ℱ−1({m2}, {∅}) = {1,3} and ℱ−1({∅}, {l2}) = {2}, where {2} and {1,3} are not 

𝒯-pre-clopen in (Z, 𝒯).   

 

Example 3.3: Let  Z = {1, 2, 3} ,  Υ1 = {m1, m2}  and  Υ2 = {l1, l2} . Then 𝒯 = {∅, {1}, {1,2}, {2,3}, Z}  and ξ =
{(∅, ∅), ({m1}, {l2}), ({m2}, {Υ2}), (Υ1, Υ2)}. Clearly 𝒯  is GT  on Z and 𝜉 is ξT  from Υ1  to Υ2 . The𝒯-pre-clopen in (Z, 𝒯) 

are ∅, {1}, {2}, {1,3}, {2,3}  and  Z . Now define ℱ: (Z, 𝒯) → Υ1 × Υ2  by ℱ(1) = (m1, l2) = ℱ(3) and ℱ(2) = (∅, l2) . 

Therefore ℱ−1(∅, ∅) = ∅, ℱ−1({m1}, {l2}) = {1,3},  ℱ−1({m2}, {Υ2}) = {∅} and  ℱ−1(Υ1, Υ2) = Z. This shows that 

the inverse image of every 𝜉-open set in (Υ1, Υ2, ξ) is 𝒯-pre-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is totally 𝜉-pre-

continuous map but not 𝜉-continuous map because {1,3} is 𝒯-pre-clopen but not 𝒯-open in (Z, 𝒯).   

 

Proposition 3.2:  

i) Every 𝜉-continuous map in ξTS  is totally 𝜉-pre-continuous map 

ii) Every totally 𝜉-continuous map in ξTS  is totally 𝜉-pre-continuous map 

iii) Every strongly 𝜉-continuous map in ξTS  is strongly 𝜉-pre-continuous map 

Proof: Let (Υ1, Υ2, ξ)  is ξTS  and (Z, 𝒯)  be GT  and the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is 𝜉 -continuous map. Therefore 

ℱ−1(L, M) is 𝒯-open in (Z, 𝒯) for every 𝜉-open set (L, M) in (Υ1, Υ2, ξ).  Since every 𝒯-open is 𝒯-pre-open in (Z, 𝒯). 

Therefore, ℱ: (Z, 𝒯) → Υ1 × Υ2 is totally 𝜉-pre-continuous map. The proof of (ii) and (iii) are quite analogous. 

 

Remark 3.2: The converse of Proposition 3.2 need not be true shown in Example 3.5, Example 3.6 and Example 3.7. 

 

Example 3.5: Let  Z = {1, 2, 3} ,  Υ1 = {m1, m2}  and  Υ2 = {l1, l2} . Then 𝒯 = {∅, {1,2}, {2,3}, Z}   and ξ =
{(∅, ∅), ({m1}, {l2}), ({m2}, {Υ2}), (Υ1, Υ2)}. Clearly 𝒯  is GT  on Z  and 𝜉  is ξT  from Υ1  to Υ2 . Now define ℱ: (Z, 𝒯) →
Υ1 × Υ2  by ℱ(1) = (m1, l2) = ℱ(3) and ℱ(2) = (m2, l1) . Therefore ℱ−1(∅, ∅) = ∅ , ℱ−1({m1}, {l2}) = {1,3} ,  

ℱ−1({m2}, {Υ2}) = {2} and  ℱ−1(Υ1 , Υ2) = Z. This shows that the inverse image of every 𝜉-open set in (Υ1, Υ2, ξ) is 𝒯-

pre-open in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is 𝜉-pre-continuous map but not 𝜉-continuous map because {1,3} and {2} 

are not 𝒯-open in (Z, 𝒯).   

 

Example 3.6: In Example 3.5, the  𝒯 -pre-clopen in (Z, 𝒯)  are ∅, {2}, {1,3} and Z . Now ℱ−1(∅, ∅) = ∅ , 

ℱ−1({m1}, {l2}) = {1, 3}, ℱ−1({m2}, {Υ2}) = {2} and ℱ−1(Υ1, Υ2) = Z. This shows that the inverse image of every 𝜉-

open set in (Υ1 , Υ2, ξ) is 𝒯-pre-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is totally 𝜉-pre-continuous map but not totally 

𝜉-continuous map because {1,3} and {2} are not 𝒯-clopen in (Z, 𝒯).   

