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Abstract 

Cloud computing has become an expansive and rapidly expanding domain that significantly influences the advancement 

of various emerging technologies and applications, including but not limited to the internet of things, sensors, artificial 

intelligence, social networks, and business applications. The exponential growth of technology and applications has led 

to a substantial increase in data production, which is dynamically updated. The aforementioned dynamic data is stored 

on third-party service provider-provided cloud storage. The reliability of third-party cloud storage is questionable, and 

the user lacks authority regarding the data's possession or integrity. The primary concern is the integrity of the data, 

which is not being purged, altered, or obliterated on purpose or by accident. The researchers have introduced a number 

of protocols, including Provable Data Possession (PDP) techniques, which offer a probabilistic approach to verifying the 

integrity of data at the block level. In conjunction with PDP, the researchers have implemented various data structures to 

accommodate the dynamic nature of the data. For metadata generation and node rebalancing of the data structures, 

integrity verification schemes impose substantial computational and communicational burdens due to the dynamic 

character of the immense amounts of data. 
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Introduction 

In the era of information technology in the twenty-first century, data is expanding exponentially daily. The phenomenon 

of data expanding at an exponential rate is referred to as "big data," which specifically denotes large, intricate, 

structured, and unstructured datasets generated in the course of routine business operations. This escalating volume of 

big data is an integral component of daily operations, generated by technologically advanced applications such as the 

internet, social networking sites, healthcare applications, and sensor networks, among others. Moreover, it is expanding 

at a rapid rate. In order to store and process this ever-evolving volume of big data, which requires immense processing 

and storage capacities, the nascent technology known as "Cloud Computing" is implemented. Cloud computing is an 

emergent technology that is having far-reaching implications in the fields of information technology, business, health 

care, software engineering, and data storage. The daily generation of vast quantities of data by enterprises, 

organizations, and individual users presents a formidable challenge for companies tasked with storing, processing, and 

ensuring the security of that data on local storage. Such endeavors necessitate substantial financial investments in the 

infrastructure required to store and process the data. Cloud computing primarily offers its customers three service 

delivery models: Infrastructure as a service (IaaS), Software as a Service (SaaS), and Platform as a service (PaaS). The 

National Institute of Standards and Technology (NIST) classifies four deployment models: private, public, hybrid, and 

community cloud. Cloud computing leverages the virtualization technique in order to furnish end users with resources in 

an efficient manner. Cloud computing is distinguished by its provision of on-demand services, resource aggregation, 

high scalability, flexibility, and cost-effective computational capabilities for storage, applications, and platforms. The 

primary functions of cloud services are data storage, data sharing, and application provisioning. The majority of 

enterprise organizations are cloud computing-driven, and as a result, they are migrating their application development 

and data storage (financial, personnel, healthcare) to the cloud. 

 

Cloud Computing 

The computational and networking industries have been significantly transformed by the advent of the World Wide Web 

(Internet), which enables users worldwide to share resources. The advent of cloud computing has significantly 

transformed the traditional computing paradigm by granting universal access to resources such as vast repositories of 

data storage, computational capabilities, applications, and services via the internet. Cloud computing can be defined as a 

vast repository of computational resources and storage that is accessible to the public via the internet; payment for these 

services is contingent upon their utilization. It provides unique advantages including enhanced network accessibility, 

scalability, adaptability, resource sharing, and efficiency in usage. As a consequence, there is a significant surge in the 

adoption of the cloud computing paradigm across diverse sectors, including scientific adoptions, health care 
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applications, and social networking. 

The only requirement for a client to utilize cloud computing services is a computing device with a stable internet 

connection. Beyond its user-friendly interface, cloud computing offers numerous advantages to its clients, including 

worldwide accessibility, a standardized platform, substantial scalability, dynamic infrastructure, administrative 

capabilities, and most significantly, economical usage expenses. The cloud's seamless and practical connectivity has 

accelerated the expansion of numerous organizations. The progression of cloud computing services significantly 

influences the ability of organizations and individuals to accomplish their respective goals and objectives. The 

implementation of cloud computing has significantly propelled organizations forward in terms of revenue, cost, 

globalization, flexibility, and scalability. 

 

Service Models of Cloud Computing 

The functionality of the cloud computing infrastructure that is made available to the consumer on demand is the 

definition of a service model. Infrastructure as a service (IaaS), software as a service (SaaS), and platform as a service 

(PaaS) are the primary models of cloud services. The following are the specifics of the service models: 

The core offering of cloud provider firms is IaaS. IaaS provides its customers with access to the hardware resources of 

the data center (network, storage, virtual server, processor, and memory). The cloud service provider (CSP) oversees the 

aforementioned resources, which the client can access via the internet. This is all accomplished through the use of 

virtualization, and clients only pay for the resources they utilize. 

PaaS is a middleware paradigm that provides customers with services to execute applications, including frameworks, 

platforms, and virtual containers, so that they may construct their own applications. It reduces the expense of 

administering and marinating additional hardware and software necessary for application development by a significant 

margin. Platform as a Service (PaaS) offers clients pre-configured disk images and software stacks, which enable them 

to utilize the cloud's foundational resources including runtime components, libraries, and database engines. Google App 

Engine, AWS Elastic Beanstalk, and Adrenda are real-time examples of PaaS providers that offer software development 

kits (SDKs) for Python, Java, and.NET, respectively, as ready features. SaaS is the cloud computing application layer. 

