

$Generalized_{\mathcal{F}}-Topology$

Dr. Nazir Ahmad Ahengar^{1*}, Dr. Irom Tomba Singh², Dr. Harikumar Pallathadka³

¹*Department of Mathematics, SoE, Presidency University, Bengaluru-560064 India

^{2, 3} Department of Mathematics and Department of Management Sciences, Manipur International University, Manipur-795140, India

> *Corresponding Author: - Dr. Nazir Ahmad Ahengar *Email Id: nzrhmd97@gmail.com

ABSTRACT. In this paper we defined and characterized the concept of generalized fuzzy topological space(generalized_{\mathcal{F}} – topological space) and obtained some significant results in this context with help of various supporting examples.

Keywords: Fuzzy open set, fuzzy topological space, generalized_{\mathcal{F}} – topological space

1. Introduction

One of the earliest branches of mathematics which applied fuzzy set theory systematically is General Topology. Although fuzzy topology is a generalization of topology in classical mathematics, it has its own marked characteristics. Azad [1] has introduced the concept of fuzzy semi-open sets in fuzzy topological spaces. Chang, C.L introduced the concept of fuzzy topological spaces [2]. Csaszar [3] introduced the notions of generalized topological spaces. Palani Cheety [4] introduced the concept of generalized fuzzy topology and investigates various properties.

In this paper, we have introduced the concept of generalized_{\mathcal{F}} –topological space and verify the results with the help of some counter examples. Some require basic definitions, concepts of topological space and notations are discussed in Section 2. The section 3 has been headed by generalized_{\mathcal{F}} – topological space, in which we verified various results related it by giving suitable examples and the Section 4 concludes the paper.

2. Preliminaries

Definition 2.1: Let X be a non-empty universal crisp set. A **fuzzy topology** on X is a non-empty collection τ of fuzzy sets on X satisfying the following conditions

- i) Fuzzy sets 0 and 1 belong to τ
- ii) Any arbitrary union of members of τ is in τ
- iii) A finite intersection of members of τ is in τ

Here 0 and 1 represent the Zero Fuzzy Set and the Whole Fuzzy set on X, defined as, $0(x)=0, \forall x \in X$ $1(x)=1, \forall x \in X$ and the pair (X, τ) is called Fuzzy Topological Space on X. For Convenience, we shall denote the fuzzy topological space simply as X.

Definition 2.2: Let (X, τ) be fuzzy topological space. The members of the collection τ are called **fuzzy open sets** of fuzzy topological space X. The complement of a fuzzy open set of X is called a **fuzzy closed set**. Thus, a fuzzy set λ on X is a fuzzy closed set in (X, τ) if its complement λ^{c} is fuzzy open set in X with respect to fuzzy topology τ .

Definition 2.3: Let (X, τ) be a fuzzy topological space. For a fuzzy set A in X the **closure** of A, denoted by Cl (A) is defined as Cl(A) = inf {K: A \subseteq K, K^C $\in \tau$ }. Thus the fuzzy set Cl (A) is the smallest fuzzy closed set in X containing the fuzzy set A. From the definition, if follows that Cl (A) is the intersection of all fuzzy closed sets in X containing A.

Definition 2.4: Let (X, τ) be a fuzzy topological space. For a fuzzy set A in X, the **interior** of A, denoted by Int(A) is defined as Int(A) = Sup{Q : Q \subseteq A, Q \in τ }. Thus the fuzzy set Int (A) is the largest fuzzy open set in X contained in the fuzzy set A. From definition, it follows that Int(A) is the union of all fuzzy open sets in X contained in A.

Proposition 2.1: Let (X, τ) be a fuzzy topological space. Then

- i) Arbitrary Intersection of fuzzy closed sets is a fuzzy closed set.
- ii) Finite union of fuzzy closed sets is a fuzzy closed set.

Proposition 2.2: Let(X, τ) be a fuzzy topological space and let A be a fuzzy set in X. Then

- i) Cl(A) = A if and only if A is a fuzzy closed set in X.
- ii) Int(A) = A if and only if A is a fuzzy open set in X.

