
Journal of Survey in Fisheries Sciences 10(1) 16685 - 16690 2023

16685

Utilizing Machine Learning For Predicting Software Defects

Dr. Jitendra Sheetlani1*, Prashant Keswani2

1*Professor of Computer Application, Medicaps University, Indore
2Research Scholar, Sri Satya Sai University of Technology and Medical Sciences, Sehore

*Corresponding Author: Dr. Jitendra Sheetlani

*Professor of Computer Application, Medicaps University, Indore

Abstract

Assessing software effectiveness, reliability, and quality involves a systematic approach to identifying bugs within the

product. The detection of bugs during software development has spurred the development of various prediction methods

to address them. Predicting bugs in concurrent software products is crucial for reducing development time and costs. This

study delves into experiments conducted on a publicly available bug prediction dataset, which encompasses numerous

open-source software projects. Employing the Genetic algorithm, relevant features were extracted from the datasets to

mitigate overfitting risks. These features were then categorized as defective or non-defective using classification

techniques such as random forest, decision tree, and artificial neural networks. Evaluation of these techniques included

metrics like accuracy, precision, recall, and F-score. Results revealed that random forest outperformed other algorithms

in accuracy, precision, and F-score, with average scores of 83.40%, 53.18%, and 52.04%, respectively. Additionally, the

neural network demonstrated superior recall, achieving an average score of 60% among the algorithms. Consequently,

this system offers valuable support to software developers, aiding them in delivering high-quality software with minimal

defects to customers.

Keywords: Random Forest, Decision Tree, Artificial Neural Network, Software Defect Prediction, Software metrics,

Genetic Algorithm

1. Introduction

A software defect refers to a flaw, fault, or failure within a computer system or program, resulting in unexpected or

incorrect behaviors [9]. These discrepancies are typically discovered during software testing and categorized as defects.

Utilizing software defect prediction methods proves to be more cost-effective in detecting such issues compared to

traditional testing and reviews. Recent studies suggest that the probability of detecting software bugs through prediction

models may exceed that of current software review methods [8]. Prompt identification of software bugs allows for the

efficient allocation of testing resources and aids in enhancing a system's architectural structure by identifying high-risk

segments [8]. Recognizing fault-prone code at each stage of software testing contributes to the development of high-

quality software.

Feature selection serves as a crucial technique for managing extensive metric sets by identifying which metrics

significantly influence software defect prediction performance. By employing feature selection, redundant and

nonindependent attributes are eliminated from the dataset [5]. In this study, the genetic algorithm was employed to extract

relevant features from raw datasets. Two primary approaches for constructing a software defect prediction model are

supervised learning and unsupervised learning. However, supervised learning necessitates historical data or known results

to train the model, presenting challenges.

While a multitude of techniques and learning algorithms are available for selecting software metrics, this paper utilized

the Random Forest, Decision Tree, and Artificial Neural Network techniques for the prediction model, utilizing a minimal

set of metrics to achieve acceptable results. The performance of these techniques was assessed using accuracy, precision,

recall, and F-score. Accuracy reflects the number of correctly classified instances, precision measures the proportion of

identified faulty files that are genuinely faulty, and recall evaluates the proportion of faulty files correctly identified as

such.

2. Related Work

Menzies et al. [7] utilized OneR, a classification rule algorithm, to evaluate thresholds of single attributes, concluding

that OneR is often outperformed by the J48 decision tree. Shafi et al. [10], in addition to OneR, employed another

classification rule technique called ZeroR, which was found to be surpassed by OneR. ZeroR predicts the value of the

majority class. Arisholm et al. [2, 3] conducted two separate studies using the meta-learners Decorate and AdaBoost along

with J48 decision tree. They reported that Decorate outperformed AdaBoost on small datasets and performed comparably

well on large datasets; however, they did not specify their definition of small and large datasets.