 

Example 3.7: In Example 3.5, the 𝒯-clopen sets in (Z, 𝒯) are ∅, {2}, {1,3} and Z.. Now ℱ−1(∅, ∅) = ∅, ℱ−1({m1},
{l1}) = {∅} ,  ℱ−1({m1}, {Υ2}) = {1,3} ,  ℱ−1({m2}, {Υ2}) = {2},  ℱ−1({∅}, {l1}) = {∅} , ℱ−1({∅}, {l2}) = {∅},
ℱ−1({∅}, {Υ2}) = {∅},  ℱ−1({m1}, {∅}) = {∅} , ℱ−1({m1}, { l2}) = {1, 3} , ℱ−1({m1}, {Υ2}) = {1, 3} , ℱ−1({m2}, ∅) =
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{∅}, ℱ−1({m2}, {l1}) = {2}, ℱ−1({m2}, { l2}) = {∅}, ℱ−1({Υ1}, {∅}) = {∅}, ℱ−1({Υ1}, {l1}) = {2},  ℱ−1({Υ1}, {l2}) =
{∅}  and  ℱ−1(Υ1, Υ2) = Z. This shows that the inverse image of every 𝜉-set in (Υ1, Υ2, ξ) is 𝒯-pre-clopen in (Z, 𝒯). 

Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is strongly 𝜉-pre-continuous map but not strongly 𝜉-continuous map because {1,3} and {2} 

are not 𝒯-open in (Z, 𝒯).   

 

Relationships of Various 𝛏 -continuous maps that we discussed in this section: 

 
Figure-1 

 

4. 𝛏-Regular Continuous Maps (𝛏𝐑𝐂𝐌) 

In this section, we have introduced and studied the concepts of  𝜉-regular-continuous maps, totally 𝜉-regular-continuous 

maps and strongly 𝜉-regular-continuous maps. Further, the relationships of these maps with some other maps have been 

established by making the use of some counter examples.  

 

Definition 4.1: Let (Υ1, Υ2, ξ)  is ξTS . Then (L, M)   ⊆ (Υ1, Υ2, ξ)  is said to 𝜉 -regular-open set (𝜉𝑅𝑂𝑆)  if (L, M) =
Iξ(Clξ(L, M)). The complement of 𝜉-regular-open set is 𝜉-regular-closed set denoted as (𝜉𝑅𝐶𝑆).  

 

Definition 4.2: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT. Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is said to be  

i)  𝜉 -regular-continuous map (𝜉𝑅𝐶𝑀)  if ℱ−1(L, M)  is  𝒯 -regular-open in (Z, 𝒯)  for every 𝜉 -open set (L, M)   in 

(Υ1, Υ2, ξ).  

ii) Totally 𝜉-regular-continuous map (𝑇𝜉𝑅𝐶𝑀) if ℱ−1(L, M) is 𝒯-regular-clopen in (Z, 𝒯) for every 𝜉-open set (L, M)  

in (Υ1, Υ2, ξ).  

iii) Strongly 𝜉-regular-continuous map (𝑆𝜉𝑅𝐶𝑀) if ℱ−1(L, M) is 𝒯-regular-clopen in (Z, 𝒯) for every 𝜉-set (L, M)  in 

(Υ1, Υ2, ξ).  

 

Proposition 4.1:  

i) Every strongly 𝜉-regular-continuous map in ξTS  is strongly 𝜉-continuous map 

ii) Every totally 𝜉-regular-continuous map in ξTS  is totally 𝜉-continuous map 

iii) Every 𝜉-regular-continuous map in ξTS  is 𝜉-continuous map 

 

Proof: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT  and the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is strongly 𝜉-regular-continuous map. 

Therefore ℱ−1(L, M) is 𝒯-regular-clopen in (Z, 𝒯). Since every 𝒯-regular-clopen is 𝒯-clopen in (Z, 𝒯). Thus ℱ−1(L, M) 

is 𝒯-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2  is strongly 𝜉-continuous map. The proof of (ii) and (iii) are quite 

analogous. 

 

Remark 4.1: The converse of (iii) in Proposition 4.1 is not true seen in Example 4.1. 

 

Example 4.1: Let Z = {1, 2, 3,4},  Υ1 = {m1, m2} and Υ2 = {l1, l2}. Then 𝒯 = {∅, {2}, {2,3}, {3,4}, {2,3, 4}, Z}  and ξ =
{(∅, ∅), ({m1}, {l1}), ({m1}, {Υ2}), ({m2}, {Υ2}), (Υ1, Υ2)}. Clearly 𝒯  is GT  on Z and 𝜉  is ξT  from Υ1  to Υ2 . Now define 

ℱ: (Z, 𝒯) → Υ1 × Υ2  by ℱ(2) = (m1, l1) = ℱ(3)and ℱ(1) = ℱ(4) = (m1, l2) . Therefore ℱ−1(∅, ∅) = ∅ , ℱ−1({m1},
{l1}) = {2,3},  ℱ−1({m1}, {Υ2}) = {2,3} , ℱ−1({m2}, {Υ2}) = {∅} and  ℱ−1(Υ1, Υ2) = Z. This shows that the inverse 

image of every 𝜉-open set in (Υ1, Υ2, ξ) is 𝒯-open in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is 𝜉-continuous map but not 𝜉-

regular-continuous map because {2,3} is not 𝒯-regular-open in (Z, 𝒯).   

