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ABSTRACT 

Consider the notations for this paper as: 𝑅𝑥 indicates a commutative ring, though in most result 𝑅𝑥 are going to be domain, 

and 𝑅𝑥 [X]∶= 𝑅𝑥[𝑋1, . . . , 𝑋𝑛] the Polynomial ring in 𝑛 elements over𝑅𝑥.  

Here assuming that subsequent subcategories of 𝐴𝑢𝑡𝑅𝑥
𝑅𝑥[𝑋]::𝐴𝑓𝑓(𝑅𝑥,n) is equal  the affine subgroup of 𝐴𝑢𝑡𝑅𝑥

𝑅𝑥[𝑋]   

including of every 𝑅𝑥-automorphisms 𝐹 so that 𝑑𝑒𝑔 𝐹𝑖 = 1 ∀ 𝑖. 𝐽 (𝑅𝑥,𝑛) ∶= the “de Jonquière’s” subgroup of 𝐴𝑢𝑡𝑅 𝑅𝑥 

[𝑋] including the 𝑅𝑥-automorphisms 𝐹 Of the arrangement.  

𝐹 = (𝑎1𝑋1 + 𝑓1(𝑋2, . . . , 𝑋𝑛)𝑎2𝑋2 + 𝑓2(𝑋3, . . . , 𝑋𝑛) , . . . . , 𝑎𝑛𝑋𝑛 + 𝑓𝑛) Where one of the 𝑎𝑖 ∈ 𝑅∗ 𝑎nd 𝑓𝑖  ∈ 𝑅𝑥 [𝑋𝑖+1, . . . , 𝑋𝑛] 

for every 1 ≤ 𝑖 ≤ 𝑛 − 1 𝑎𝑛d 𝑓𝑛 ∈ 𝑅𝑥. 𝐸(𝑅𝑥, 𝑛) ∶= the subgroup of 𝐴𝑢𝑡𝑅𝑥
 𝑅𝑥 [𝑋] The Elementary Automorphism 

generated, that is the form of the automorphisms is   𝐹= (𝑋1, . . . , 𝑋𝑖−1𝑋𝑖 + 𝑎 , 𝑋𝑖+1, . . . , 𝑋𝑛 , ) for some 𝑎 ∈
𝑅𝑥[𝑋1, . . . , 𝑋𝑖̂, . . . , 𝑋𝑛, ] and 1 ≤ 𝑖 ≤  𝑛.   
𝑇(𝑅 , 𝑛) ∶= the tame subset of 𝐴𝑢𝑡𝑅𝑥

𝑅𝑥[𝑋]The subgroup generated by is  𝐴𝑓𝑓(𝑅𝑥, n) and 𝐸(𝑅𝑥,𝑛).  

We get each part of 𝐽 (𝑅𝑥, n) is a multiplication of a part of(𝑅𝑥, 𝑛) and Elementary Automorphism finite in numbers. 

Therefore 𝐽(𝑅𝑥, n) ⊂ 𝑇 (𝑅𝑥, n). Also, coupling the “de Jonquiere’s” automorphisms with appropriate one effectively 

verifies permutation maps that all Elementary Automorphism fit in to the subgroup of 𝐴𝑢𝑡𝑅𝑥  𝑅𝑥 [𝑋] created by 𝐴𝑓𝑓 (𝑅𝑥, 

n) and J (𝑅𝑥, n). Hence, having 𝑇 (𝑅𝑥,n) =(𝐴𝑓𝑓(𝑅𝑥 , n) and J (𝑅𝑥  , n)). 

In this paper here we assume the condition 𝑛 =  2 and consider the 𝑅𝑥    a domain. In this paper proving that the 𝑇 (𝑅𝑥, 

2) is the free merged result of 𝐴𝑓𝑓 (𝑅𝑥, 2) and 𝐽 (𝑅𝑥, 2) via their intersection. Moreover, we define an algorithm that 

determines if there is an endomorphism of polynomial of 𝑅𝑥 [𝑋, 𝑌] is tame.  

By means of this process, the paper demonstrate that if 𝑅𝑥 it is not a field, so it 𝑇(𝑅, 2) ≠ 𝐴𝑢𝑡𝑅𝑥 𝑅𝑥 [𝑋, 𝑌]. But, consider 

𝑅𝑥  may be a field then it seems that we have impartiality, that is each in dimension two, automorphism taken over a field 

is tame. This is the more popular “Jung-van der Kulk theorem” (1.1.11). 

 

Keywords : Automorphisms , Endomorphism of polynomial , Jacobian Conjecture. 

 

Introduction: 

In science, the Jacobian Conjecture is a well-known unsolved topic on polynomials in a several variables. It expresses 

that if a polynomial mapping from an n-dimensional field to itself has Jacobian Condition (i.e. det𝐽𝐹 ∈ 𝑘∗), then the 

mapping has a polynomial inverse. It was first guessed in 1939 by “Ott-Heinrich Keller”, and broadly worked by 

“Shreeram Abhyankar”, as a challenging problem in Algebraic geometry that can be solved using some basic knowledge 

of calculus. 

The Jacobian Conjecture is infamous for the huge number of endeavoured confirmations that ended up containing 

unpretentious mistakes. Starting at 2018, there are no conceivable professes to have demonstrated it. Indeed, even the 

two-variable case has not solved. There are no known convincing explanations behind trusting it to be valid, and as per 

“Van Dan Essen” (1997) there are a few doubts that the guess is false for enormous quantities of factors. “The Jacobian 

Conjecture was numbered 16 in Stephen Smale's 1998 rundown of Mathematical Problems for the Next Century”. 

If 𝐹: 𝑘𝑛 → 𝑘𝑛 is a polynomial map and det 𝐽𝐹 ∈ 𝑘∗. This map is called “Keller Map” 

Then the Jacobian Conjecture is as follows: 

 

Jacobian Conjecture: If we consider k as a field of characteristic zero.  

If  𝐹: 𝑘𝑛 → 𝑘𝑛 is a “Keller Map”, then F is invertible. 

 If as indicated by “Van Dan Essen” (1997), the issue was first guessed by “Keller” in 1939 for the restricted case of two 

variables and integer coefficients.  

Visibly simple the problem of Jacobian Conjecture comes up short if k has characteristic p > 0, even for the case of one 

variable. The field characteristic should be prime, so it must be ≥ 2. The polynomial 𝑥 − 𝑥𝑝 has differentiation  

1 − 𝑝𝑥𝑝−1 Which is 1 (since 𝑝𝑥 is 0) but inverse of such a simple function does not exists. “Adjamagbo” (1995) 

recommended that one can extend Jacobian Conjecture to characteristic p > 0 by including the theory that p doesn't isolate 

the level of the field extension 𝑘(𝑋)/𝑘(𝐹).  