Utilizing Machine Learning For Predicting Software Defects

16686

Grishma and Anjali investigated the root cause for fault prediction by applying clustering techniques and identifying

defects occurring in various phases of the SDLC. They utilized the COQUALMO prediction system to predict defects in

software and applied various clustering algorithms such as k-means, agglomerative clustering, density-based scan,

COBWEB, expectation maximization, and farthest first. The implementation was carried out using the WEKA tool.

Ultimately, they concluded that the k-means technique exhibited superior performance compared to other algorithms [4].

Studies in [11, 6] analyzed the applicability of various machine learning methods for fault prediction. Sharma and Chandra

[11] expanded their study to incorporate important previous research on each machine learning technique and current

trends in software bug prediction using machine learning. This study serves as a foundation or stepping stone for future

work in software defect prediction. Agasta and Ramachandran [1] addressed the challenging task of predicting the fault-

proneness of program modules when fault labels are unavailable in the software industry. They attempted to predict the

fault-proneness of program modules in the absence of fault labels, proposing supervised techniques like the Genetic

algorithm-based software defect prediction approach for classification.

Yu et al. [12] developed a model named ConPredictor, utilizing a combination of derived metric sets to improve the

prediction of defects in concurrent software programs using deep learning techniques.

3. Methodology

Data Collection

The datasets used in this study were obtained from a publicly available bug prediction dataset, which serves as a repository

for defect prediction in numerous open-source software projects. Specifically, the dataset selected for analysis in this

paper was the "weighted-ent" dataset, derived from files within each repository. Weighted entropy, referred to as

"weighted-ent" in this context, quantifies the information provided by a probabilistic test, considering both the objective

and qualitative weights of its elementary events.

Feature Selection

Feature selection, also known as attribute selection, is the process of choosing a subset of relevant features for use in a

prediction model. In this study, this process was accomplished using the genetic algorithm, which extracted the features

that have the greatest impact on the outputs, namely the number of bugs in a software product. A typical genetic algorithm

flowchart is depicted in Figure 1 below.

Fig.1:-The Flowchart of a Typical Genetic Algorithm

Journal of Survey in Fisheries Sciences 10(1) 16685 - 16690 2023

16687

Machine Learning Algorithms

While machine learning algorithms typically learn to predict outputs based on previous examples, in this paper, the

experiment aimed to test the extracted features, employing learning algorithms with their standard settings in the

MATLAB environment using the statistical toolkit. The learning algorithms utilized for constructing the defect prediction

model in this study include Random Forest (RF), Decision Tree (DT), and Artificial Neural Network (ANN).

Random Forest

The essence of this technique lies in constructing small decision trees with only a few features, making it computationally

inexpensive.

However, Random Forest (RF) operates as an ensemble learning algorithm. By concurrently considering weak and small

decision trees, these trees can be amalgamated to create a robust and singular learner through majority voting. Moreover,

random forests are frequently noted for their high accuracy in learning algorithms. Therefore, the pseudo code employed

in this paper is provided below in Algorithm 1. Consequently, generating a larger number of trees using the random forest

learning algorithm not only remains a viable option, but these trees also exhibit lower correlation, enhancing the

algorithm's overall performance.

Algorithm1: Pseudocode ofRandomForest

Precondition: Atrainingset𝑆➟(𝗑1,𝑦1),…,(𝗑𝑛,𝑦𝑛),features𝐹,andn umbero ftreesinforest 𝐵 FunctionRandomForest(𝑆,𝐹)

𝐻➛Ø

Fori∈1,…,do (i)➛Abootstrapsample𝑆 ℎi➛ Randomized Treelearn ((i), 𝐹)

➛*ℎi+ Endfor Return𝐻

Endfunction

Function Randomized Treelearn (𝑆,𝐹) Ateachnode:

𝐹➛verysmallsubseto f𝐹

Split on best feature in 𝐹Return the learned tree Endfunction

Decision Tree

A decision tree can be described as one of the supervised learning algorithm that is widely used for classification and

regression task). The cognitive procedure of acquiring knowledge and classification measure of decision tree are not

complex. In this work, after the conducted experiments a decision tree was generated from the training samples and the

defects were classified as represented in algorithm 2 below.