 

Proposition 4.2:  

i) Every strongly 𝜉-regular-continuous map in ξTS  is totally 𝜉-regular-continuous map 

ii) Every totally 𝜉-regular-continuous map in ξTS  is 𝜉-regular-continuous map 

 

Proof: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT  and the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is strongly 𝜉-regular-continuous map. 

Therefore ℱ−1(L, M) is 𝒯-regular-clopen in (Z, 𝒯) for every 𝜉-set (L, M) in (Υ1 , Υ2, ξ). Thus for every 𝜉-open set (R, S), 

ℱ−1(R, S) is 𝒯-regular-clopen in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is totally 𝜉-regular-continuous map. The proof of 

(ii) and (iii) are quite analogous. 
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Relationships of Various 𝛏 -continuous maps that we discussed in this section: 

 
Figure-2 

 

5. 𝛏-Pre-Generalized Closed Sets and Maps  

In this section, we have introduced and studied the concepts of 𝜉-pre-generalized closed set, 𝜉-generalized pre-closed 

set, 𝜉-pre-generalized maps and 𝜉-pre-irresolutes. Further, the relationships of these maps with some other maps have 

been established by making the use of some counter examples.  

 

Definition 5.1: Let (Υ1, Υ2, ξ) is ξTS. Then (L, M)   ⊆ (Υ1, Υ2, ξ) is said to be 

i) 𝜉-semi-open set (𝜉𝑆𝑂𝑆) if (L, M) ⊆ Clξ(Iξ(L, M)) 

ii) 𝜉-pre-open set (𝜉𝑃𝑂𝑆) if (L, M) ⊆ Iξ(Clξ(L, M)). 

iii) 𝜉-𝛼-open set (𝜉𝛼𝑂𝑆) if (L, M) ⊆ Iξ(Clξ (Iξ(L, M))). 

 

Definition 5.2: Let (Υ1, Υ2, ξ) is ξTS and (L, M)   ⊆ (Υ1, Υ2, ξ) , then  pClξ(L, M) = (L, M) ∪ Clξ (Iξ(L, M)) 

 

Definition 5.3: Let (Υ1, Υ2, ξ) is ξTS and (L, M)   ⊆ (Υ1, Υ2, ξ) , then   

i) (L, M) is𝜉-pre-generalized closed set (𝜉𝑃𝐺𝐶𝑆) if pClξ(L, M) ⊆ (U, V) whenver (L, M) ⊆ (U, V) and (U, V) is ξ-pre-

open set in (Υ1 , Υ2, ξ) 

ii) (L, M) is𝜉-generalized pre-closed set (𝜉𝐺𝑃𝐶𝑆) if pClξ(L, M) ⊆ (U, V) whenver (L, M) ⊆ (U, V) and (U, V) is ξ-open 

set in (Υ1, Υ2, ξ) 

iii) (L, M) is 𝜉∗-closed set(𝜉∗𝐶𝑆) if Clξ(L, M) ⊆ (U, V) whenver (L, M) ⊆ (U, V) and (U, V) is ξ-open set in (Υ1 , Υ2, ξ)  

 

Proposition 5.1: Every 𝜉-generalized pre-closed set in ξTS 𝜉-pre-generalized closed 

Proof: Follows from definition 

 

Remark 5.1: The Converse of Proposition 5.1 is not true in general shown in Example 5.1. 

 

Example 5.1: Let  Υ1 = {m1, m2, m3}  and  Υ2 = {l1, l2, l3} . Then ξ = {(∅, ∅), ({m1}, {l1, l2}), ({m2, m3}, {l3}),
({l1, l3}, {Υ2}), (Υ1 , Υ2)}. Clearly 𝜉 is ξT from Υ1 to Υ2. Now consider, ({m1, m2}, {l1, l2}) ⊆ ({m1, m2}, {Υ2}). Therefore 

pClξ({m1, m2}, {l1, l2}) = ({m1, m2}, {l1, l2}) ⊆ ({m1, m2}, {Υ2}) , where ({m1, m2}, {Υ2})  is ξ -pre-open. Therefore 

({m1, m2}, {l1, l2}) is ξ-pre-generalized closed but not ξ-generalized pre-closed because ({m1, m2}, {Υ2}) is ξ-pre-open 

but not ξ-open. 