3. Generalized \mathcal{F} – topological Space

Definition 3.1: Let X be a crisp set and let μ be a collection of fuzzy sets on X. Then μ is called generalized_{*F*} – topologyon X if it satisfies following conditions

i) The fuzzy sets 0 and 1 are in μ where 0,1: X \rightarrow I are defined as 0(x) = 0 and 1(x) = 1 for all x \in X

ii) If $\{\lambda_i\}$, $j \in J$ is any family of fuzzy sets on X where $\lambda_i \in \mu$ then $\bigcup_{i \in J} \lambda_i \in \mu$

The pair (X, μ) is called generalized_{*F*} – topological Space

Definition 3.2: Let (X, μ) be generalized_{\mathcal{F}} – topological *S*pace. The members of the collection μ are called generalized_{\mathcal{F}} – \mathcal{O} pen *S*et ingeneralized_{$\mathcal{F}}$ – topological *S*pace. The complement of generalized_{\mathcal{F}} – \mathcal{O} pen *S*et in X is called generalized_{\mathcal{F}} – \mathcal{C} lose *S*et</sub>

Example 3.1: Let $X = \{x_1, x_2\}$, and we consider fuzzy sets $A = \{(x_1, 0.3), (x_2, 0.6)\}$, $B = \{(x_1, 0.5), (x_2, 0.4)\}$ and $C = \{(x_1, 0.5), (x_2, 0.6)\}$ on X. Then clearly $\mu = \{0, A, B, C, 1\}$ is generalized_F – topology on X, but not fuzzy topology on X.

Definition 3.3: Let (X, μ) be generalized_{\mathcal{F}} – topological *S*pace. For a fuzzy set A in X the *C*losure of A is defined as $Cl_{\mu}(A) = \inf \{K : A \subseteq K, K^{C} \in \mu\}$. Thus $Cl_{\mu}(A)$ is the smallest *C*losed *S*et in X containing the fuzzy generalized_{\mathcal{F}} – *O*pen *S*et A. From the definition, if follows that $Cl_{\mu}(A)$ is the intersection of all generalized_{\mathcal{F}} – *C*losed *S*ets in X containing A.

Definition 3.4: Let (X, μ) be generalized_{\mathcal{F}} – topological *S*pace. For a fuzzy *S*et A in X, the *I*nterior of A, is defined as $I_{\mu}(A) = Sup\{Q : Q \subseteq A, Q \in \mu\}$. Thus $I_{\mu}(A)$ is the largest generalized_{\mathcal{F}} – \mathcal{O} pen *S*et in X contained in the fuzzy *S*et A. From the definition, if follows that $I_{\mu}(A)$ is the union of all generalized_{\mathcal{F}} – \mathcal{O} pen *S*et in X contained in A.

Remark 3.1: Arbitrary union of generalized $_{\mathcal{F}} - \mathcal{O}$ pen Set is generalized $_{\mathcal{F}} - \mathcal{O}$ pen Set

Proposition 3.1: Let (X, μ) be generalized_{*F*} – topological *S*pace.Then:

i) 0 and 1 are fuzzy generalized $_{\mathcal{F}} - \mathcal{C}$ losed Sets in X.

ii) Arbitrary intersection of generalized $\mathcal{F} - \mathcal{C}$ losed Sets in X is generalized $\mathcal{F} - \mathcal{C}$ losed Set in X.

Proof (i): Since 0 and 1 are generalized_{\mathcal{F}} - open Sets in X therefore their complement 1 and 0 are generalized_{\mathcal{F}} - Closed SetS in X.

(ii): Let $\{\lambda_j\}_{j\in J}$ be a collection of generalized_{*F*} - *C*losed Sets in X, where J is index set. Then $\{\lambda_j^c\}_{j\in J}$ is a collection of generalized_{*F*} - *O*pen Sets in X. This implies $\cup_{j\in J} \lambda_j^c$ is generalized_{*F*} - *O*pen Set in X. Hence $(\bigcup_{j\in J} \lambda_j^c)^c = \bigcap_{j\in J} \lambda_j$ is generalized_{*F*} - *C*losed Set in X.

