Some ξ -Pre-Continuous Maps

Nazir Ahmad Ahengar^{1*}, Arvind Kumar Sharma², Nishi Gupta³, Mudassir Ahmad⁴

^{1*}Department of Mathematics, School of Engineering Presidency University Bangaluru, Karnataka, India, Email: nzrhmd97@gmail.com

²Department of Mathematics, Pimpri Chinchwad University, Pune India, Email: arvind.sharma@pcu.edu.in ³Department of Applied Science and Humanities, Pimpri Chinchwad College of Engineering, Pune, India, Email: mah.nishi@gmail.com

⁴Department of Mathematics, Central University of Kashmir, Ganderbal, J&K India, Email: mdabstract85@gmail.com

*Corresponding Author: Nazir Ahmad Ahengar

*Department of Mathematics, School of Engineering Presidency University Bangaluru, Karnataka, India, Email: nzrhmd97@gmail.com

Abstract. In this paper the concept of ξ -pre-continuous and ξ -regular continuous maps in ξ -topological spaces are introduced and all the possible relationships of these maps have been discussed and established. Further we introduce and study ξ -pre-generalized closed sets and ξ -pre-generalized continuity in ξ -topological spaces and investigate various relationship by making the use of some counter examples

Keywords: ξ -regular-continuous maps, totally ξ -pre-continuous maps, strongly ξ -pre continuous maps, totally ξ -regular-continuous maps, strongly ξ -regular-continuous maps, ξ -pre-generalized closed, ξ - generalized-pre closed, ξ -pre-generalized continuous maps, ξ -irresolute, ξ -pre-generalized irresolute.

1 Introduction

In both the pure and applied domains, the importance of general topology is quickly increasing. Information systems are fundamental instruments for generating information understanding in any real-life sector, and topological information collection structures are appropriate mathematical models for both quantitative and qualitative information mathematics. Initially, Mashhour et. al. [21] introduced pre-open sets and pre-continuity in topology. Levine [18] introduced the class of generalized closed (g-closed) sets in topological spaces. The generalized continuity was studied in recent years by Balachandran et.al. Devi et.al and Maki et.al [5,10,20]. Regular open sets have been introduced and investigated by Stone [27]. Miguel Caldas and Cueva introduced and studied the concept of semi-generalized continuous maps in topological spaces [7]. The authors Arya, S. P., Gupta, R Anuradha, Baby Chacko and Singh D [2-3,28] introduced the concept of strongly continuous functions and almost perfectly continuous functions in topological spaces and established the various significant results. Benchalli S.S and Umadevi I Neeli Nour T.M [4, 26] studied the concept of totally semi-continuous functions and semi-totally continuous functions in topological spaces and verify the certain properties of the concept. Bhattacharya, S, [6] introduced and studied the concept of generalized regular closed sets and establish the various characterizations. Nithyanantha and Thangavelu [23] introduced the concept of binary topology between two sets and investigate some of the basic properties, where a binary topology from X to Y is a binary structure satisfying certain axioms that are analogous to the axioms of topology. Jamal M. Mustafa [12] studied binary generalized topological spaces and investigate the various relationships of the maps so discussed with some other maps.

1.1 Contribution:

As outline, the concept ξ -pre-continuous and ξ -regular continuous map, ξ -pre-generalized closed sets, ξ -pre-generalized continuous maps and ξ -pre-irresolutes are introduced in ξ -topological spaces and investigate various relationships by making the use of some examples

1.2 Organization

The rest of the paper structured as follows: Some require basic definitions, concepts of ξ -topological and notations are discussed in Section 2. In section 3, namely ξ -*Pre-Continuous Maps* we have introduced several maps and have discussed their relationships also. In section 4, headed by the concept of ξ -*Regular Continuous Maps* we introduced several maps and studied their relationships. In section 5, headed by the concept of ξ -*Pre-Generalized Closed Sets and Maps* we introduced several closed sets and their maps and verify their relationships. Finally, Section 6 concludes the paper with possible scope of the concept. Throughout the paper $\wp(\Upsilon)$ denotes the power set of Υ .

2. Preliminaries

Some require and important definitions and concepts of ξ -topological space and notations have been given in this portion

9(1) 434-440

Definition 2.2: Let Y_1 and Y_2 be any two non-void set and (L_1, M_1) , (L_2, M_2) are the elements of $\mathscr{P}(Y_1) \times \mathscr{P}(Y_2)$. Then $(L_1, M_1) \subseteq (L_2, M_2)$ only if $L_1 \subseteq L_2$ and $M_1 \subseteq M_2$.