 

Proposition 5.2: Every 𝒯-pre-closed set in ξTS is 𝒯-pre-generalized closed 

Proof: Obvious 

 

Remark 5.2: The converse of Proposition 5.2 is not true in general shown in Example 5.2. 

 

Example 5.2: Let Z = {1, 2, 3,4}. Then 𝒯 = {{∅, {1}, {1,2}, {1,2,3}, {3,4}, {1,3,4} Z}  is GT on Z. Consider the set {1,3} ⊆
{1,2,3}. Therefore p − 𝒯𝑔({1,3}) = {1,2,3} ⊆ {1,2,3}, where {1,2,3} is 𝒯 -pre-open. Therefore the set {1,3} is 𝒯 -pre-

generalized closed but not 𝒯-pre-closed. 

 

Remark 5.3: In general ξ∗-closed set and ξ-pre-generalized closed set in ξTS are independent shown in Example 5.3 and 

Example 5.4. 

 

Example 5.3: Let Υ1 = {m1, m2, m3}  and  Υ2 = {l1, l2} . Then ξ =  {(∅, ∅), ({∅}, {l2})  , ({Υ1}, {l1}), ({m1, m2},
{Υ2}), (Υ1, Υ2)   is ξT  from Υ1  to Υ2 . Clearly the sets  (∅, ∅),  ({Υ1}, {l1}), ({∅}, {l2}) and (Υ1, Υ2) are ξ-closed sets in 

(Υ1, Υ2, ξ) . Let ({m2}, {Υ2}) ∈   ℘(Υ1) × ℘(Υ2) . Then Clξ({m2}, {Υ2}) = (Υ1, Υ2) ⊆ (Υ1, Υ2)  where ({m2}, {Υ2}) ⊆

(Υ1, Υ2) and (Υ1, Υ2) is ξ-open. Therefore the set ({m2}, {Υ2}) is ξ∗-closed set but not ξ-pre-generalized closed set because 

({m2}, {Υ2}) ⊆ ({m1, m2}, {Υ2})  and pClξ({m2}, {Υ2}) = (Υ1, Υ2) ⊈ ({m1, m2}, {Υ2}) ,  where ({m1, m2}, {Υ2})  is ξ -pre-

open. 
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Example 5.4: Let Υ1 = {m1, m2, m3}  and  Υ2 = {l1, l2, l3} . Then ξ =  {(∅, ∅), ({m1}, {l1, l2})  , ({m2, m3},
{l3}), ({m1, m2}, {Υ2}), (Υ1, Υ2)}  is ξT from Υ1 to Υ2. Consider the set ({m1, m3}, {l1, l2}) ⊆ ({m1, m3}, {Υ2}). Therefore 

pClξ({m1, m3}, {l1, l2}) = ({m1, m3}, {l1, l2}) ⊆ ({m1, m3}, {Υ2}) , where ({m1, m3}, {Υ2})  is ξ -pre-open. Therefore 

({m1, m3}, {l1, l2}) is ξ-pre-generalized closed set open but not ξ∗-closed set because Clξ({m1, m3}, {l1, l2}) = (Υ1, Υ2) ⊈

({m1, m3}, {Υ2}) where ({m1, m3}, {l1, l2}) ⊆ ({m1, m3}, {Υ2}) and ({m1, m3}, {Υ2}) is ξ-open. 

 

Definition 5.4: Let (Υ1, Υ2, ξ) is ξTS and (Z, 𝒯) be GT. Then the map ℱ: (Z, 𝒯) → Υ1 × Υ2 is said to be 

i) 𝜉-pre-generalized continuous map (𝜉𝑃𝐺𝐶𝑀) ℱ−1(L, M) is 𝒯 -pre-generalized closed in (Z, 𝒯) for every 𝜉-closed set 
(L, M) in (Υ1, Υ2, ξ). 

ii) 𝜉-pre-irresolute (𝜉𝑃𝐼) ℱ−1(L, M) is 𝒯 -pre-closed in (Z, 𝒯) for every 𝜉-pre-closed set (L, M) in (Υ1 , Υ2, ξ). 

iii) 𝜉-pre-generalized irresolute (𝜉𝑃𝐺𝐼) ℱ−1(L, M) is 𝒯  -pre-generalized closed in (Z, 𝒯) for every 𝜉-pre-generalized 

closed set (L, M) in (Υ1, Υ2, ξ). 