The condition JF ≠ 0 is identified with the converse capacity hypothesis in multivariable calculus. Truth be told for smooth 

mapping functions (thus specifically for polynomials) a smooth neighbourhood inverse of F exists at each point where JF 

is non-zero. For instance, the function 𝐹(𝑥) = x +𝑥3  is having inverse, however the inverse isn't polynomial. 
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𝟏. 𝟏 Integral Domain of Two Variables Tame Automorphism Group. 

 Entire of this part 𝑅𝑥 indicates a domain that is integral. Let us Firstly, explain that 𝑇(𝑅𝑥, 2). The free amalgamated item 

is if 𝐴𝑓𝑓(𝑅𝑥,2) and 𝐽 (𝑅𝑥,2) on their juncture. Moreover, describing a process that decides if a given endomorphism  𝐹 

of 

𝑅𝑥 [𝑋, 𝑌] is tame. The same process we able to use to decompose 𝐹 as an effect of elementary and linear automorphisms, 

in case 𝐹 is tame. We deduce that in case R is not a field, then T (𝑅𝑥,2) is a proper subgroup of 𝐴𝑢𝑡𝑅𝑥  𝑅𝑥 [X,Y]. On the 

other hand, if 𝑅𝑥  is a field, we will show that  

𝐴𝑢𝑡𝑅𝑥  𝑅𝑥 [X, Y] = T (𝑅𝑥,2) and hence we get 𝐴𝑢𝑡𝑅𝑥  𝑅𝑥 [X,Y] as a amalgamated free expression over  𝐴𝑓𝑓(𝑅𝑥,2)  and J 

(𝑅𝑥, n) intersection Considering the theorem of “Jung-van der Kulk”, moreover identified as the theory of 

“Automorphism”. We need the following lemmas to prove the outcomes mentioned above. 

 

𝑳𝒆𝒎𝒎𝒂 𝟏. 𝟏. 𝟏: Considering G as a group of dual subgroups formed by 𝐻 𝑎𝑛𝑑 𝐾. Next all components g of G can be 

written as g = ℎ0𝑘1ℎ1. . . 𝑘ℓ ℎℓ 

For certain ℓ ≥ 1, 𝑤ℎ𝑒𝑟𝑒 ℎ1 ∈ 𝐻 𝐾⁄  for all 1 ≤ 𝑖 ≤ ℓ − 1 𝑎𝑛d 𝑘1 ∈ 𝐾 𝐻⁄  ∀1 ≤ 𝑖 ≤ ℓ  and  ℎ0 ∈ 𝐻. 

 

Proof: Consider 𝑔 ∈  𝐺 we are having ℎ0𝑘1ℎ1. . . 𝑘ℓ 𝑓𝑜r some ℓ ≥ 1, ℎ𝑖 ∈ 𝐻 and 

 𝑘𝑖 ∈ 𝐾. If the extra provision on the ℎ𝑖  𝑎𝑛𝑑 𝑘𝑖 is not satisfied, then we can get an expression of the same sort for 𝑔 but 

with ℓ substituted by ℓ − 1 as follow: If, for instance,ℎ𝑖0 ∈ 𝐾 for some 1 ≤ 𝑖0 ≤ ℓ − 1 𝑡ℎ𝑒𝑛  
𝑔 =  ℎ0𝑘1. . . ℎ𝑖0−1(𝑘𝑖0−1ℎ𝑖0𝑘𝑖0+1)ℎ𝑖0+1. . . 𝑘ℓℎℓ 

And 𝑘𝑖0−1ℎ𝑖0𝑘𝑖0+1 ∈ 𝐾. To get required expression for 𝑔 we perform finite number of such reductions. For formulating 

1.1.2 below, and with the algorithm released, we need the following notation: 

Let 𝐹= (𝐹1 , 𝐹2) ∈ 𝑅𝑥 [𝑅𝑥 , 𝑌]2. Then                                      

𝑏𝑖𝑑𝑒𝑔𝐹1 ∶= (𝑑𝑒𝑔𝐹1, 𝑑𝑒𝑔𝐹2),  𝑡𝑑𝑒𝑔𝐹  ∶= 𝑑𝑒𝑔𝐹1 + 𝑑𝑒𝑔𝐹2. 

Now let 𝐹 ∈ 𝑇(𝑅𝑥, 2). Then apllying 1.1.1 to 

 𝐺 ∶= 𝑇(𝑅𝑥, 2), 𝐻: = 𝐴𝑓𝑓 (𝑅𝑥, 2),  
𝐾 ∶= 𝐽(𝑅𝑥, 2) and 𝑔 ≔ 𝐹 we can write                 

𝐹 =  𝜆0𝜏1𝜆1 . . . 𝜏ℓ𝜆ℓ , With 𝜆𝑖  ∈ 𝐴𝑓𝑓 (𝑅, 2) 𝐽⁄ (R, 2) for all 1 ≤ 𝑖 ≤ ℓ − 1 and 𝜏𝑖 ∈ 𝐽(𝑅𝑥, 2) 𝐴⁄ ff(𝑅𝑥,2) ,∀1 ≤ 𝑖 ≤ ℓ.  
Write 𝜆𝑖 = (𝑎𝑖  X + 𝑏𝑖𝑌 + 𝑐𝑖 , 𝑑𝑖X + 𝑒𝑖 Y + 𝑓𝑖 ). 

 

𝑳𝒆𝒎𝒎𝒂 𝟏. 𝟏. 𝟐: ∀ 1 ≤ 𝑖 ≤ ℓ We have 𝑏𝑖𝑑𝑒(𝜏𝑖𝜆i . . . 𝜏ℓ𝜆ℓ) = (∏ 𝑑𝑒𝑔ℓ
𝑗=𝑖 𝜏𝑗 , ∏ 𝑑𝑒𝑔ℓ

𝑗=𝑖+1 𝜏𝑗).  

The second product is of  𝐹  if  𝑖 = ℓ.  
Proof: Via reducing theory of induction upon 𝑖. the condition 𝑖 =  ℓ is observable. Let us presume, then, that the declaration 

is valid for certain  2 ≤ 𝑖 ≤ ℓ and assume 𝑏𝑖𝑑𝑔𝑒 (𝜏𝑖−1𝜆i−1 . . . 𝜏ℓ𝜆ℓ).  