Remark 2.1: Let $\{T_{\alpha} ; \alpha \in \Lambda\}$ be the family of ξ_T from Υ_1 to Υ_2 . Then, $\bigcap_{\alpha \in \Lambda} T_{\alpha}$ is also ξ_T from Υ_1 to Υ_2 . Further $\bigcup_{\alpha \in \Lambda} T_{\alpha}$ need not be ξ_T .

Definition 2.3: Let $(\Upsilon_1, \Upsilon_2, \xi)$ be a $\xi_T S$ and $L \subseteq \Upsilon_1, M \subseteq \Upsilon_2$. Then (L, M) is called ξ -closed in $(\Upsilon_1, \Upsilon_2, \xi)$ if $(\Upsilon_1 \setminus L, \Upsilon_2 \setminus M) \in \xi$.

Proposition 2.1: Let (Y_1, Y_2, ξ) is $\xi_T S$. Then (Y_1, Y_2) and (\emptyset, \emptyset) are ξ -closed sets. Similarly if $\{(L_\alpha, M_\alpha) : \alpha \in \Gamma\}$ is a family of ξ -closed sets, then $(\bigcap_{\alpha \in \Gamma} L_\alpha, \bigcap_{\alpha \in \Gamma} M_\alpha)$ is ξ -closed.

Definition 2.4: Let(Y_1, Y_2, ξ) is $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{1*}_{\xi} = \bigcap \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi \text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{2*}_{\xi} = \bigcap \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi \text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{1*}_{\xi}, (L, M)^{2*}_{\xi}$ is $\xi \text{-closed set and } (L, M) \subseteq (L, M) \subseteq (L, M)^{1*}_{\xi}, (L, M)^{2*}_{\xi})$. The ordered pair $((L, M)^{1*}_{\xi}, (L, M)^{2*}_{\xi}))$ is called $\xi \text{-closure of } (L, M)$ and is denoted $\operatorname{Cl}_{\xi}(L, M)$ in $\xi_T S (X, Y, \mu)$ where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.2: Let(L, M) \subseteq (Υ_1 , Υ_2). Then (L, M) is ξ -open in (Υ_1 , Υ_2 , ξ) iff (L, M) = I_{\xi}(L, M) and (L, M) is ξ -closed in (Υ_1 , Υ_2 , ξ) iff (L, M) = Cl_{\xi}(L, M).

 $\begin{array}{l} \textbf{Proposition 2.3: Let } (L,M) \subseteq (N,P) \subseteq (Y_1,Y_2) \text{ and } (Y_1,Y_2,\xi) \text{ is } \xi_TS. \text{ Then } Cl_{\xi}(\emptyset,\emptyset) = (\emptyset,\emptyset), \ Cl_{\xi}(X,Y) = (X,Y), \\ (L,M) \subseteq Cl_{\xi}(L,M) \ , \ (L,M)^{1^*}{}_{\xi} \subseteq (N,P)^{1^*}{}_{\xi} \ , \ (L,M)^{2^*}{}_{\xi}) \subseteq (N,P)^{2^*}{}_{\xi} \ , \ Cl_{\xi}(L,M) \subseteq Cl_{\xi}(N,P) \ \text{ and } \ Cl_{\xi}(Cl_{\xi}(L,M)) = Cl_{\xi}(L,M) \\ Cl_{\xi}(L,M) \end{array}$

Definition 2.5: Let (Y_1, Y_2, ξ) is $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{1^0}{}_{\xi} = \bigcup \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi \text{ -open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \text{ is } \xi \text{ -open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{2^0}{}_{\xi} = \bigcup \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi \text{ -open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{1^0}{}_{\xi}$, $(L, M)^{2^0}{}_{\xi}$) is ξ -open set and $(L, M)^{1^0}{}_{\xi}$, $(L, M)^{2^0}{}_{\xi}$) $\subseteq (L, M)$. The ordered pair $((L, M)^{1^0}{}_{\xi}, (L, M)^{2^0}{}_{\xi}))$ is called ξ -interior of (L, M) and is denoted $I_{\xi}(L, M)$ in $\xi_T S (X, Y, \mu)$ where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.4: Let $(L, M) \subseteq (\Upsilon_1, \Upsilon_2)$. Then (L, M) is ξ -open set in $(\Upsilon_1, \Upsilon_2, \xi)$ iff $(L, M) = I_{\xi}(L, M)$.

