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ABSTRACT. In this paper we defined and characterized the concept of generalized fuzzy topological 

space(generalizedℱ − topological space) and obtained some significant results in this context with help of various 

supporting examples. 
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1. Introduction 

One of the earliest branches of mathematics which applied fuzzy set theory systematically is General Topology. Although 

fuzzy topology is a generalization of topology in classical mathematics, it has its own marked characteristics. Azad [1] 

has introduced the concept of fuzzy semi-open sets in fuzzy topological spaces. Chang, C.L introduced the concept of 

fuzzy topological spaces [2]. Csaszar [3] introduced the notions of generalized topological spaces. Palani Cheety [4] 

introduced the concept of generalized fuzzy topology and investigates various properties. 

In this paper, we have introduced the concept of generalizedℱ −topological space and verify the results with the help of 

some counter examples. Some require basic definitions, concepts of topological space and notations are discussed in 

Section 2. The section 3 has been headed by generalizedℱ − topological space, in which we verified various results 

related it by giving suitable examples and the Section 4 concludes the paper. 

 

2. Preliminaries 

Definition 2.1: Let X be a non-empty universal crisp set. A fuzzy topology on X is a non-empty collection τ  of fuzzy 

sets on X satisfying the following conditions 

i) Fuzzy sets 0 and 1 belong to τ 

ii) Any arbitrary union of members of τ is in τ 

iii) A finite intersection of members of τ  is in τ 

 

Here 0 and 1 represent the Zero Fuzzy Set and the Whole Fuzzy set on X, defined as, 0(x)=0,∀ x ∈ X  1(x)=1 , ∀ 𝑥 ∈ 𝑋
 

and the pair (X, τ) is called Fuzzy Topological Space on X. For Convenience, we shall denote the fuzzy topological 

space simply as X. 

 

Definition 2.2: Let (X, τ)be fuzzy topological space. The members of the collection τ  are called fuzzy open sets of 

fuzzy topological space X. The complement of a fuzzy open set of X is called a fuzzy closed set. Thus, a fuzzy set λ on 

X is a fuzzy closed set in (X, τ)  if its complement  λC  is fuzzy open set in X with respect to fuzzy topology τ. 

 

Definition 2.3: Let (X, τ)  be a fuzzy topological space. For a fuzzy set A in X the closure of A, denoted by Cl (A) is 

defined as Cl(A) = inf {K: A ⊆ K, KC ∈ τ}. Thus the fuzzy set Cl (A) is the smallest fuzzy closed set in X containing the 

fuzzy set A. From the definition, if follows that Cl (A) is the intersection of all fuzzy closed sets in X containing A. 

 

Definition 2.4: Let (X, τ)  be a fuzzy topological space. For a fuzzy set A in X, the interior of A, denoted by Int(A) is 

defined as Int(A) = Sup{Q : Q ⊆ A, Q ∈ τ}. Thus the fuzzy set Int (A) is the largest fuzzy open set in X contained in the 

fuzzy set A. From definition, it follows that Int(A) is the union of all fuzzy open sets in X contained in A. 

 

Proposition 2.1: Let (X, τ) be a fuzzy topological space. Then 

i) Arbitrary Intersection of fuzzy closed sets is a fuzzy closed set. 

ii) Finite union of fuzzy closed sets is a fuzzy closed set. 

 

Proposition 2.2: Let(X, τ) be a fuzzy topological space and let A be a fuzzy set in X. Then 

i) Cl(A) = A if and only if A is a fuzzy closed set in X. 

ii) Int(A) = A if and only if A is a fuzzy open set in X. 
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3. 𝐆𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞𝐝𝓕 − 𝐭𝐨𝐩𝐨𝐥𝐨𝐠𝐢𝐜𝐚𝐥 𝓢𝐩𝐚𝐜𝐞 

Definition 3.1: Let X be a crisp set and let μ
 
be a collection of fuzzy sets on X. Then μ

 
is called generalizedℱ −

topologyon X if it satisfies following conditions 

i) The fuzzy sets 0 and 1 are in μ where 0,1: X → I are defined as 0(x) = 0 and 1(x) = 1  for all x ∈ X 

ii) If {λj}, j ∈ J is any family of fuzzy sets on X where λj ∈ μ then ∪j∈J λj ∈ μ 

The pair (X, μ) is called generalizedℱ − topological 𝒮pace 

 

Definition 3.2: Let (X, μ)  be generalizedℱ − topological 𝒮pace  . The members of the collection μ  are called 

generalizedℱ − 𝒪pen 𝒮et ingeneralizedℱ − topological 𝒮pace. The complement of  generalizedℱ − 𝒪pen 𝒮et  in X 

is called generalizedℱ − 𝒞lose 𝒮et 
 

Example 3.1: Let X = {x1, x2}, and we consider fuzzy sets A = {(x1, 0.3), (x2 , 0.6)}, B = {(x1 , 0.5), (x2 , 0.4 )}  and 

C = {(x1 , 0.5), (x2 , 0.6 )}  on X. Then clearly μ = {0, A , B, C, 1}  is generalizedℱ − topology  on X, but not fuzzy 

topology on X. 