First observe that, since   𝜆𝑖−1 ∉ 𝐽 (𝑅𝑥, 2) we have that  𝑑𝑖−1 ≠ 0. Consequently  

𝑏𝑖𝑑𝑒𝑔 ( 𝜆i−1𝜏𝑖𝜆𝑖 . . 𝜏ℓ𝜆ℓ) = (𝑝𝑖 , ∏ deg 𝜏𝑗
ℓ
𝑗−𝑖 ) where 

 𝑝𝑖 ≤ ∏ deg 𝜏𝑗
ℓ
𝑗−𝑖  .Thence, since  𝜏𝑖−1  ∉  𝐴𝑓𝑓(𝑅𝑥, 2) we have that deg 𝜏𝑖−1 ≥ 2. So 𝑏𝑖𝑑𝑔𝑒(𝜏𝑖−1𝜆𝑖−1𝜏𝑖𝜆𝑖 . . . 𝜏ℓ𝜆ℓ) =

 ∏ deg 𝜏𝑗
ℓ
𝑗=𝑖 , ∏ deg 𝜏𝑗

ℓ
𝑗−𝑖 )  which concludes the Proof. 

 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 𝟏. 𝟏. 𝟑:  

Consider 𝑇(𝑅𝑥, 2) as a combined unrestricted product of 𝐴𝑓𝑓 (𝑅𝑥, 2) and𝐽 (𝑅, 2).   

Above their junction, i.e. 𝑇 (𝑅𝑥, 2) these two groups are generated and if 𝜏𝑗 ∈ 𝐽(𝑅𝑥, 2)∖ 𝐴𝑓𝑓(𝑅𝑥, 2) and 𝜆𝑖 ∈ 𝐴𝑓𝑓(R, 2)∖

𝐽(𝑅, 2) then 𝜏1𝜆1 . . . 𝜏𝑛𝜆𝑛𝜏𝑛+1 does not belongs to 𝐴𝑓𝑓(R, 2).                

Proof: As noticed above, 𝑇(𝑅𝑥,2) is created by 𝐴𝑓𝑓(𝑅𝑥, 2) and𝐽(𝑅𝑥, 2).  

Supposing  

𝜏1𝜆1 . . . 𝜏𝑛𝜆𝑛𝜏𝑛+1 =  𝜆 ∈  𝐴𝑓𝑓 (𝑅𝑥, 2) with  

𝜏𝑗 ∈  𝐽(𝑅𝑥, 2)∖ 𝐴𝑓𝑓(𝑅𝑥, 2) and  𝜆𝑖  ∈ 𝐴𝑓𝑓(R, 2)𝐽(𝑅, 2)for all i.  

Then  𝜏1𝜆1 . . . 𝜏𝑛𝜆𝑛𝜏𝑛+1𝜆−1 =  (𝑋, 𝑌).                                 

So 𝑏𝑖𝑑𝑔𝑒 (𝜏1𝜆1 . . . 𝜏𝑛+1𝜆−1) =  (1,1). otherwise it follows from 1.1.2 that  𝑏𝑖𝑑𝑔𝑒(𝜏1𝜆1 . . . 𝜏𝑛+1𝜆−1)= 

(∏ deg 𝜏𝑗
𝑛
𝑗=1 , ∏ deg 𝜏𝑗

𝑛
𝑗=2 ).                                                   

Thus, this bidegree is unequal to (1,1). 
since 𝑑𝑒𝑔 𝜏𝑗 ≥ 2, a contradiction.    (1.1.4) 

Note:  Let 𝐽0 Become a subgroup of J (𝑅𝑥, 2) the elements are composed of (𝑋 + 𝑔(𝑌), 𝑌) Along with 𝑔(𝑌) ∈
Rx[𝑌]. One easily see that T(Rx, 2)is generated by Aff (Rx, 2) & 𝐽0. Though 𝑇(𝑅𝑥, 2) It is not the free amalgamated 

result of 𝐴𝑓𝑓 (𝑅𝑥, 2) and 𝐽0 over their intersection: For instance,  𝜏1 = (𝑋 − 𝑌2, 𝑌), 𝜆1 = (𝑋, 𝑌 + 1) and 𝜏2 =
(𝑋 + (𝑌 + 1)2, 𝑌). Then   𝜏1𝜆1𝜏2 =  𝜆1 ∈ 𝐴𝑓𝑓 (𝑅, 2) but none of 𝜏1, 𝜆1, 𝜏2   fit in to  𝐴𝑓𝑓 (𝑅𝑥, 2) and  𝐽0 intersection. 

 

𝑹𝒆𝒎𝒂𝒓𝒌 𝟏. 𝟏. 𝟓:  
Consider 𝑅  isn't a domain𝑇 (𝑅𝑥,2) It is not the free amalgamated result of 𝐴𝑓𝑓 (𝑅𝑥 , 2)  and J (𝑅𝑥, 2) over their 

intersection. 
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𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 𝟒. 𝟏. 𝟔:  Let 

 𝐹1 = (𝐹1, 𝐹2) ∈ 𝑇(𝑅𝑥, 2) with 𝑏𝑖𝑑𝑒𝑔 𝐹 =(𝑑1, 𝑑2). Let ℎ1 Refer to the homogeneous components of 𝐹1 𝑓 deg𝑑1.  

Then  𝑑1|𝑑2 𝑜𝑟 𝑑2|𝑑1.                                                                   
 if deg 𝐹 >1, then we have                                                                                    

If𝑑1 < 𝑑2, 𝑡ℎ𝑒𝑛 ℎ2 = 𝑐ℎ1
𝑑2 𝑑1⁄

, for some c ∈ 𝑅𝑥.                                                                 

If𝑑2 < 𝑑1, 𝑡ℎ𝑒𝑛 ℎ1 = 𝑐ℎ2
𝑑1 𝑑2⁄

, for some c∈ 𝑅𝑥.                                                                 

𝐼𝑓 𝑑1 = 𝑑2 , then there exists 𝜆 ∈ 𝐴𝑓𝑓(𝑅, 2) such that 
deg 𝐹1

′ >  deg 𝐹2
′ , 𝑤ℎ𝑒𝑟𝑒 (𝐹1

′, 𝐹2
′) ∶=  𝜆 ∘ 𝐹. 

Proof:  By 1.1.2 we have 𝐹 = 𝜆0𝜏1𝜆1 . . . 𝜏ℓ𝜆ℓ with                                                 

𝑏𝑖𝑑𝑔𝑒 (𝜏1𝜆1 . . . 𝜏ℓ𝜆ℓ) =   (∏ deg 𝜏𝑗
ℓ
𝑗=1 , ∏ deg 𝜏𝑗

ℓ
𝑗=2 ). Which provides a) Furthermore b) go alone with considering 1), 2) 

or 3) according to  

 𝑎0 = 0, 𝑑0 = 0 𝑜𝑟 𝑎0𝑑0  ≠ 0 where 𝜆0 = (𝑎0𝑋 + 𝑌𝑏0 +  𝑐0,𝑑0𝑋 +  𝑒0𝑌 + 𝑓0) . 