Proposition 2.5: Let (L, M) ⊆ (N, P) ⊆ (Y₁, Y₂) and (Y₁, Y₂, ξ) is $\xi_T S$. Then $I_{\xi}(\emptyset, \emptyset) = (\emptyset, \emptyset), I_{\xi}(X, Y) = (X, Y), (L, M)^{1^0}{}_{\xi} ⊆ (N, P)^{1^0}{}_{\xi}$, $(L, M)^{2^0}{}_{\xi} ⊆ (N, P)^{2^0}{}_{\xi}$, $I_{\xi}(L, M) ⊆ I_{\xi}(N, P)$ and $I_{\xi}(I_{\xi}(L, M)) = I_{\xi}(L, M)$

Definition 2.6: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -continuous at $z \in Z$ if for any ξ -open set $(L, M) \in (Y_1, Y_2, \xi)$ with $\mathcal{F}(z) \in (L, M)$ then there exists \mathcal{T} -open G in (Z, \mathcal{T}) such that $z \in G$ and $\mathcal{F}(G) \subseteq (L, M)$. The mapping \mathcal{F} is called ξ -continuous if it is ξ -continuous at each $z \in Z$.

Proposition 2.6: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is called ξ -continuous if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -open in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

3. §-Pre-Continuous Maps (§PCM)

In this section, the concept of ξ -pre-continuous maps, totally ξ -pre-continuous maps and strongly ξ -pre-continuous maps in $\xi_T S$ have been introduced and established the relationships between these maps and some other maps by making the use of some counter examples.

Definition 3.1: Let (Y_1, Y_2, ξ) is $\xi_T S$. Then $(L, M) \subseteq (Y_1, Y_2, \xi)$ is said to ξ -pre-open set (ξPOS) if $(L, M) \subseteq I_{\xi}(Cl_{\xi}(L, M))$. The complement of ξ -pre-open set is ξ -pre-closed set denoted as (ξPCS) .

Definition 3.2: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is called ξ -pre-continuous map (ξPCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-open in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

Definition 3.3: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is said to be

i) Totally ξ -continuous map ($T\xi CM$) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

ii) Totally ξ -pre-continuous map ($T\xi PCM$) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-clopen in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

iii) Strongly ξ -continuous map ($\xi \xi CM$) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in (Y_1, Y_2, ξ).

iv) Strongly ξ -pre-continuous ma(S ξ PCM)p if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

Proposition 3.1:

i) Every strongly ξ -continuous map in $\xi_T S$ is totally ξ -continuous map

ii) Every strongly ξ -pre-continuous map in $\xi_T S$ is totally ξ -pre-continuous map

iii) Every totally ξ -pre-continuous map in $\xi_T S$ is totally ξ -continuous map

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is strongly ξ -continuous map. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Thus for every ξ -open set $(R, S), \mathcal{F}^{-1}(R, S)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -continuous map. The proof of (ii) and (iii) are quite analogous.

Remark 3.1: The converse of Proposition 3.1 need not be true shown in Example 3.1, Example 3.2 and Example 3.3.

Example 3.1: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \rightarrow Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_2, \emptyset) = \mathcal{F}(3)$ and $\mathcal{F}(2) = (\emptyset, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{\emptyset\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \rightarrow Y_1 \times Y_2$ is totally ξ -continuous map but not strongly ξ -continuous map because $\mathcal{F}^{-1}(\{m_2\}, \{\emptyset\}) = \{1,3\}$ and $\mathcal{F}^{-1}(\{\emptyset\}, \{l_2\}) = \{2\}$, where $\{1,3\}$ and $\{2\}$ are not \mathcal{T} -clopen in (Z, \mathcal{T}) .

Example 3.2: In Example 3.1 the \mathcal{T} -pre-clopen in $(\mathbb{Z}, \mathcal{T})$ are $\emptyset, \{1\}, \{3\}, \{1,2\}, \{2,3\}$ and \mathbb{Z} . Now $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_2\}) = \{\emptyset\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = \mathbb{Z}$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -pre-clopen in $(\mathbb{Z}, \mathcal{T})$. Hence $\mathcal{F}: (\mathbb{Z}, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -pre-continuous map but not strongly ξ -pre-continuous map because $\mathcal{F}^{-1}(\{m_2\}, \{\emptyset\}) = \{1,3\}$ and $\mathcal{F}^{-1}(\{\emptyset\}, \{l_2\}) = \{2\}$, where $\{2\}$ and $\{1,3\}$ are not \mathcal{T} -pre-clopen in $(\mathbb{Z}, \mathcal{T})$.