Algorithm2: Pseudocode of Decision Tree Learning

Tree-Learning (TR,Target,Attr)TR: trainingexamples

Target: targetattribute

Attr: setofdescriptiveattributes

{

Generatea Rootnode for thetree.

If TR have the sametargetattributevalue𝑡i,
Then Returnthe single-nodetree,thatis. Root, withtarget attribute

=𝑡i
IfAttr= empty (simpl ymeans no expressi veattri butespresent), Then Return thesingle -nodetree, i.e. Root,

withmostcommon valueofTargetin TR

Otherwise { Selectattribute A from At trthat classifiesbetter TR dependingonan entropy-basedmeasure Set A the attribute

for Root Foreac hlega lvalue of A, i, do { Addabranch below Root, correspondingto A=𝑣i Let 𝑇𝑅 𝑣ibethesubset of TR

thathaveA=𝑣i

If𝑇𝑅𝑣iisempty,

Then add a leaf node beneath the branch with target value = most

common value ofTargetinTR Elsebe low thebranch, addthesu btreelearnedbyTreeLearning(𝑇𝑅𝑣i, Target,Attr-{A})

Return (Root) where 𝑡i= the value of the target attribute and 𝑣i=the value of descriptive attributes

Neural Network

Neural networks(NN) is simply an important tool for classification. There cent wide research activities in neural

classification having existed that NN are a promising alternative to various conventional classification methods. In the

classification stage, neural network is capable of producing an intended result with the use of labeled training segments.

However, an Artificial Neural Network(ANN) is a structure built on the performance of biological neural networks.ANN

is a learning algorithm based on a model that can simply be used for classification. Furthermore, some algorithms are in

existence used in training neural network like Newton Method, Gradient Descent, Levenberg-Marquardt(LM) e. t. c. In

this paper, LM was adopted which is used for training the ANN. Algorithm3 shows the pseudo code of Levenberg-

Marquardt used for the defects classification.

Utilizing Machine Learning For Predicting Software Defects

16688

Algorithm3:PseudocodeofLevenberg-Marquardt

InitializeWeights;

While not stop Criterion doCalculates(w)foreachpattern

𝑃

𝑒1=∑=1(w)(w)

𝑃

Calculates(w)foreachpattern Repeat

Calculates ∆w

𝑃

𝑒2=∑=(w+∆w)𝑇𝑒𝑃(w+∆w)

𝑃

If𝑒1≤𝑒2then

𝜇=𝜇*𝖰End IfUntil𝑒1<𝑒2

𝜇=𝜇/𝖰

w=w+∆w

Endwhile where

(𝑤)is the Jacobian matrix of the error vector (𝑤)ise valuated in 𝑤 𝐼is the specification matrix.

Hence, the parameter 𝜇 is increased or decreased at each step.

Classification Stage

In the classification phase, the extracted features underwent classification into defect or non-defect categories using

random forest, neural network, and decision tree methods, as outlined in the preceding section. To evaluate the prediction

model, a fourfold cross-validation was conducted four times. The dataset was divided into four equal parts, with three

parts utilized for the extraction process and training, and the remaining part used for testing. This process was repeated

four times to ensure that every part of the dataset served as both training and testing data. Cross-validation was chosen

due to the limited number of data, providing an advantage over traditional performance evaluation techniques. By

adopting cross-validation, all instances were utilized once for both testing and training, addressing potential bias concerns.

This approach generated a total of 16 folds, resulting in a more reliable error estimate.

The performance of the software defect prediction was evaluated using various metrics, including True Positive, False

Positive, False Negative, and True Negative prediction outcomes. Subsequently, the defect prediction performance was

assessed based on the following criteria: [Include specific criteria as needed].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=

 𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒 (1)

This gives the quantitative relation of predictionthat are correct.

 𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛= 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡i𝑣𝑒 (2)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒

Called holdout method. In the hold out method, one part of the datasets is used for

𝑅𝑒𝑐𝑎𝑙𝑙= 𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑇𝑟𝑠𝑡i𝑣𝑒i𝑡+i𝑣𝑒𝐹𝑎𝑙𝑠𝑒𝑁𝑒/ g𝑎𝑡i𝑣𝑒 (3)

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒=2×(𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)/
𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (4)

By collecting these performance measurements, future predictions on unseen files can be estimated. The block diagram

of the defect prediction model is presented in Figure 2.

Fig.2:-Proposed Architecture

Journal of Survey in Fisheries Sciences 10(1) 16685 - 16690 2023

16689

4. Results and Discussion

The outcomes obtained from the feature set extracted from the raw datasets are compared, followed by the utilization of

three techniques for defect prediction with cross-validation. Cross-validation tests are implemented in various manners,

but the approach adopted in this paper involves dividing the training data into multiple folds. The classifiers are assessed

based on their classification performance, including accuracy, precision, recall, and F-score, on one fold after being

trained on the other folds. This process is iterated until all folds contribute to the evaluation. The tables presented below

illustrate the performance evaluation of the techniques, focusing on accuracy, precision, recall, and F-score, as outlined

in Section 3 of this paper.

Accuracy

Table 1 displays the accuracy of the techniques applied to the dataset utilized in this study. The average accuracy for each

learning algorithm was computed and is presented as a percentage. From Table 1, it is evident that the random forest

algorithm surpassed the other classifiers. In conclusion, random forest emerges as the top-performing algorithm for the

overall datasets assessed in terms of accuracy

Table1:-The algorithm performance per dataset rated by accuracy

Datasets Artificial

NeuralNetwork

Random

Forest

Decision

Tree

ECLIPSEJDTCORE 86.93% 83.92% 75.88%

ECLIPSEPDE UI 83.28% 83.61% 81.81%

EQUINOXFRAMEWORK 70.77% 76.92% 73.85%

LUCENE 91.3% 89.13% 89.86%

AVERAGE 83.07% 83.40% 80.3%

Precision

Precision is another performance metric that assesses the accuracy of the prediction model in classifying faulty files that

are genuinely faulty. Table 2 showcases the individual scores of each learning algorithm per dataset, along with the

average for each classifier. In summary, random forest emerges as the top algorithm for the overall datasets based on

precision, with an average score of 53.18%, followed by ANN with 44.11%.

Table2:-The algorithm performance per dataset rated by precision

Datasets ArtificialNeuralNet work RandomFo

rest

DecisionT

ree

ECLIPSEJDTCORE 53.49% 76.74% 4.65%

ECLIPSEPDE UI 31.91% 34.04% 6.38%

EQUINOXFRAMEW

ORK

57.69% 76.92% 76.92%

LUCENE 33.33% 25% 0%

AVERAGE 44.11% 53.18% 21.99%

Recall

The Recall metric indicates the proportion of faulty files that the prediction model successfully identifies. As shown in

Table 3 below, decision trees estimate the recall for the LUCENE dataset at 0%. Additionally, the artificial neural network

emerges as the top algorithm for the overall datasets in terms of recall, exhibiting a notable gap compared to the other

classifiers.

Table3:-The algorithm performance per dataset rated by recall

Datasets ArtificialNeuralN

etwork

RandomFo

rest

Decision

Tree

ECLIPSEJDT

CORE

79.31% 60% 22.22%

ECLIPSEPDEUI 45.45% 47.06% 21.43%

EQUINOXFRAME

WORK

65.22% 68.97% 64.52%

LUCENE 50% 33.33% 0%

AVERAGE 60% 52.34% 27.04%

F-Score

F-Score is the last performance measure as highlighted in the section III above. This is a combination of recall and

precision. Table4 contains the values for all the datasets and the overall average value for Each learning algorithms.