 

𝑹𝒆𝒎𝒂𝒓𝒌 𝟏. 𝟏. 𝟕: Indication as in 1.1.6. If 𝑑1 = 𝑑2 Next overall, there is no c ∈ 𝑅 so that ℎ1 = 𝑐ℎ2 or ℎ2 = 𝑐ℎ1 . 
𝑹𝒆𝒎𝒂𝒓𝒌 𝟏. 𝟏. 𝟖.:  Consider 𝑅 the argument is not a domain, a) of 4.1.6 is untrue. Monitor that consider 𝐹1 is a 1) (resp. 

2)) of 1.1.6, then 

𝑡𝑑𝑒𝑔𝜏−1 𝜊 𝐹1 < 𝑡𝑑𝑒𝑔𝐹1 , Where 𝜏 = (𝑋, 𝑌 + 𝑐𝑋𝑑1 𝑑2⁄ ) (resp. 𝜏 = (X+𝑌𝑑1 𝑑2⁄ , 𝑌))).  

So, we are having: Process to Choose if 𝐹 =  (𝐹1, 𝐹2) ∈ 𝑅𝑥[𝑋, 𝑌]2 belongs to 𝑇 (𝑅𝑥, 2).  
Key: 𝐹= (𝐹1, 𝐹2 ) ∈ 𝑅𝑥[𝑋, 𝑌]2. 

1. Let (𝑑1, 𝑑2) = bideg (𝐹1, 𝐹2).                                                                                           

2. If 𝑑1 = 𝑑2 = 1, go to 7.                                                                                                           
3. If  𝑑1 ≠ 𝑑2, go to 5.                                                                                                                 

4. If there exists 𝜆 ∈ 𝐴𝑓𝑓(𝑅𝑥, 2)with 

 tdeg  𝜆𝐹 < 𝑡𝑑𝑒𝑔 𝐹, replace by 𝜆𝐹  and go to 1, else stop:  

𝐹 ≠ 𝑇(𝑅𝑥, 2).                                                                                                  

5. If  𝑑1 < 𝑑2, replace 𝐹 by (𝐹1, 𝐹2).      

6. If 𝑑1|𝑑2 and there exists c ∈ 𝑅𝑥 with 𝑐ℎ1
𝑑1 𝑑2⁄

  , replace 𝐹1 by (X,Y- c𝑋𝑑1 𝑑2⁄ ) 𝜊 𝐹 and to 1, else stop : 𝐹 ∉ 𝑇(𝑅𝑥, 2). 
If det 𝐽𝐹1 ∈ 𝑅𝑥

∗, 𝑠𝑡𝑜𝑝 ∶ 𝐹 ∈ T (𝑅𝑥,2), else stop : 𝐹 ∉ 𝑇(𝑅𝑥 , 2).         
7. If 𝑑𝑒𝑡 𝐽𝐹 ∈ 𝑅∗, stop 𝐹 ∈ 𝑇(𝑅, 2), else stop:  

𝐹 ∉ (𝑇, 2).                                                                                                                                
Now we will use this process, or 1.1.6 to tackle the following questions. 

Question: According to which condition on 𝑅𝑥 is every 𝑅𝑥 − automorphism of              

 𝑅𝑥 [𝑋, 𝑌] tame, i.e. According to which condition on 𝑅𝑥 do we have the equal to 

 T (𝑅𝑥,2) = 𝐴𝑢𝑡𝑅𝑥
 𝑅𝑥[𝑋, 𝑌]? 

 

𝑷𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝟏. 𝟏. 𝟗:  𝐼𝑓 𝑅𝑥 is non field, then 𝑇 (𝑅𝑥,2) ≠ 𝐴𝑢𝑡𝑅𝑥
 𝑅𝑥[𝑋, 𝑌].  

More precisely let 0 ≠ 𝑧 ∈ 𝑅𝑥 . Consider being a non-unit 𝐹 = (𝑋 − 2𝑌(𝑧𝑋 + 𝑌2) −  𝑧 (zX + 𝑌2)2, 𝑌 + 𝑧(zX + 𝑌2)).                                                    
Then 𝐹 ∈  𝐴𝑢𝑡𝑅 𝑅𝑥 [𝑋, 𝑌]\𝑇(𝑅𝑥 , 2). 
Proof: Let us consider  𝐹 = 𝑒𝑥𝑝𝐷, here 𝐷 is the Locally nilpotent Derivation.   

𝐷 = (zX + 𝑌2)(−2𝑌𝜕𝑋 + 𝑧𝜕𝑌)𝑜𝑛 𝑅𝑥[𝑋, 𝑌].  
𝑆𝑜  𝐹 ∈  𝐴𝑢𝑡𝑅𝑥

 𝑅𝑥 [𝑋, 𝑌]. 

 𝐼𝑓 𝐹 ∈  T(𝑅𝑥,2) then by 1.1.6 1) we get that  - z𝑌4 =c( z𝑌2)2 for some 𝑐 ∈ 𝑅𝑥.  
Therefore −𝑧 = c𝑧2, Or to divided by −𝑧 we are having 𝑧 is a unit in 𝑅𝑥, here we get a contradiction. 

𝑹𝒆𝒎𝒂𝒓𝒌𝒔 𝟏. 𝟏. 𝟏𝟎: Automorphism of the 𝐹1 demonstrated in 1.1.9 is the known as “Nagata automorphism”, and 

introduction by “Nagata” in [78]. It is fascinating to remember that “Nagata” defied his compositional automorphism  

𝐹 = 𝜎1
−1 𝜎2𝜎1, where 𝜎1, 𝜎2  ∈  𝐴𝑢𝑡𝐾 𝐾 [𝑋, 𝑌]  

 (K ∶=  the quotient field of 𝑅𝑥) are defined by                    

𝜎1(𝑋, 𝑌) ∶= (𝑋 + 𝑧−1𝑌2, 𝑌),  𝜎2(𝑋, 𝑌) ∶= (𝑋, 𝑌 + 𝑧2𝑋).                                          
Now the noteworthy point is that the requisite condition is “𝑅𝑥 is a field” It is also appropriate for freedom to have 

𝐴𝑢𝑡𝑅𝑥
 𝑅𝑥  [𝑋, 𝑌] = 𝑇(𝑅𝑥, 2) . That is to quote, 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏. 𝟏. 𝟏𝟏 (“Jung, van der Kulk”):  If k1 is a field, then 

𝐴𝑢𝑡𝑘1 𝑘1 [𝑋, 𝑌] = T(k1,2). More particularly, 𝐴𝑢𝑡𝑘1 𝑘1 [𝑋, 𝑌] is the amalgamated free multiplication of 𝐴𝑓𝑓 (𝑘1,2) and 

𝐽 (𝑘1,2) Above their junction.  

Considering the strong version of the "Rentschler's theorem” is the basis for the proof we can provide below. The 

considered Proof of 1.1.11 thus just fits for the case char 𝑘1 =  0.  

