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Abstract  

Operational transconductance amplifiers (OTAs), are the rudimentary components for many analog systems, have 

received a loads of enthrallment in the literature due to their three-stage compensation. Over the recent years, a wide 

range of conclusions to the stability issue of such OTAs have been put forth, each with a idiosyncratic set of attributions 

or intended use. This study catechizes a wide range of anteriorly prevalent designs, insinuates a novel genus system that 

illuminates traits that unfold to be ubiquitous to various compensation structures, and enlighten which kind of OTA is 

best for a given application. 

 

Keywords—three-stage, Miller compensation technique, nested Miller compensation technique, reverse nested Miller 

Compensation technique, wide load range, Low power, Frequency Compensation, Performance Boosting. 

 

Introduction 

In the contemporary period, all hardware devices have avant-garde, and all the breakthroughs is immigrating from the 

analog to the digital preserve, whilst for every digital circuit, analog circuits is still the foundation and there are 

countless researchers working in the analog and mixed fields, and they are more impassioned with this aspect[1-4]. Op-

amps are vital constituent of all analog and mixed circuits and perform a pivotal role in these realms. [5] & [6]. For the 

best rendition of Op-amps, the VLSI industry is most indulged with reducing space, power consumption, settling time, 

slew rate, UGBW, and DC gain[7].These are direct connected high gain amplifiers with the capability to amplify small 

signals with virtually zero dimensionality. Differential amplifiers are recognized as single stage Op-amps, and as a 

result, their gain is minimal. A gain stage can as in cure to this problem by improving DC gain and dispensing an 

incentive for amplification. The level shifter is the next stage, and its primary function is to lower the DC level such that 

it is near the ground, which is made possible by the unbalanced output stage. The primary intend of an emitter follower 

is to deliver DC isolation in between the input & output for lessen the effects of loading. Cascading causes a loading 

effect. Two separate input terminals inverting and non-inverting and one output terminal are present in an amplifier's 

operation. [8]. Designers faced numerous trade-offs while attempting to develop an operational amplifier, as they 

grappled with a multitude of issues. The critical performance parameters of operational amplifiers (op-amps) are slew 

rate, input impedance, output impedance, frequency range, open loop gain, offset voltage, common mode rejection 

ratio, power supply rejection ratio, phase margin, and settling time. Operational amplifiers come in a variety of types 

relying on their intended use. Analogous to single-stage, two-stage, three stage, foldable operational amplifier, and 

telescopic operational amplifiers, differential amplifiers are witnessed as single stage operation amplifiers since their 

first stage is a differential amplifier with differential input and output [9]. The increasing speed and reduced power 

consumption of digital circuits can be attributed to the continuous and aggressive scaling down of CMOS technologies. 

Nevertheless, the acquisition of these privileges is accompanied by a trade-off in the form of reduced intrinsic device 

gain, hence compromising the efficiency of analog circuits [10]. Conversely, operational transconductance amplifiers 

(OTAs) with larger DC gain are necessary for high-precision applications. Transistors have conventionally been stacked 

upright in a cascode design to unravel this issue and garner high DC gain with virtually first-order response. But in 

precedence to testify device reliability, supply voltages must likewise be dialed back as scaling progresses. Because of 

this, there is less signal headroom, which makes traditional cascode approaches erratic. [11,12]. For this reason, modern 

OTAs gravitate to perform a cascading of multiple stages to excel the coveted gain. Even though many authors have 

substantiated the propitious design of four-stage OTAs [13-15] and many have gone over for describing n-stage OTAs 

[12–14  16-18], three-stage OTAs have drew a lot of research stake for a multifariousness of employments because they 

prevail to trot out a good trade-off between intricacy and power efficacy. Applications for three-stage OTAs comprise 

capacitive MEMS sensors, low-dropout (LDO) linear regulators, LCD drivers, and headphone amplifiers.  [11,19-22]. 

For some applications, the amplifier needs to be able to deliver a very wide range of load capacitance that span multiple 
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orders of magnitude. For other applications, the amplifier needs to be able to drive very high capacitive loads. [11,23-

24]. The compensation of the consequent three-pole system is the primary asperity in three-stage OTA design. 

Numerous scholarly endeavors have been dedicated to the pursuit of formulating intuitive mathematical representations 

for the transfer functions of three-stage operational transconductance amplifiers (OTAs). Once the compensation 

structure is provided, the complexity of the advanced compensation designs designed to tackle this problem makes it 

difficult to conduct a manageable and intuitive analysis. [25-29]. These works enable engineers to easily extract pole 

and zero frequency expressions for use in manual analysis and design, but they make no verdict regarding the relative 

privileges of various compensation schemes. 