Example 3.3: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . The \mathcal{T} -pre-clopen in (Z, \mathcal{T}) are $\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}$ and Z. Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_2) = \mathcal{F}(3)$ and $\mathcal{F}(2) = (\emptyset, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset, \mathcal{F}^{-1}(\{m_1\}, \{l_2\}) = \{1, 3\}, \mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -pre-clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -pre-continuous map but not ξ -continuous map because $\{1,3\}$ is \mathcal{T} -pre-clopen but not \mathcal{T} -open in (Z, \mathcal{T}) .

Proposition 3.2:

i) Every ξ -continuous map in $\xi_T S$ is totally ξ -pre-continuous map

ii) Every totally ξ -continuous map in $\xi_T S$ is totally ξ -pre-continuous map

iii) Every strongly ξ -continuous map in $\xi_T S$ is strongly ξ -pre-continuous map

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ -continuous map. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) . Since every \mathcal{T} -open is \mathcal{T} -pre-open in (Z, \mathcal{T}) . Therefore, $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -pre-continuous map. The proof of (ii) and (iii) are quite analogous.

Remark 3.2: The converse of Proposition 3.2 need not be true shown in Example 3.5, Example 3.6 and Example 3.7.

Example 3.5: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1, 2\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \rightarrow Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_2) = \mathcal{F}(3)$ and $\mathcal{F}(2) = (m_2, l_1)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_2\}) = \{1, 3\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -pre-open in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \rightarrow Y_1 \times Y_2$ is ξ -pre-continuous map but not ξ -continuous map because $\{1, 3\}$ and $\{2\}$ are not \mathcal{T} -open in (Z, \mathcal{T}) .

Example 3.6: In Example 3.5, the \mathcal{T} -pre-clopen in $(\mathbb{Z}, \mathcal{T})$ are \emptyset , $\{2\}, \{1,3\}$ and \mathbb{Z} . Now $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_2\}) = \{1, 3\}, \mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = \mathbb{Z}$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -pre-clopen in $(\mathbb{Z}, \mathcal{T})$. Hence $\mathcal{F}: (\mathbb{Z}, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -pre-continuous map but not totally ξ -continuous map because $\{1,3\}$ and $\{2\}$ are not \mathcal{T} -clopen in $(\mathbb{Z}, \mathcal{T})$.

Example 3.7: In Example 3.5, the \mathcal{T} -clopen sets in $(\mathbb{Z}, \mathcal{T})$ are \emptyset , $\{2\}, \{1,3\}$ and \mathbb{Z} .. Now $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset, \mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1,3\}, \mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}, \mathcal{F}^{-1}(\{\emptyset\}, \{l_1\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{\emptyset\}, \{l_2\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{\emptyset\}, \{Y_2\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{m_1\}, \{\emptyset\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{m_1\}, \{0\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{m_1\}, \{1_2\}) = \{1, 3\}, \mathcal{F}^{-1}(\{m_1\}, \{M_2\}, \emptyset) = \{M_1, M_2, M_3\} = \{M_2, M_3, M_3, M_4, M_5\}$

 $\{\emptyset\}, \mathcal{F}^{-1}(\{\mathsf{m}_2\}, \{\mathsf{l}_1\}) = \{2\}, \mathcal{F}^{-1}(\{\mathsf{m}_2\}, \{\mathsf{l}_2\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{Y_1\}, \{\emptyset\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{Y_1\}, \{\mathsf{l}_1\}) = \{2\}, \mathcal{F}^{-1}(\{Y_1\}, \{\mathsf{l}_2\}) = \{\emptyset\} \text{ and } \mathcal{F}^{-1}(Y_1, Y_2) = \mathbb{Z}. \text{ This shows that the inverse image of every } \xi \text{-set in } (Y_1, Y_2, \xi) \text{ is } \mathcal{T} \text{-pre-clopen in } (\mathbb{Z}, \mathcal{T}).$ Hence $\mathcal{F}: (\mathbb{Z}, \mathcal{T}) \to Y_1 \times Y_2$ is strongly ξ -pre-continuous map but not strongly ξ -continuous map because $\{1,3\}$ and $\{2\}$ are not \mathcal{T} -open in $(\mathbb{Z}, \mathcal{T}).$

Relationships of Various $\boldsymbol{\xi}$ -continuous maps that we discussed in this section:

4. **§-Regular Continuous Maps (§RCM)**

In this section, we have introduced and studied the concepts of ξ -regular-continuous maps, totally ξ -regular-continuous maps and strongly ξ -regular-continuous maps. Further, the relationships of these maps with some other maps have been established by making the use of some counter examples.