We apply to the articles for the general situation, [10] of “Van der Kulk”,[11]. Now onwards, 𝑘1 denotes a field with 

zero characteristics. 
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𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟏. 𝟏. 𝟏𝟐(“Rentschler”):  

Considering 0 ≠ 𝐷1 as a Locally nilpotent Derivation  on k1 [𝑋1, 𝑋2].  

Afterward there exists 

 ℎ  ∈ 𝑇(𝑘, 2)𝑎𝑛𝑑 𝑓(𝑋2) ∈ 𝑘1[𝑋2] 𝑠. 𝑡 

ℎ−1𝐷1ℎ = 𝑓(𝑋2)𝜕𝑋1
.                                                                                                                                      

Let us explain how the "Jung-van der Kulk" theorem is inferred before we prove this outcome. 

𝑷𝒓𝒐𝒐𝒇 𝑶𝒇 𝟏. 𝟏. 𝟏𝟏: write A ∶= k1 [𝑋1, 𝑋2], 1.1.3 we only need to show that 

𝑇(𝑘1,2) = 𝐴𝑢𝑡𝑘1 𝐴. Therefore let  𝐹= (𝐹1, 𝐹2) ∈ 𝐴𝑢𝑡𝑘1𝐴. Then 
𝜕

𝜕𝐹1
 is Locally nilpotent, so by 1.1.12 ∃ℎ ∈

𝑇(𝑘1,2) & 𝑓(𝑋2) ∈ 𝑘1[𝑋2] 𝑠. 𝑡 ℎ−1 𝜕

𝜕𝐹11
= f(𝑋2)𝜕𝑋1

.  

Considering 𝑔 ∈ 𝐴 , 

Then ℎ−1 𝜕

𝜕𝐹11
ℎ(𝑔) = 0 if ℎ(𝑔)  =  0  

If ℎ(𝑔) ∈ 𝑘𝑒𝑟
𝜕

𝜕𝐹1
=  𝑘[𝑋2], 𝑖. 𝑒. 𝑘𝑒𝑟ℎ−1 𝜕

𝜕𝐹1
ℎ = 𝑘[ℎ−1(𝐹2)]    &  ker 𝑓(𝑋2)𝜕𝑋1

= k1[𝑋2],   

So 𝑘1[𝑋2] = 𝑘1[ℎ−1(𝐹2)]    ⇒ ℎ−1(𝐹2) = 𝑐𝑋2 + 𝑑, for some 𝑐 ∈ 𝑘1∗ and d ∈ 𝑘.  
So  𝐹2 = 𝑐ℎ(𝑋2) + 𝑑.  

Moreover  (ℎ−1 𝜕

𝜕𝐹11
ℎ)( ℎ−1(𝐹11) = 1,  

𝑓(𝑋2)𝜕𝑋1
(ℎ−1(𝐹2)) = 1  that implies  

𝜕𝑋1
(ℎ−1(𝐹2)) ∈  𝑘∗, 𝑠𝑜 ℎ−1(𝐹2)𝑐′𝑋2 +  𝑑′(𝑋2)  

for some 𝑐′ ∈ 𝑘1∗ 𝑎𝑛𝑑 𝑑′𝑋2 ∈ 𝑘1[𝑋2].  
Consequently 𝐹2 = 𝑐′ℎ(𝑋2) +  𝑑′(ℎ(𝑋2)).                                            

Summarizing  

(𝐹1, 𝐹2) = (𝑐′ℎ(𝑋2) + 𝑑′(ℎ(𝑋2)), 𝑐ℎ(𝑋2) + 𝑑).                                      

Since h ∈ 𝑇(𝑅𝑥,2) we can prove that 𝐹1 ∈ 𝑇(𝑅𝑥, 2) which finishes the Proof.                    

  Before we prove “Rentschler’s theorem”, giving certain simplifications regarding “Derand gradings”. The following 

consequence is the beginning. 

 

𝑷𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝟏. 𝟏. 𝟏𝟑:   

Considering 𝑅𝑥 = ⊕𝑚∈𝑍 𝑅𝑥𝑚
 as a ring with graded and 𝐷1 a non-zero Derivation on 𝑅𝑥.  

Assuming that 𝐷1 the following form can be written As a finite amount of derivation of   

𝐷1 = 𝐷1𝑝 + 𝐷𝑝+1+ . . . + 𝐷1𝑑  

so that 𝐷1𝑛𝑅𝑥𝑚
 ⊂ 𝑅𝑥𝑛+𝑚

, for every 𝑛, 𝑚 ∈ ℤ. Consider 𝐷1 is Locally nilpotent so is 𝐷1𝑑 . 

Proof:  It’s enough to prove that for each m ∈ ℤ every component of 𝑅𝑥𝑚
 is described by some power of 𝐷𝑑 . 𝑆𝑜 let g 

∈ 𝑅𝑥𝑚
. Hence 𝐷1 is Locally nilpotent, There is 𝑁 in such a way that there is 𝐷1𝑁𝑔 = 0. The constituent of 𝐷1𝑁𝑔 which 

∈ 𝑅𝑥𝑚+𝑁𝑑
 = 𝐷1𝑑

𝑁𝑔. Hence 𝐷1𝑁𝑔 = 0 it implies that 𝐷1𝑑
𝑁𝑔 = 0, as required. 

 From now onwards we limit to the case  

𝑅𝑥 ∶= 𝑘1[𝑋] = 𝑘1[𝑋1, . . . . , 𝑋2] .  
For Any single non-zero vector 𝑤 in ℤ𝑛 By defining for each, we combine the w-grading on 𝑅 d ∈  ℤ 𝑅𝑥𝑑

(𝑤) similarly 

k1-vector R area created by all monomials 𝑋𝑎 along with  〈𝑎, 𝑤〉 = d .Here 〈, 〉 indicated the standard inner multiplication 

on 𝑅𝑥
𝑛. To avoid the confusion, we can use 𝑅𝑥𝑑

 for the  𝑅𝑥𝑑
(𝑤).  

For applying above 1.1.13 proposition we show 

 

𝑷𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝟏. 𝟏. 𝟏𝟒:   

Considering 0 ≠  𝑤 ∈ ℤ𝑛  and assume on 𝑅 the w-grading. Considering 𝐷1 ≠ 0 Der on 𝑅𝑥. Afterward we can write 𝐷1 

as a finite addition of derivation  
∑ 𝐷1𝑝  such that 𝐷1𝑑𝑅𝑥𝑑

⊂ 𝑅𝑥𝑝+𝑑
for all 𝑝, 𝑑 ∈ ℤ. 

Proof:  

The exclusivity follows from the definition of Derivation, therefore we only must show the presence.  