 

Compensation Techniques used to Optimize the Performance of Operational Amplifiers 

In 2001 Ka Nang Leung and Philip K. T. Mok stipulated novel stability necessity for low-power CMOS nested Miller 

compensated amplifiers. Then, a better rendition is developed that combines the benefits of a nulling resistor with a feed 

forward transconductance stage. The frequency responsiveness, transient response, and power supply rejection ratio are 

all improved by the proposed structure, according to experimental findings, without increasing power consumption or 

circuit complexity [34]. An active-feedback frequency-compensation (AFFC) technique for low-power operational 

amplifiers is depicted by Hoi Lee in 2003.The AFFC amplifier utilizes an active-feedback mechanism to effectively 

separate the low-frequency high-gain path and high-frequency signal path. This separation allows for the simultaneous 

achievement of high gain and wide bandwidth in the amplifier. The active-feedback network's gain stage additionally 

decreases the dimensions of the compensation capacitors, resulting in the reduction in overall chip area of the amplifier 

and an enhancement in the slew rate. In addition, the inclusion of left-half-plane zero inside the proposed AFFC 

topology enhances the stability & settling characteristics of the amplifier. An HGB and an HSB, respectively, divide the 

low-frequency and high-frequency signal channels in the active capacitive feedback network. The HSB greatly 

increases the amplifier's bandwidth while the HGB offers a high dc gain since it bypasses the intermediate high-gain 

stages with slow responses at high frequencies. The AFFC amplifier may thus simultaneously attain high gain and wide 

bandwidth. Because smaller compensation capacitors are needed, the chip size of the AFFC amplifier is likewise 

lowered. Furthermore, the presence of LHP zero in the amplifier enhances both stability and transient responses. The 

suggested AFFC amplifier outperforms other published compensation topologies in both small and big signal 

applications furthermore lacking a distinct feedback path [45]. Xiaohong Peng and Willy Sansen presented the AC 

Boosting Compensation (ACBC) scheme in 2004which was  a revolutionary frequency compensation method that uses 

less power. The internal step of the add an ac route compared to a traditional multistage amplifier, which increases slew 

rate, gain-bandwidth product, and other performance metrics without increasing overall power consumption. Analysis 

demonstrates that stability can be fully guaranteed [43].In their 2005 study, Feng Zhu and Shouli Yan introduced two 

novel approaches for lower-voltage three-stage amplifiers, namely the Nested Feed forward RNMC (NFRNMC) and 

Crossed Feed forward RNMC (CFRNMC). These approaches involve reversed nested Miller Compensation (RNMC) 

and are proposed as innovative methods in this research. Both approaches utilize double feed forward channels in order 

to eliminate the right-half-plane zero. In order to increase the phase margin, the second architecture introduces a left-

half-plane zero. Two three-stage amplifiers are constructed utilizing the proposed methodology in order to demonstrate 

the advantages of the novel Reduced Noise and Mismatch Compensation (RNMC) techniques over the conventional 

RNMC architecture. Based on simulation data, it has been observed that the NFRNMC and CFRNMC amplifiers 

provide superior stability compared to conventional RNMC amplifiers, although having an equivalent gain-bandwidth 

product. The suggested AFFC amplifier outperforms other published compensation topologies in both small and big 

signal applications further more lacking a distinct feedback path[46].Alfio Dario Grasso in 2006 presented a three-stage 

operational transconductance amplifier (OTA) that can drive highly capacitive loads is designed using a straightforward 

compensation technique that solely uses passive components. The new solution uses two more resistors in comparison 

to the traditional nested Miller compensation technique, which allows for a roughly one-order-of-magnitude reduction 

in the values of the compensation capacitors[30].The reversed nested Miller compensation with nulling resistor 

(RNMCNR) and the reversed active feedback frequency compensation (RAFFC) are two frequency compensation 

methods that are used for three-stage operational transconductance amplifiers presented by Alfio Dario Grasso in 2007. 