Definition 4.1: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$. Then $(L, M) \subseteq (\Upsilon_1, \Upsilon_2, \xi)$ is said to ξ -regular-open set (ξROS) if $(L, M) = I_{\xi}(Cl_{\xi}(L, M))$. The complement of ξ -regular-open set is ξ -regular-closed set denoted as (ξRCS) .

Definition 4.2: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is said to be

i) ξ -regular-continuous map (ξRCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -regular-open in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

ii) Totally ξ -regular-continuous map ($T\xi RCM$) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -regular-clopen in (Z, \mathcal{T}) for every ξ -open set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

iii) Strongly ξ -regular-continuous map ($S\xi RCM$) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -regular-clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

Proposition 4.1:

i) Every strongly ξ -regular-continuous map in $\xi_T S$ is strongly ξ -continuous map

ii) Every totally ξ -regular-continuous map in $\xi_T S$ is totally ξ -continuous map

iii) Every ξ -regular-continuous map in $\xi_T S$ is ξ -continuous map

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is strongly ξ -regular-continuous map. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -regular-clopen in (Z, \mathcal{T}) . Since every \mathcal{T} -regular-clopen is \mathcal{T} -clopen in (Z, \mathcal{T}) . Thus $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is strongly ξ -continuous map. The proof of (ii) and (iii) are quite analogous.

Remark 4.1: The converse of (iii) in Proposition 4.1 is not true seen in Example 4.1.

Example 4.1: Let $Z = \{1, 2, 3, 4\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{2\}, \{2, 3\}, \{3, 4\}, \{2, 3, 4\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(2) = (m_1, l_1) = \mathcal{F}(3)$ and $\mathcal{F}(1) = \mathcal{F}(4) = (m_1, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{2, 3\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{2, 3\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -open in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ -continuous map but not ξ -regular-continuous map because $\{2, 3\}$ is not \mathcal{T} -regular-open in (Z, \mathcal{T}) .

Proposition 4.2:

i) Every strongly ξ -regular-continuous map in $\xi_T S$ is totally ξ -regular-continuous map

ii) Every totally ξ -regular-continuous map in $\xi_T S$ is ξ -regular-continuous map

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is strongly ξ -regular-continuous map. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -regular-clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in (Y_1, Y_2, ξ) . Thus for every ξ -open set (R, S), $\mathcal{F}^{-1}(R, S)$ is \mathcal{T} -regular-clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is totally ξ -regular-continuous map. The proof of (ii) and (iii) are quite analogous.

Relationships of Various ξ -continuous maps that we discussed in this section:

5. E-Pre-Generalized Closed Sets and Maps

In this section, we have introduced and studied the concepts of ξ -pre-generalized closed set, ξ -generalized pre-closed set, ξ -pre-generalized maps and ξ -pre-irresolutes. Further, the relationships of these maps with some other maps have been established by making the use of some counter examples.

Definition 5.1: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$. Then $(L, M) \subseteq (\Upsilon_1, \Upsilon_2, \xi)$ is said to be

i) ξ -semi-open set (ξ SOS) if (L, M) $\subseteq Cl_{\xi}(I_{\xi}(L, M))$

ii) ξ -pre-open set (ξ POS) if (L, M) $\subseteq I_{\xi}(Cl_{\xi}(L, M))$.

iii) ξ - α -open set ($\xi \alpha OS$) if (L, M) $\subseteq I_{\xi}(Cl_{\xi}(I_{\xi}(L, M)))$.