Utilizing Machine Learning For Predicting Software Defects

16690

Decision tree value for dataset LUCENEstill stays at 0% fscore. However, the best algorithm isthe random forest for

overall rated by f-score with 52.04%.

Table4:-The algorithm performance per dataset rated by f-score

Datasets ArtificialNeuralNet

work

RandomFo

rest

DecisionT

ree

ECLIPSEJDT CORE 63.89% 67.35% 7.69%

ECLIPSEPDEUI 37.5% 39.5% 9.83%

EQUINOXFRAMEW

ORK

61.22% 72.73% 70.18%

LUCENE 40% 28.57% 0%

AVERAGE 50.65% 52.04% 21.93%

5. Conclusion

The evolution of the software development process has led to the emergence of various defect prediction techniques and

models aimed at enhancing the reliability and quality of software products. This paper conducts experiments on publicly

available bug prediction datasets, extracting relevant features from the original sets to prevent overfitting. The results

unveil the performance evaluation of the techniques across different datasets. Notably, the random forest algorithm

emerges as the best performer overall, as clearly demonstrated in the tables presented in Section IV. Conversely, the

utilization of decision tree technique does not yield superior prediction performance, as evidenced by the overall average

of each performance measure. Furthermore, the results presented in this paper are compared to other software defect

prediction models, demonstrating superior performance in certain cases.

References

1. Predicting the Software Fault Using Genetic Algorithm technique. The International Journal of Advanced Research

in Electrical, Electronics and Instrumentation Engineering.2014.3(2):390-398p.

2. Arisholm, E., Lionel, C. B and Magnus, F. (2007). Data Mining Techniques for Building Fault-proneness Systems in

TelecomJavaSoftware.Inthe18thInternationalSymposiu monSoftwareReliability(ISSRE’07),2007.215–224p.

3. Arisholm,E.,Lionel,C.B.andEivind, B.(2010). A Comprehensive and Systematic Investigation of Methods to Build

and Evaluate FaultPrediction models. Journal of SystemsandSoftware,83(1):2–17p.

4. Grishma, B. R., and Anjali, C. (2015).Software root cause prediction using clustering methods: Areview.

Communication Technologies (GCCT), 2015 Global Conferenceon. IEEE.

5. Eibe F., Ian H. W., and Mark A. H.(2011). The Data Mining: Practical Machine LearningToolsandMethods, Third

Edition (The Morgan Kaufmann Series in Data Management Systems).MorganKaufmann.2011.

6. Malhotra,R.(2014).Comparativeanalysisofstatisticaland machinelearningtechniquesForpredictingbuggymodules

.AppliedSoftComputing.2014.21:286-297p.

7. Menzies,T.,Greenwald,J.andFrank, A.(2007).TheDataminingstaticcode features to learnbug predictors.IEEE Trans.

Softw. Eng. 2007.33:2–13p.

8. Menzies,T.,Milton,Z.,Turhan,B., Cukic,B.,Jiang,Y.,andBener,A.(2010).Bugpredictionfro

mstaticcodeattributes:currentresults,limitations,newtec hniques.TheAutomate SoftwareEngineering.2010.17(4):375–

407p.

9. Parameswari,A.(2015).Comparing DataMiningTechniq ues for the So ft ware Defect Prediction.

10. Shafi,S.,Syed,M.H.,Afsah,A.,Malik,J.K.andShafay,S.(2 008).The Software Quality Prediction Techniques: A

Comparative Analysis. In 2008

11. 4thInternationalConferenceonEmergingTechnologies.2 008:242–246p.

12. Sharma,D. and Chandra, P.(2018).Software Fault Prediction Using Machine-Learning Techniques". Smart Computing

and Informatics. Springer, Singapore.2018:541-549p.

13. [Yu,T.,Wen,W.,Han,X.andHayes, J.(2018).The Conpredictor model: The Concurrency Defect Prediction inReal-

World Applications.Inthe International Conference on Software Testing,Verification andValidation.2018:168-179p.