So, let 𝑇 ∶= c𝑋𝑎𝜕𝑖 be a term appearing in 𝐷1. substitute  𝑠 ∶=  𝑎 −  𝑒𝑖, where  𝑒𝑖  denotes the  
i − th standard basis vector of ℝ𝑛 .  
Then 𝑇(𝑋𝑚) ∈ 𝑘1 𝑋𝑚+𝑠 ∀ 𝑚 . Calling 𝑠 the strength of 𝑇 and substitute 𝑒𝑎 finite decomposition supp D1 =
{𝑠 ∈  ℤ𝑛 |𝐷1 contain a term of strength s }.  
Take 𝐷1(𝑠) the sum of all the above set.  

Therefore, we get  

D1p ∶= ∑ D1(s)〈s,w〉=p .  

Obviously 𝐷1 = ∑ D1p, since every non − zero term seeming in 𝐷1 had certain asset, known as s0 and therefore ∈ D1po
 

here p0 = 〈s0, w〉. So it remains to show that D1p𝑅𝑥d
⊂ 𝑅𝑥p+d

 for every 𝑝 , 𝑑 or equal to D1(s) 𝑋𝑚 ∈ 𝑅𝑥p+d
 for all  𝑋𝑚  ∈ 
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𝑅𝑥d
 and all s ∈ ℤ𝑛  with 〈s, w〉 = p. To see this first, observe that 𝐷1(s) 𝑋𝑚  ∈  𝑘1 𝑋𝑚+𝑠, we demonstrate the 〈𝑚 + 𝑠, 𝑤〉= 

𝑝 +  𝑑.  

But since then, this conveniently follows    〈𝑚 + 𝑠, 𝑤〉  =  〈𝑚, 𝑤〉  + 〈𝑠, 𝑤〉 = 𝑑 + 𝑝 using that  𝑋𝑚 ∈ 𝑅𝑥p
.  

The decomposition of D1 given in 1.1.13 is called w-homogeneous decomposition of 𝐷1. Consider 𝑝 is max with D1p ≠

0, 𝑝 is known as  𝑤 –𝑑𝑒𝑔 of 𝐷1, denoted 𝑤𝑑𝑒𝑔𝐷1. In case 𝑤 =  (1,1, . . . . , 1)𝑝 is known as 𝑑𝑒𝑔 of 𝐷1 and indicated by 

𝑑𝑒𝑔𝐷1. The following proposition plays an important part in getting proof of “Theorem of Rentschler’s”. 

 

𝑷𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝟏. 𝟏. 𝟏𝟓: Considering 𝑅𝑥 = ⊕d∈Z 𝑅𝑥 any grading on it will be 𝑅𝑥 = k1[𝑋], therefore It doesn't even need 

to be a 𝑤 − grade, and Considering 𝐷1 =∑ D1p not an infinite decomposition sustaining D1p𝑅𝑥d
⊂ 𝑅𝑥p+d

 ∀𝑝 , 𝑑 ∈  ℤ.  

Assuming  𝑝 be greatest with D1p ≠ 0.   

If D1p = D1(s) for certain s = (𝑠1, . . . . , 𝑠2) ∈ ℤ𝑛, where all 𝑠1 ≥ 0, then 𝐷1 is not LN.  

Proof : Considering ∈ ℤ𝑛 . We from following remark that D1(s) = 𝑋𝑠 ∑ 𝑐𝑗𝑋𝑗𝜕𝑗 for some  𝑐𝑗 ∈ 𝑘. Since 𝐷1(𝑠) = D1p ≠

0 𝐽 exists with the 𝑐𝑗 ≠ 0. Observing that if all 𝑠𝑖 ≥ 0, then 𝐷(𝑠)( Xj) =  𝑐𝑗𝑋𝑠Xj implies that  𝑐𝑗𝑋𝑠 is a positive eigenvalue 

of  

D1 (s)in k1[X]. Thus, from 1.8.32 𝐷1(𝑠) is not Locally nilpotent, i.e. D1p is not Locally nilpotent Before applying 1.1.13 

Consider the condition 𝑛 =  2 and write 𝑅𝑥 = k1[𝑋, 𝑌] in its place of k1[X1, X2]. Considering 𝐷1 ≠ 0 be a Der on 𝑅𝑥. 

Then denoting an element of supp 𝐷1 as (s, t). Thus  s, t ≥  −1 and e.g. (𝑠, −1) ∈ 𝑠𝑢𝑝𝑝 𝐷1 That implies that 𝐷1 includes 

a term of the form c𝑋𝑠𝜕j with c ∈ 𝑘∗. 

 

𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 𝟏. 𝟏. 𝟏𝟔:  

Consider 𝐷1 is Locally nilpotent, then either  

𝐷1 = f′(Y) 𝜕X, for some f′(Y) ∈ 𝑘1[𝑌] or  

𝐷1 = f′(X) 𝜕Y, for some f′(X) ∈ 𝑘1[𝑋] or  

there exists 𝑠0, 𝑡0 ≥ 0 such that (𝑠0, −1) and (-1 , 𝑡0) belong to supp D1 and furthermore supp D1 is connected in the 

triangle with vertices (𝑠0, −1) , (−1, −1), (−1 , 𝑡0). 
Proof : Let 𝑝0 ∶= deg 𝐷1 . So 𝑝0 ≥ −1. If 𝑝0 = −1 then 𝐷1 = a𝜕X + b𝜕Y for few 

 𝑎, 𝑏 ∈ 𝑘1, both not zero and we're completed with the proof. Therefore, now considering 𝑝0 ≥ 0 and Considering ℓ 

indicated the line 𝑥 +  𝑦 = 𝑝0  

Case I: ℓ includes a point of the method (−1 , 𝑡0) . By description of ℓ all the points of a point supp D1 is on or under 

this axis. Turn l around the dot now (−1 , 𝑡0) (clockwise) until one hit another point of supp D1. Consider  ℓ about more 

than one supply point 𝐷1 We don't have to turn ℓ, 𝑖. 𝑒. we change it over an angle of degree zero. In case one does not 

meet any other point of supp D1, afterward clearly 

supp D1 = {(-1 , 𝑡0)} and consequently 𝐷1 = c𝑌𝑡𝑜𝜕X for few c ∈ 𝑘1∗and we are in case 1). If one only meets points of 

the form (-1, t) then all these points satisfy t ≤  𝑡0.Hence Even, we are in the condition 1). We should then conclude that 

we have at least one segment (𝑠, 𝑡) ∈ supp 𝐷1 with 𝑠 ≥ 0. Given We have these points to select second coordinate 

minimal. Label this point (𝑠′, 𝑡′). We demonstrated that 𝑡′ = −1, what substitute in case 3). Hence assume that 𝑡′ ≥ 0. 
we will come across a contradiction. We know that 𝑠′ ≥ 0, 𝑠𝑜 together  𝑠′, 𝑡′ ≥ 0. Now move ℓ over a tiny angle around 

(𝑠′, 𝑡′) (clockwise) we notice that a line appears,ℓ′ : 𝜔1𝑥 + 𝜔2𝑦 = 𝑑 with  𝜔1, 𝜔2, 𝑑 ∈ ℤ such that (𝑠′, 𝑡′) is the solitary 

point of supp 𝐷1 On this line, and in addition, all other points of supp 𝐷1 are under ℓ′. substituting 𝜔  ∶= (𝜔1, 𝜔2) and  

𝑝 ∶= 𝜔 deg 𝐷1, it follow that 𝐷1𝑝 = 𝐷1((𝑠′, 𝑡′)). Applying 1.1.15 demonstrate that 𝐷1 is not Locally nilpotent, a 

contradiction. Hence 𝑡′ = −1. 