 $\text{Definition 5.2: Let } (Y_1,Y_2,\xi) \text{ is } \xi_T S \text{ and } (L,M) \ \subseteq (Y_1,Y_2,\xi) \text{ , then } pCl_{\xi}(L,M) = (L,M) \cup Cl_{\xi} \big(I_{\xi}(L,M) \big)$

Definition 5.3: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and $(L, M) \subseteq (\Upsilon_1, \Upsilon_2, \xi)$, then

i) (L, M) is ξ -pre-generalized closed set (ξ PGCS) if pCl_{ξ}(L, M) \subseteq (U, V) whenver (L, M) \subseteq (U, V) and (U, V) is ξ -pre-open set in (Y_1, Y_2, ξ)

ii) (L, M) is ξ -generalized pre-closed set (ξ GPCS) if pCl_{ξ}(L, M) \subseteq (U, V) whenver (L, M) \subseteq (U, V) and (U, V) is ξ -open set in (Y_1, Y_2, ξ)

iii) (L, M) is ξ^* -closed set(ξ^*CS) if $Cl_{\xi}(L, M) \subseteq (U, V)$ whenver (L, M) $\subseteq (U, V)$ and (U, V) is ξ -open set in ($\Upsilon_1, \Upsilon_2, \xi$)

Proposition 5.1: Every ξ -generalized pre-closed set in $\xi_T S \xi$ -pre-generalized closed **Proof:** Follows from definition

Remark 5.1: The Converse of Proposition 5.1 is not true in general shown in Example 5.1.

Example 5.1: Let $Y_1 = \{m_1, m_2, m_3\}$ and $Y_2 = \{l_1, l_2, l_3\}$. Then $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1, l_2\}), (\{m_2, m_3\}, \{l_3\}), (\{l_1, l_3\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly ξ is ξ_T from Y_1 to Y_2 . Now consider, $(\{m_1, m_2\}, \{l_1, l_2\}) \subseteq (\{m_1, m_2\}, \{Y_2\})$. Therefore $pCl_{\xi}(\{m_1, m_2\}, \{l_1, l_2\}) = (\{m_1, m_2\}, \{l_1, l_2\}) \subseteq (\{m_1, m_2\}, \{Y_2\})$, where $(\{m_1, m_2\}, \{Y_2\})$ is ξ -pre-open. Therefore $(\{m_1, m_2\}, \{l_1, l_2\})$ is ξ -pre-open that not ξ -generalized pre-closed because $(\{m_1, m_2\}, \{Y_2\})$ is ξ -pre-open but not ξ -open.

Proposition 5.2: Every T-pre-closed set in $\xi_T S$ is T-pre-generalized closed **Proof:** Obvious

Remark 5.2: The converse of Proposition 5.2 is not true in general shown in Example 5.2.

Example 5.2: Let $Z = \{1, 2, 3, 4\}$. Then $\mathcal{T} = \{\{\emptyset, \{1\}, \{1,2\}, \{1,2,3\}, \{3,4\}, \{1,3,4\}, Z\} \text{ is } G_T \text{ on } Z. \text{ Consider the set } \{1,3\} \subseteq \{1,2,3\}.$ Therefore $p - \mathcal{T}_g(\{1,3\}) = \{1,2,3\} \subseteq \{1,2,3\}$, where $\{1,2,3\}$ is \mathcal{T} -pre-open. Therefore the set $\{1,3\}$ is \mathcal{T} -pregeneralized closed but not \mathcal{T} -pre-closed.

Remark 5.3: In general ξ^* -closed set and ξ -pre-generalized closed set in $\xi_T S$ are independent shown in Example 5.3 and Example 5.4.

Example 5.3: Let $Y_1 = \{m_1, m_2, m_3\}$ and $Y_2 = \{l_1, l_2\}$. Then $\xi = \{(\emptyset, \emptyset), (\{\emptyset\}, \{l_2\}), (\{Y_1\}, \{l_1\}), (\{m_1, m_2\}, \{Y_2\}), (Y_1, Y_2) \text{ is } \xi_T \text{ from } Y_1 \text{ to } Y_2$. Clearly the sets $(\emptyset, \emptyset), (\{Y_1\}, \{l_1\}), (\{\emptyset\}, \{l_2\}) \text{ and } (Y_1, Y_2) \text{ are } \xi\text{-closed sets in } (Y_1, Y_2, \xi)$. Let $(\{m_2\}, \{Y_2\}) \in \emptyset(Y_1) \times \emptyset(Y_2)$. Then $Cl_{\xi}(\{m_2\}, \{Y_2\}) = (Y_1, Y_2) \subseteq (Y_1, Y_2)$ where $(\{m_2\}, \{Y_2\}) \subseteq (Y_1, Y_2)$ and (Y_1, Y_2) is ξ -open. Therefore the set $(\{m_2\}, \{Y_2\})$ is ξ^* -closed set but not ξ -pre-generalized closed set because $(\{m_2\}, \{Y_2\}) \subseteq (\{m_1, m_2\}, \{Y_2\})$ and $pCl_{\xi}(\{m_2\}, \{Y_2\}) = (Y_1, Y_2) \not\subseteq (\{m_1, m_2\}, \{Y_2\})$ is ξ -pre-open.