Remark 3.2: Since arbitrary union of generalized_{*F*} – \mathcal{O} pen \mathcal{S} et is generalized_{*F*} – \mathcal{O} pen \mathcal{S} et, $I_{\mu}(\lambda)$ is generalized_{*F*} – \mathcal{O} pen \mathcal{S} et in X. Further since arbitrary intersection of generalized_{*F*} – closed \mathcal{S} et is fuzzy closed \mathcal{S} et., $Cl_{\mu}(\lambda)$ is a generalized_{*F*} – closed \mathcal{S} et in X. Intersection of two generalized_{*F*} – \mathcal{O} pen \mathcal{S} ets may not generalized_{*F*} – \mathcal{O} pen \mathcal{S} et in X. In Example 2..1 we see that $A \cap B = \{(x_1, 0.3), (x_2, 0.4) \text{ is not Generalized}_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et in X and $A \cup B = \{(x_1, 0.7), (x_2, 0.6)\}$ is not generalized_{*F*} – \mathcal{C} losed \mathcal{S} et in X.

Proposition 3.2: let $\{\mu_j\}_{j\in J}$ be a collection of generalized_{*F*} – topologies on X. where J is an index set then their intersection $\bigcap_{j\in J} \mu_j$ is also a generalized_{*F*} – topology on X

Proof: let $\{\mu_j\}_{j\in J}$ be a collection of generalized $_{\mathcal{F}}$ – topologies on X.where J is an arbitrary index set be a collection of generalized $_{\mathcal{F}}$ – \mathcal{T} opologies on X. Then $0, 1 \in \{\mu_j\}_{j\in J}$ for all $j \in J$. This implies $0, 1 \in \bigcap_{j\in J} \{\mu_j\}$. Now let $A_\alpha \in \bigcap_{j\in J} \{\mu_j\}$ for $\alpha \in J_1$ where J_1 is an arbitrary index set. Then $A_\alpha \in \{\mu_j\}_{j\in J}$ for all $j \in J$ and for all $\alpha \in J_1$. Since each $\{\mu_j\}_{j\in J}$ be a collection of generalized $_{\mathcal{F}}$ – \mathcal{T} opologies on X. it follow that $\bigcup_{\alpha \in J_1} A_\alpha \in \mu_j$ for all $j \in J$. Hence $\bigcup_{\alpha \in J_1} A_\alpha \in \bigcap_{j\in J} \mu_j$. Thus $\bigcap_{j\in J} \{\mu_j\}$.is generalized $_{\mathcal{F}}$ – topology on X. However collection of generalized $_{\mathcal{F}}$ – \mathcal{T} opology on X is not closed set under the operation of union i.e. union of two generalized $_{\mathcal{F}}$ – topologies is not necessarily generalized $_{\mathcal{F}}$ – topology.

4. Conclusion

In this Paper we have studied a new concept of generalized fuzzy topological spaces in which many important results have been obtained with the help of some suitable examples.

References

1. Azad, K.K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl. 82 14-32, (1981).

- 2. Chang, C.L., Fuzzy topological spaces, J.Math. Anal. Appl.24, 182-190, (1968).
- 3. Csaszar, A., Generalized open sets in generalized topologies, Acta MathematicaHungaria 96, 351-357, (2002).
- 4. Palani Cheety G. Generalizaed Fuzzy Topology, Italian J. Pure Appl. Math., 24,91-96, (2008)
- 5. Palaniappan N. Fuzzy Topology, Narosa Publishing House, New Delhi. (2002)
- 6. Thakur, S.S. and Singh, S., On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and System, 98, 383-392, (1998).
- 7. Zadeh, L.A., Fuzzy sets, Inform. and Control 8, 338-353, (1965).