 

Definition 3.3: Let (X, μ) be generalizedℱ − topological 𝒮pace. For a fuzzy set  A in X the 𝒞losure of A is defined as 

Clμ(A) = inf {K ∶ A ⊆ K, KC ∈ μ}. Thus Clμ(A) is the smallest  𝒞losed 𝒮et in X containing the fuzzy generalizedℱ −

𝒪pen 𝒮et A. From the definition, if follows that Clμ(A) is the intersection of all generalizedℱ − 𝒞losed 𝒮ets  in X 

containing A. 

 

Definition 3.4: Let (X, μ) be generalizedℱ − topological 𝒮pace. For a fuzzy 𝒮et A in X, the ℐnterior of A, is defined 

as Iμ(A) = Sup{Q : Q ⊆ A, Q ∈ μ}. Thus Iμ(A) is the largest generalizedℱ −  𝒪pen 𝒮et in X contained in the fuzzy 𝒮et 

A. From the definition, if follows that Iμ(A) is the union of all generalizedℱ −  𝒪pen 𝒮et in X contained in A. 

 

Remark 3.1: Arbitrary union of generalizedℱ − 𝒪pen 𝒮et is generalizedℱ − 𝒪pen 𝒮et 
 

Proposition 3.1: Let (X, μ) be generalizedℱ − topological 𝒮pace.Then: 

i) 0 and 1 are fuzzy generalizedℱ − 𝒞losed 𝒮ets  in X. 

ii) Arbitrary intersection of generalizedℱ − 𝒞losed 𝒮ets  in X is  generalizedℱ − 𝒞losed 𝒮et in X. 

Proof (i): Since 0 and 1 are generalizedℱ −  open  𝒮et𝑠 in X therefore their complement 1 and 0 are generalizedℱ −
 𝒞losed 𝒮etS in X. 

(ii): Let {λj}jϵJ be a collection of generalizedℱ − 𝒞losed 𝒮ets in X, where J is index set. Then {λj
c}jϵJ is a collection of 

generalizedℱ −  𝒪pen 𝒮ets in X. This implies ∪j∈J λj
c is generalizedℱ − 𝒪pen 𝒮et in X. Hence (∪j∈J  λj

c)c = ∩j∈J λj is 

generalizedℱ − 𝒞losed 𝒮et in X. 

 

Remark 3.2: Since arbitrary union of generalizedℱ − 𝒪pen 𝒮et  is generalizedℱ − 𝒪pen 𝒮et, Iμ(λ) is generalizedℱ −

𝒪pen 𝒮et  in X. Further since arbitrary intersection of generalizedℱ − closed 𝒮et is fuzzy closed 𝒮et .,  Clμ(λ)  is a 

generalizedℱ − closed 𝒮et in X. Intersection of two  generalizedℱ − 𝒪pen 𝒮ets may not generalizedℱ − 𝒪pen 𝒮et 
and therefore union of two generalizedℱ − 𝒞losed 𝒮ets may not generalizedℱ −  𝒞losed 𝒮et in X. In Example 2..1 we 

see that A ∩ B = {(x1 , 0.3), (x2 , 0.4) is not Generalizedℱ − 𝒪pen 𝒮et  in X and  A ∪ B = {(x1 , 0.7), (x2 , 0.6)} is not  

generalizedℱ −  𝒞losed 𝒮et  in X. 

 

Proposition 3.2: let {μj}j∈Jbe a collection of   generalizedℱ − topologies on X. where J is an index set then their 

intersection ∩j∈J μj  is also a generalizedℱ − topology on X 

Proof: let {μj}j∈J be a collection of generalizedℱ − topologies on X.where J is an arbitrary index set be a collection of 

generalizedℱ − 𝒯opologies on X.  Then 0,1 ∈ {μj}j∈J for all j ∈ J. This implies  0,1 ∈ ∩j∈J {μj}. Now let Aα ∈ ∩j∈J {μj} 

for α ∈ J1  where J1  is an arbitrary index set. Then Aα ∈ {μj}j∈J for all j ∈ J and for all α ∈. J1. Since each {μj}j∈J  be a 

collection of generalizedℱ − 𝒯opologies on X. it follow that  ∪α∈J1
Aα ∈ μj  for all  j ∈ J . Hence ∪α∈J1

Aα ∈ ∩j∈J μj . 

Thus ∩j∈J {μj}.is generalizedℱ − topology on X. However collection of generalizedℱ − 𝒯opology on X is not closed 

set under the operation of union i.e. union of two generalizedℱ − topologies is not necessarily  generalizedℱ −
topology. 
 

4. Conclusion 

In this Paper we have studied a new concept of generalized fuzzy topological spaces in which many important results 

have been obtained with the help of some suitable examples. 
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