Example 5.4: Let $Y_1 = \{m_1, m_2, m_3\}$ and $Y_2 = \{l_1, l_2, l_3\}$. Then $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1, l_2\}), (\{m_2, m_3\}, \{l_3\}), (\{m_1, m_2\}, \{Y_2\}), (Y_1, Y_2)\}$ is ξ_T from Y_1 to Y_2 . Consider the set $(\{m_1, m_3\}, \{l_1, l_2\}) \subseteq (\{m_1, m_3\}, \{Y_2\})$. Therefore pCl_§($\{m_1, m_3\}, \{l_1, l_2\}$) = $(\{m_1, m_3\}, \{l_1, l_2\}) \subseteq (\{m_1, m_3\}, \{Y_2\})$, where $(\{m_1, m_3\}, \{Y_2\})$ is ξ -pre-open. Therefore $(\{m_1, m_3\}, \{l_1, l_2\})$ is ξ -pre-generalized closed set open but not ξ^* -closed set because Cl_§($\{m_1, m_3\}, \{l_1, l_2\}$) = $(Y_1, Y_2) \nsubseteq (\{m_1, m_3\}, \{Y_2\})$ where $(\{m_1, m_3\}, \{l_1, l_2\}) \subseteq (\{m_1, m_3\}, \{Y_2\})$ and $(\{m_1, m_3\}, \{Y_2\})$ is ξ -open.

Definition 5.4: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T . Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is said to be

i) ξ -pre-generalized continuous map (ξ PGCM) $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) for every ξ -closed set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

ii) ξ -pre-irresolute (ξ PI) $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-closed in (Z, \mathcal{T}) for every ξ -pre-closed set (L, M) in ($\Upsilon_1, \Upsilon_2, \xi$).

iii) ξ -pre-generalized irresolute (ξ PGI) $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) for every ξ -pre-generalized closed set (L, M) in (Y_1, Y_2, ξ) .

Proposition 5.3: Every ξ -pre-continuous map in $\xi_T S$ is ξ -pre-generalized continuous

Proof: Let $(\Upsilon_1, \Upsilon_2, \xi)$ is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is ξ -*pre-continuous map*. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-closed in (Z, \mathcal{T}) for every ξ -closed set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$. Since every \mathcal{T} -pre-closed is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) . Thus $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is ξ -*pre-generalized closed in* (Z, \mathcal{T}) .

Remark 5.4: The Converse of Proposition 5.3 is not true in general shown in Example 5.5.

Example 5.5: Let $Z = \{1, 2, 3, 4\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{3, 4\}, \{1, 3, 4\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_2\}, \{l_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1) = \mathcal{F}(3)$ and $\mathcal{F}(2) = (m_2, \emptyset)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1, 3\}, \mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{m_1\}, \{\emptyset\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -closed set in (Y_1, Y_2, ξ) is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ -pre-generalized closed in (Z, \mathcal{T}) .

Proposition 5.4: Every ξ -pre-continuous map in $\xi_T S$ is ξ -pre-generalized irresolute.

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be G_T and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ -*pre-continuous map*. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-closed in (Z, \mathcal{T}) for every ξ -closed set (L, M) in (Y_1, Y_2, ξ) . Since every \mathcal{T} -pre-closed is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) and like wise every ξ -pre-closed set is ξ -pre-generalized closed set in (Y_1, Y_2, ξ) . Thus $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -pre-generalized closed in (Z, \mathcal{T}) for every ξ -pre-generalized closed set in (Y_1, Y_2, ξ) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ -pre-generalized irresolute.

Remark 5.5: The Converse of Proposition 5.4 is not true in general which can be easily seen from Example 5.5.

Proposition 5.5: Every ξ -*pre-irresolute* in $\xi_T S$ is ξ -*pre-generalized irresolute.* **Proof:** Follows from definition, while the converse need not be true in general shown in Example 5.6.