CASE II: ℓ Include a point in the form of (𝑠′, −1). This condition is same as case I. 

CASE III: ℓ Include either a point in the form of (𝑠, −1) or a point in the form of 

 (−1, 𝑡).Considering (𝑠 , 𝑡)  ∈  ℓ with 𝑡 min. Hence 𝑠, 𝑡 ≥ 0 We will see a line once again,ℓ′ so that (𝑠, 𝑡) the single point 

of the supp D1 on ℓ′ and entirely other points of supp D1 are under ℓ′. Next, as over, we are having a negation, that 

summarises the proof. 

 

Proof Of “Rentscher’s Theorem” 

1) Let’s use 1.1.16 & consider 𝐷1 = 𝑓(𝑋) 𝜕Y take ℎ =  (𝑌, 𝑋) .  

Afterward h−1 𝐷1ℎ = 𝑓(𝑌) 𝜕X. Therefore we consider that we are having 𝑠0, 𝑡0 in 4.1.16. We can write 𝑠0(𝐷1), 𝑡0(𝐷1) 

in its place of 𝑠0, correspondingly 𝑡0 if essential.  

Considering ℓ′be the line crossing through both (𝑠0, −1) and (-1, 𝑡0). Hence ℓ′ is provided by the eq  (𝑡0 + 1)𝑥 + (𝑠0 +
1)𝑦 = 𝑝 , where 𝑝 = 𝑠0𝑡0 − 1. 

 Considering 𝜔 ∶= (𝑡0 + 1, 𝑠0 + 1).  

Therefore by 𝜔 𝑑𝑒𝑔𝐷 = 𝑝 and by 1.1.13  

𝐷1𝑝 is Locally nilpotent. Inscribe  

𝐷1𝑝 = 𝑔𝐷11 𝑤ℎ𝑒𝑟𝑒 𝐷11 = 𝑎𝜕X + b𝜕Y  

fulfils 𝑔𝑐𝑑(𝑎, 𝑏) = 1. By  𝐷11 is Locally nilpotent and 𝐷11(𝑔) = 0. since 𝐷1𝑝  𝑖𝑠 w-homogenous . 

2) Since 𝐷11 is Locally Nilpotent with 

 𝑔𝑐𝑑 (𝑎, 𝑏)  =  1 it tracks from that 𝐷11 has a piece of it in the 𝑘1[𝑋, 𝑌],  
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Thus in specific 𝑎(0) ≠ 0 or 𝑏(0) ≠ 0.  
We may assume that 

 𝑎(0) ≠ 0. So 𝐷11 contain a term of the form c𝜕X with 𝑐 ∈ 𝑘∗. 
Since (𝑠0, −1) ∈ supp 𝐷1𝑝, i.e. 𝐷1𝑝 contain 𝑎. The concept of the form 𝑐′𝑋𝑠𝑜𝜕X and since  

𝐷1𝑝 = g𝐷11 it follows that 𝐷11 𝑎𝑙𝑠𝑜 contains 𝑎 concept in the form d𝑋𝑟𝜕Y with 𝑟 ≥ 0 and  

d ∈ 𝑘1∗. But then follows that 𝐷11 = c𝜕X + d𝑋𝑟𝜕Y, namely 𝐷11  

 𝑤 − homogenous whence supp 𝐷11 It's on a line that is, Obviously, the line that goes through (−1,0) and (𝑟, −1). This 

line, however, does not contain any other integer points.  

co-ordinates ≥ −1. 
3)since 𝐷11(𝑔) = 0 we get that g ∈ ker  

𝐷11 = 𝑘[𝑌 −
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1].  

The homogeneity of g implies that  

g = a(𝑌 −
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1)𝑁 for some 

a ∈ 𝑘∗and N ∈ ℕ.  

So  𝐷1𝑝 =a(𝑌 −
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1)

𝑁

(c𝜕𝑋 + d𝑋𝑟𝜕𝑌). 

 4) Lastly Considering ℎ be the automorphism provided by ℎ(𝑋)  =  𝑋  

and  h(𝑌)  =  𝑌 −
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1. 

Then one easily verifies that  ℎ−1𝐷1𝑝ℎ = 𝑎𝑌𝑁  c𝜕X. so single effortlessly demonstrated that 

ℎ(𝑅𝑥𝑑
) ⊂ 𝑅𝑥𝑑

 and therefore ℎ(𝑅𝑥𝑑
) =  𝑅𝑥𝑑

 for each  d ∈ ℤ. Accordingly 

(ℎ−1𝐷1ℎ)m = ℎ−1𝐷1𝑚ℎ ∀𝑚 ∈ ℤ. Particularly the 𝑤 − degree of ℎ−1𝐷1ℎ  is equality to  

𝜔 − degree of  D1 which equal to  𝑝. Therefore ℎ−1𝐷1𝑝ℎ = a𝑌𝑁  c𝜕X For a point in the form, there is no contribution 

(𝑠, −1)in supp ℎ−1𝐷1ℎ impending from (ℎ−1𝐷1ℎ)𝑝. Consequently 𝑠0(ℎ−1𝐷1ℎ) < 𝑠0(𝐷1). The theorem then proceeds 

with induction on 𝑠0(𝐷1) + 𝑡0(𝐷1). 

 

𝑹𝒆𝒎𝒂𝒓𝒌 𝟏. 𝟏. 𝟏𝟕: Further proof of equality 𝐴𝑢𝑡𝑘1𝑘1[𝑋, 𝑌] = 𝑇(𝑘1,2) is given in the next section of this section, see 

1.3.6. This proof is a result of the “Abhyankar-Mohs” theorem. 

As result of we get some information about a co-ordinate in the above proof k1[X, Y].  

First if 0 ≠ 𝑓 = ∑ 𝑓𝑖𝑗𝑋𝑖𝑌𝑗 ∈ 𝑘1[𝑋, 𝑌]  we put  𝑠𝑢𝑝𝑝 𝑓 ∶= {(𝑖, 𝑗) ∈ ℤ2|𝑓𝑖𝑗 ≠ 0}.  