 

Proposition 5.3: Every 𝜉-pre-continuous map in ξTS is 𝜉-pre-generalized continuous 

 

Proof: Let (Υ1, Υ2, ξ)  is ξTS  and (Z, 𝒯)  be GT  and the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is 𝜉 -pre-continuous map. Therefore 

ℱ−1(L, M)  is 𝒯 -pre-closed in (Z, 𝒯)  for every 𝜉 -closed set (L, M)  in (Υ1, Υ2, ξ) . Since every 𝒯 -pre-closed is 𝒯 -pre-

generalized closed in (Z, 𝒯). Thus ℱ−1(L, M) is 𝒯-pre-generalized closed in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is 𝜉-pre-

generalized continuous map.  

 

Remark 5.4: The Converse of Proposition 5.3 is not true in general shown in Example 5.5. 

 

Example 5.5: Let Z = {1, 2, 3,4},  Υ1 = {m1, m2} and Υ2 = {l1, l2}. Then 𝒯 = {∅, {1}, {1,2}, {1,2,3}, {3,4}, {1,3,4} Z} and 

ξ = {(∅, ∅), ({m1}, {l1}), ({m2}, {l2}),  ({m2}, {Υ2}), (Υ1, Υ2)} . Clearly 𝒯  is GT  on Z  and 𝜉  is ξT  from Υ1  to Υ2 . Now 

define ℱ: (Z, 𝒯) → Υ1 × Υ2  by ℱ(1) = (m1, l1) = ℱ(3) and ℱ(2) = (m2, ∅) . Therefore ℱ−1(∅, ∅) = ∅ , ℱ−1({m1},
{l1}) = {1,3},  ℱ−1({m2}, {Υ2}) = {∅}, ℱ−1({m1}, {∅}) = {∅} and  ℱ−1(Υ1 , Υ2) = Z. This shows that the inverse image 

of every 𝜉-closed set in (Υ1, Υ2, ξ) is 𝒯-pre-generalized closed in (Z, 𝒯). Hence ℱ: (Z, 𝒯) → Υ1 × Υ2 is 𝜉-pre-generalized 

continuous map but not 𝜉-pre-continuous map because {1,3} is not 𝒯-pre-closed in (Z, 𝒯).    

 

Proposition 5.4: Every 𝜉-pre-continuous map in ξTS is 𝜉-pre-generalized irresolute. 

 

Proof: Let (Υ1, Υ2, ξ)  is ξTS  and (Z, 𝒯)  be GT  and the map ℱ: (Z, 𝒯) → Υ1 × Υ2  is 𝜉 -pre-continuous map. Therefore 

ℱ−1(L, M)  is 𝒯 -pre-closed in (Z, 𝒯)  for every 𝜉 -closed set (L, M)  in (Υ1, Υ2, ξ) . Since every 𝒯 -pre-closed is 𝒯 -pre-

generalized closed in (Z, 𝒯) and like wise every  𝜉 -pre-closed set is 𝜉-pre-generalized closed set in (Υ1 , Υ2, ξ). Thus 

ℱ−1(L, M) is 𝒯-pre-generalized closed in (Z, 𝒯)  for every ξ-pre-generalized closed set in (Υ1, Υ2, ξ). Hence ℱ: (Z, 𝒯) →
Υ1 × Υ2 is 𝜉-pre-generalized irresolute.  

 

Remark 5.5: The Converse of Proposition 5.4 is not true in general which can be easily seen from Example 5.5. 

 

Proposition 5.5: Every 𝜉-pre-irresolute in ξTS is 𝜉-pre-generalized irresolute. 

Proof: Follows from definition, while the converse need not be true in general shown in Example 5.6. 

 

Example 5.6: In Example 5.5, ℱ: (Z, 𝒯) → Υ1 × Υ2 is 𝜉-pre-generalized irresolute but not 𝜉-pre-irresolute. 

 

Relationships of Various 𝛏 -continuous maps that we discussed in this section: 

 
Figure-3 

 

6. Conclusion 

In this paper, a very useful concept of 𝜉 -pre-continuous maps, totally 𝜉 -pre-continuous maps and strongly 𝜉 -pre-

continuous maps in ξ-topological spaces have been introduced and established the relationships between these maps and 

some other maps. Further the concepts of 𝜉-regular-continuous maps, totally 𝜉-regular-continuous maps and strongly 𝜉-

regular-continuous maps have been introduced along with some concepts of 𝜉-pre-generalized closed set, 𝜉-generalized 
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pre-closed set, 𝜉-pre-generalized maps and 𝜉-pre-irresolutes with the relationships of these particular types of sets and 

maps in ξ-topological spaces.  All the relationships have been verified by making the use of some examples. 
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