The methods, which are based on the fundamental RNMC, exhibit a built-in advantage over conventional compensatory 

systems, particularly for large capacitive loads. Additionally, they are accomplished without the need for additional 

transistors, reducing the complexity of the circuit and the amount of power used. For each solution, a clear design 

process is created that uses phase margin as the primary design parameter[32]. In 2007 Cannizzaro presents design 

methods for nested-Miller frequency compensated three-stage CMOS operational transconductance amplifiers. The 

basic technique for a Class-A topology is first described, and then various adjustments are given for a Class-AB 

solution to boost swing, slew rate, and current drive capability. The methods created are straightforward since they don't 

impose unneeded circuit limitations and produce precise results. They can therefore be easily included into an analog 

knowledge-based computer-aided design tool, but they are best suited for a pencil and paper design [36]. A three-stage 

amplifier with a wide operating range (1 to 15 nF) has been introduced by Zushuyan in 2013. In terms of topology 

selection pole-zero placements, parameter sizing, and CL variability assessment, the used LFL analysis is significantly 

more insightful than conventional direct circuit analysis. CBMC + parasitic-pole cancellation is the ideal frequency 

compensation strategy. A wideband current buffer and an active LHP zero circuit significantly improve its transistor-
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level implementation. Comprehensive circuit studies are performed, including those of differential-mode, common-

mode feedback, noise, slew rate, and input/output range. On the basis of these assessments, a manual design technique 

and an optimization based on genetic algorithms are provided [38]. S. Mehdi Hosseini Largani and team in 2014, a 

brand-new single Miller capacitor for three-stage amplifier frequency compensation is suggested. The compensation 

block of a typical three-stage amplifier is formed by a differential stage, whose negative and positive inputs are coupled 

through a cascade capacitor to the third stage's input and output nodes. Analysis reveals that this configuration, with 

only a very tiny amount of compensating capacitor, considerably enhances the frequency domain performances of the 

entire circuit, including phase margin and gain-bandwidth product [44].Again in 2015Grassoand team described a 

design process for three stage CMOS that operates in the subthreshold range. The process focuses on creating ultra-low-

power amplifiers that have a small silicon footprint yet can drive large capacitive loads. This work described a three-

stage, ultra-low-power, subthreshold OTA and the associated design approach. To improve large signal performance, 

the OTA makes use of a class AB O/P stage with an extra slew rate enhancement circuit [33].In 2015, Sajad Golabi 

introduced a class AB operational transconductance amplifier consisting of three stages, characterized by a substantial 

slew rate. The utilization of the reversed nested Miller compensation technique is employed to stabilize the suggested 

operational transconductance amplifier (OTA). This allows for the improvement of the slew rate, which is accomplished 

by the implementation of class AB input and output stages. The utilization of flipped-voltage follower cells in the initial 

stage, together with switched capacitor level shifter in the subsequent stages, is employed to achieve the class AB 

operation[40]. Elena Cabrera-Bernal suggested a bulk driven operational transconductance amplifiers (OTAs) in 2016, 

straight forward high-performance architecture is provided. The three gain stages in the solution give intrinsic class-AB 

behavior with precise and reliable standby current regulation, overall good large signal &small signal performances are 

attained, which puts solutions far ahead of the competition in terms of technological advancement [41]. A three-stage, 

low-power, area-efficient CMOS operational transconductance amplifier (OTA) designed for very large capacitive 

loads CL, is presented by A.D. Grasso in 2017. The frequency compensation network is implemented using a single 

Miller capacitor and an incorporated inverting current buffer. The transient response for large-signal is additionally 

enhanced by the use of feed-forward path & a slew rate enhancer. According to a thorough investigation of tiny signals, 

the proposed method does not show a drivable CL upper limit. In order to achieve frequency compensation, the 

suggested technique makes use of a single-Miller capacitor and incorporated inverting current buffer in the first (folded-

cascode) stage. The amplifier has highly compact circuit layout because to the use of straightforward common source 

configurations for specially the second & third stages. Small-signal analysis shows that, OTA behaves as a single-stage 

OTA for capacitive load greater than the minimum value. Additionally, a push-pull output configuration and a class-B 

slew rate enhancer circuit augmented the transient response [35].A performance-boosting frequency-compensation 

technique, feed-forward Gm-stage& regular Miller plus indirect compensation (FGRMIC), is demonstrated by Shubin 

Liu, Zhangming Zhu and team in 2018. The proposed structure consist of three parts that basically ensures stability& 

significantly improving the performance, such as gain bandwidth product, slew rate& sensitivity. The initial section 

comprises a feed forward transconductance stage, whereas the subsequent section consists of a Miller capacitor 

connected in series with a single resistor. The third component consists of a resistor in conjunction with an indirect 

compensation capacitor. This paper represents a comprehensive theoretical analysis and design considerations to 

illustrate the stability of the compensation scheme[42]. Sadegh Biabanifard in 2018 describes a novel and 

straightforward (RNMC) structure-based frequency compensation method for three-stage amplifiers. The circuit 

complexity and die area were decreased by using a single, tiny compensation capacitor, which also outperformed 