The “Newton polygon” of  , represented as 𝑁(𝑓), is the convex hull of 𝑠𝑢𝑝𝑝 𝑓 ∪ {0,0}. Lastly saying that 𝑓 ℎ𝑎𝑠 𝑟 ≥ 1 

points on infinity if 𝑓+, the highest deg homogeneous part of 𝑓 giving to the  

(1,1) −  grading has 𝑟 distinct (linear) prime factors in 𝑘1[𝑋, 𝑌]. 
 

𝑷𝒓𝒐𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝟏. 𝟏. 𝟏𝟖:  𝐼𝑓 𝑓 is a co-ordinate in 𝑘1[𝑋, 𝑌] then 

1 ) 𝑁(𝑓) is a triangle with vertices (0,0) , (𝑛, 0) , (0, 𝑚), where n, m are integers ≥ 0.  
2 ) 𝑓 has one point at infinity. 

Proof:  1) Since f is a coordinate there exists g ∈ 𝑘1[𝑋, 𝑌] s.t  𝑘1[𝑋, 𝑌] = 𝑘1[𝑓, 𝑔] and 

 det (𝑓, 𝑔)  =  1 .  

Hence 𝐷1 ∶=
𝜕

𝜕𝑔
 is Locally nilpotent on 𝑘1[𝑋, 𝑌] and  

𝐷1 = 𝑓𝑌𝜕𝑋 − 𝑓𝑋𝜕𝑌. Using this description of 𝐷1 we get that   

(𝑖, 𝑗)  ∈ 𝑠𝑢𝑝𝑝𝑓 if  (𝑖 − 1, 𝑗 − 1) ∈ 𝑠𝑢𝑝𝑝 𝐷1.  

Using 1.1.16 We discover that a triangle is 𝑁(𝑓). 2)  By 1) We realise that a triangle is 𝑁(𝑓).  
consider 𝑛 >  𝑚 then 𝑓+ = 𝑐1𝑋𝑛 for some 𝑐1 ∈ 𝑘1∗ and if 𝑛 <  𝑚 clearly 

 𝑓+ = 𝑐2𝑌𝑚 with 𝑐2 ∈ 𝑘∗ . Lastly, if 𝑛 =  𝑚, afterward giving to the (1,1)-grading we get 𝐷1𝑝 =  𝑓+𝑌𝜕𝑋 − 𝑓+𝑋𝜕𝑌, here 

𝑝 is the (1,1)-deg of 𝐷1.  

Since from the proof of above Theorem, we see that  

𝐷1𝑝 =a(𝑌 −
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1)

𝑁

(c𝜕𝑋 + d𝑋𝑟𝜕𝑌). 

for some 𝑎, 𝑐, 𝑑 ∈ 𝑘∗, 𝑁 ≥ 0 𝑎𝑛𝑑 𝑟 ≥ 0. 

Also Y−
𝑑

(𝑟+1)𝑐
 𝑋𝑟+1 is (1,1)-homogeneous.  

So, r = 0 and consequently  and  

𝐷1𝑝 =a(𝑌 −
𝑑

𝑐
 𝑋)

𝑁

(c𝜕𝑋 + d𝜕𝑌). 

Since , as observed above, 𝐷1𝑝 =  𝑓+𝑌𝜕𝑋 − 𝑓+𝑋𝜕𝑌 we obtain 

𝑓+ = 𝑎𝑐
1

𝑁+1
(𝑌 −

𝑑

𝑐
 𝑋)

𝑁+1

. Hence the Proof. 

𝑹𝒆𝒎𝒂𝒓𝒌𝑠:  1) Le 𝑅′𝑥 be a CR that is non integral domain is, considering 𝑎𝑏 =  0 here 𝑎 and 𝑏 these are positive 

components in 𝑅′𝑥.  
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a) Letting  𝜏 ∶= (𝑋 + 𝑎𝑌2, 𝑌) and 

 𝜆 ∶= (𝑋, 𝑌 + 𝑏𝑋). Then both 𝜏 and 𝜆 do not belong to 𝐴𝑓𝑓 (𝑅′𝑥,2)∩ 𝐽(𝑅𝑥, 2) and that  𝜏 𝜆𝜏−1= 𝜆.  
So T(𝑅′𝑥,2) is not the free outcome of 𝐴𝑓𝑓(𝑅′𝑥,2) and J(𝑅′𝑥,2) on their intersection. 

 b) Let 𝐹 =  (𝑋, 𝑌 + a𝑋2) 𝜊(𝑋 + 𝑎𝑌2, 𝑌).  
Then  

𝐹 = (𝑋 + 𝑎𝑌2, 𝑌 + 𝑎𝑋2), So (𝑑1, 𝑑2) ∶=  𝑏𝑖𝑑𝑒𝑔 𝐹 = (2,3)  𝑎𝑛𝑑 𝑑1 does not divide 𝑑2. 

2)suppose that 𝑅1𝑥 is a domain which is not a field and 𝑧 ∈ 𝑅1𝑥 is such that both 𝑧 and 1 − 𝑧 are nom-units is 𝑅1𝑥.  

Put F = 𝜏 𝜆, 𝑤ℎ𝑒𝑟𝑒 𝜆 = ((1 − 𝑧)𝑋 + 𝑧𝑌, −𝑧𝑋 + (1 − 𝑧)𝑌) and  = (X+𝑌2, 𝑌).  

a)Then 𝜆 ∈ 𝐴𝑓𝑓(𝑅1𝑥,2),  

F ∈ 𝑇(𝑅1𝑥 , 2)𝑎𝑛𝑑 𝑏𝑖𝑑𝑒𝑔 𝐹 = (2,2).   
b) Let ℎ1ℎ2 be as in 1.1.6. Then there does not exist c ∈ 𝑅1𝑥 such that ℎ1 = 𝑐ℎ2 or ℎ2 = 𝑐ℎ1. 

3) Letting 𝑧 a component in 𝑅𝑥 and F1 the “Nagata automorphism” defined in 1.1.9. Then that 𝐹 ∈ 𝑇(𝑅𝑥, 2). 
4)Let 𝑅𝑥 be a ring encompassing the element 𝑎, 𝑏, Assuming  𝑓(𝑇) ∈ 𝑅𝑥 [T] and define  

 F ∶= (X+ bf(aX+bY), Y-af(aX+bY)). a) Then F1 ∈ 𝐴𝑢𝑡𝑅𝑥
 𝑅𝑥[𝑋, 𝑌]. [we get this from D1 ∶= 𝑓(𝑎𝑋 + 𝑏𝑌)(𝑏𝜕𝑋 − 𝑎𝜕𝑌) 

is a Locally nilpotent Derivation  on 𝑅𝑥 [X,Y] and that F = expD1.] b) Now assume that 𝑅𝑥 is a domain such that 𝑅𝑥a 

+𝑅𝑥b is not a principal ideal. Consider 𝑑𝑒𝑔𝑓(𝑇) ≥ 2, then 𝐹1 ∉  𝑇(𝑅𝑥, 2).    
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