Example 5.6: In Example 5.5, $\mathcal{F}: (\mathbb{Z}, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is ξ -pre-generalized irresolute but not ξ -pre-irresolute.

Relationships of Various ξ -continuous maps that we discussed in this section:

6. Conclusion

In this paper, a very useful concept of ξ -pre-continuous maps, totally ξ -pre-continuous maps and strongly ξ -precontinuous maps in ξ -topological spaces have been introduced and established the relationships between these maps and some other maps. Further the concepts of ξ -regular-continuous maps, totally ξ -regular-continuous maps and strongly ξ regular-continuous maps have been introduced along with some concepts of ξ -pre-generalized closed set, ξ -generalized pre-closed set, ξ -pre-generalized maps and ξ -pre-irresolutes with the relationships of these particular types of sets and maps in ξ -topological spaces. All the relationships have been verified by making the use of some examples.

References

- 1. Ahengar N.A. and J.K. Maitra, On g-binary continuity, Journal of Emerging Technologies and Inovative Research, 7, 240-244, (2018).
- 2. Arya, S. P. and Gupta, R. On strongly continuous functions, Kyungpook Math. J., 14, 131-143, (1974).
- 3. Anuradha N. and Baby Chacko, Some Properties of Almost Perfectly Continuous Functions in Topological Spaces, International Mathematical Forum 10(3), 143-156 (2015).
- 4. Benchalli **S.S.** and Umadevi I Neeli "Semi-Totally Continuous Functions in Topological Spaces" International Mathematical Forum 6(10), 479-492, (2011).
- Balachandran K., P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 74 233-254 (1972).
- 6. Bhattacharya, S, On Generalized Regular Closed Sets , Int . J. Contemp. Math. Sciences, 6 (3) 145-152 (2011).
- 7. Caldas M. Cueva, semi-generalized continuous maps in topological spaces, Portugaliae Mathematica 52(4) (1995).
- Chen, C.C., Conejero, J.A., Kostic, M., Murillo-Arcila., M., Dynamics on Binary Relations over Topological Spaces. Symmetry 2018, 10: 211. https://doi.org/10.3390/sym10060211
- 9. Csaszar, A. Generalized topology, generalized continuity, Acta Math. Hungar, 96, 351-357 (2002).
- Devi, R., Balachandran K., Maki, H. Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 14, 41-54 (1993).
- 11. Egenhofer, MJ. Reasoning about binary topological relations. Symposium on Spatial Databases SSD 1991: Advances in Spatial Databases, 141-160, (1991).
- 12. Engelking R. Generel Topology, Polish Scientific Publishers, Warszawa (1977).
- 13. Gevorgyan, PS. Groups of binary operations and binary G-spaces. Topology and its Applications, 201, 18–28, (2016).
- 14. Hatir E, Noiri T. Decompositions of continuity and complete continuity. Acta Math Hungary , 4, 281–287, (2006).
- 15. Jamal M. Mustafa, On Binary Generalized Topological Spaces, Refaad General Letters in Mathematics, 2(3), 111-116 (2017).
- 16. Kuratowski, K., Topologie I, Warszawa, (1930).
- 17. Levine N. A decomposition of continuity in topological spaces. Am Math Mon, 68, 44-6, (1961).
- 18. Levine, N. Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, (1963).
- 19. Levine, N. Generalized closed sets in Topology, Rend. Cir. Mat. Palermo, 2, 89-96, (1970).
- Maki H., P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40 13-21 (1991).
- 21. Mashhour A.S., M.E.A. El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53 47-53 (1982).
- 22. Njastad, O, On some classes of nearly open sets, Pacific J. Math, 15, 961-970, (1965).
- 23. NithyananthaJothi S., and P. Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3), 95-107 (2011)
- 24. Nour T.M, Totally semi-continuous functions, Indian J. Pure Appl.Math, 26(7), 675 678 (1995).
- 25. Singh D., Almost Perfectly continuous functions, Quaest Math , 33, 1-11 (2010).
- 26. Son MJ, Park JH, Lim KM. Weakly clopen functions. Chaos, Solitons& Fractals, 33, 1746–55, (2007).
- 27. Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41374–481, (1937).
- 28. Tong J., Expansion of open sets and decomposition of continuous mappings, Rend. Circ. Mat. Palermo, 2:303-308, (1994).
- 29. Tong J., On decomposition of continuity in topological spaces, Acta Math. Hunger, 54, 51-55, (1989).