RNMC in terms of performance due to the cancellation of the second dominant pole by a zero, the suggested technique 

is also unconditionally stable [37].In 2018, Sadegh Biabanifard offered a comprehensive approach to the design of 

frequency-compensating multistage amplifiers. Various stage cases have been considered, including differential voltage 

and current blocks, as well as generic compensation blocks for both voltage and current states. The configurations have 

been elucidated via a matrix representation. The utilization of binary matrices was employed in the strategic approach to 

emulate amplifiers through the implementation of feedback networks. Evolutionary algorithms were employed to 

minimize symbolic transfer functions and determine optimal numerical values. Also, the ideal MOSFET DC bias 

conditions and dimensions were determined using a diagram-based design. It is important to acknowledge that the 

utilization of reduced transfer functions, as opposed to numerical methods, offers a more comprehensive comprehension 

of circuit design by symbolically determining the poles and zeroes [39].In 2019, Qi Cheng introduced a novel frequency 

correction technique for three-stage amplifiers that are responsible for driving capacitive loads ranging from picofarads 

to nanofarads. The cascode Miller compensation technique effectively extends the frequency response of the non-

dominant complex pole. Additionally, the compensation capacitors are decreased in size using this approach. To 

address the issue of significant variations in the loading capacitance CL, an adaptive approach is employed to change 

the Q-factor. This is achieved by using a local Q-factor control loop. The Q-factor of the complex pole pair is a crucial 

parameter that influences both the frequency peak in the gain plot & the settling time of the suggested amplifier in the 

closed-loop step response. This Q-factor is regulated by the LQC loop, which additionally determines the appropriate 

amount of damping current to be injected into the associated parasitic node. In addition, a feed-forward 

transconductance stage is incorporated in parallel to enhance the slew rate, while a left-half-plane zero is introduced to 

augment the phase margin. [47].In a study conducted by Mehdi Zaherfekr in 2019, a novel modified strategy was 

introduced with the aim of improving the frequency compensation for three stage operational trans-conductance 

amplifiers. In the architecture of the new frequency compensation, the elimination of the right-half plane zero results in 

the removal of the common node of Miller compensation capacitors, commonly known as the feed forward path. 
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Additionally, a current comparator is incorporated into the feedback circuit. The product exhibits significant 

improvements in gain bandwidth, stability, and phase margin. The newly devised technique effectively enhances the 

performance metrics and minimizes power consumption, while significantly lowering the size of capacitors in the 

compensation network in comparison to alternative frequency compensation approaches that are presently available. 

The experimental evaluation of a three-stage amplifier has demonstrated the superiority of a novel technique in 

comparison to established strategies for reversed nested Miller compensation [48].In the year 2020, Francesco 

Centurelli conducted a study wherein he presented a paper on the attainment of double pole zero cancellation & the 

preference for single pole behavior of a three stage Miller capacitance amplifier. This research introduces an improved 

reversed nested Miller compensation technique that leverages the inclusion of a single additional feed forward stage. 

The proposed methodology facilitates the creation of a three-stage operational transconductance amplifier with single 

dominant pole and two pole-zero doublets, which are expected to exhibit theoretical cancellation. The durability of the 

proposed cancellation method is exemplified, as we provide evidence that variations in procedure and temperature do 

not affect its efficacy. The proposed design equations facilitate the determination of the resonance frequency & quality 

factor of the complex poles, as well as the unity gain frequency of the amplifier. In order to evaluate the performances 

of an operational transconductance amplifier in comparison to a telescopic cascode OTA, within specified constraints of 

load capacitance and power consumption, we introduce the notion of bandwidth efficiency [31]. 
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Zushu yan in 2013[34] 

 

Table-I demonstrates a comparative analysis of the different parameters using several op-amp design techniques. The 

following topics are covered in this article, DC gain, power consumption, UGBW, load capacitance, settling time, slew 

rate, phase margin, supply voltage & area and figure 1 & figure 2 represents the histogram representation for gain and 

phase.  

 

CONCLUSION 

This paper presents a comprehensive analysis of the three-stage operational transconductance amplifier (OTA) 

architecture, encompassing wide range of advanced compensation techniques. The interpretation highlights the primary 

objective of the dominating design and discusses performance metrics such as gain, phase margin, power consumption, 

CMRR, PSRR, and so forth. 
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