SaaS satisfies the need of its clientele to access the hosted application via the internet and charges for utilization in 

accordance with resource consumption. Software as a Service (SaaS) is the most advantageous model for customers, as 

it enables them to achieve increased operational efficiency and decreased costs associated with self-managing the 

application [6]. As a result of decreased application costs and maintenance responsibilities, the SaaS layer is gaining 

significant traction among IT enterprises as a cloud business model. 

 

Deployment Model of Cloud Computing 

Deployment models represent the on-premises or off-premises physical presence of cloud service infrastructure. 

Community cloud, private, public, hybrid, and public clouds, as classified by the National Institute of Standards and 

Technology (NIST), comprise the majority of deployment models. The public cloud refers to cloud infrastructure that is 

accessible to organizations or consumers on a pay-per-use basis. The public cloud is capable of delivering any service, 

including PaaS, SaaS, IaaS, and more. OneDrive and Windows Azure HP Utilizable on demand, Hellion is a third-party 

cloud service provider on the market. 

Private clouds are on-premises clouds that are utilized by the organization or enterprises and are managed and 

maintained by the organization. A team is devoted to the management and maintenance of their datacenters, which are 

utilized to supply cloud services to their enterprise applications. Prefersibly, they exhibit greater security with regard to 

the reliability of the secure service. 

Hybrid cloud in which both cloud services are utilized an organization that operates both private and public databases is 

said to have a hybrid cloud structure. Thus, within such organizations, data is categorized according to various security 

measures. The most critical data that has the potential to cause significant harm to the organization is stored on-premises 

(private cloud), whereas less critical data is stored off-premises (public cloud), relieving the organization of the 

responsibility of managing less critical data. 

The configuration of a community cloud is controlled and shared by multiple organizations that typically have a 

common objective or interest. The cloud may be deployed either on or off-site from the physical location of the 

organization. The management of the cloud is delegated to either the controlling organization or a third-party entity. It 

reduces the cost and security risk associated with private clouds and grants participating organizations unrestricted 

access to cloud-based data. 

 

Data Integrity 

Ensuring the confidentiality, integrity, and availability (CIA) of organizational information stored in cloud computing is 

a fundamental security feature. Data integrity is the principal concern of this research endeavor. Data integrity is the 

conviction that information remains consistent and accurate for the duration of its life cycle. Additional data integrity 

measures guarantee that the data remains unaltered, unintentionally or inadvertently destroyed, or lost. Decades of 

research have been devoted to examining the integrity of data, and integrity verification can be categorized into two 

primary approaches: 

Deterministic approach in which the integrity of the entire file is examined. It ensures complete data ownership and is 

effective for verifying small-sized data.  
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A probabilistic approach is utilized to verify the integrity of the file, with only a limited number of essential blocks 

being examined. While it cannot provide absolute integrity assurance, it is effective for data files. 

The straightforward approach to ensure the integrity of a file is to compute its message authentication code (MAC), 

which is the first traditional method. Prior to delegating the file to a remote cloud storage provider, the data proprietor 

performs a MAC computation on the entire file. The MAC of the file is retained in the local storage of the data 

proprietor when the file is deleted. Verification of data integrity necessitates the verifier to initiate a retrieval request 

from cloud storage for the file in question. The verifier then recalculates the outsourced file's MAC. Verifying the 

integrity of data, it compares the locally stored MAC to the recalculated MAC that is outsourced.  

The data proprietor divides the file into n blocks before calculating the MAC of each block using a secret key; this is the 

second straightforward method. The proprietor transfers both the file and the MAC to the cloud server before erasing the 

MAC and the file from local storage. The proprietor of the data stores only the secret key. The verifier requests the file 

block and its corresponding MAC from the remote server in order to conduct verification. 

Using the secret key, the verifier computes the MAC and compares it to the corresponding MAC received from the 

server. The aforementioned conventional methods may function admirably when the data is small in size and does not 

undergo frequent modifications after being stored on the server. But with regard to the data, both methods are 

impractical and riddled with severe defects. 

The initial method incurs significant communication expenses; for instance, if a 10GB or 100GB file is outsourced, the 

data proprietor would be required to obtain the file from the cloud storage each time the integrity is verified. This is 

impracticable due to limitations in bandwidth and data consumption. The second approach is limited in its ability to 

account for the transient nature of data updates. In summary, the aforementioned approaches have significant drawbacks 

stemming from data, including substantial communication and computational expenses, as well as an inability to 

accommodate the dynamic nature of data. 

 

Data Integrity Schemes 

Research on data integrity verification schemes commenced with static data and subsequently expanded to include 

dynamic data, which encompasses operations such as creation, update, and deletion. Additional support was provided 

for public and private verifiability, with or without the inference of third-party auditing. Due to the fact that the 

introduction of a TPA introduced privacy vulnerability, protocols for maintaining data integrity and privacy were 

developed. 

In data integrity verification, scholars have employed various techniques to generate metadata, including homomorphic 

tags, bilinear pairing algebraic signatures foundation codes, erasure codes RS codes based on cauchy metrics, and 

others. The researchers have implemented the ITable, skip list divide and conquer table Merkle hash tree in order to 

facilitate dynamic data revisions. Typically, integrity schemes consist of the subsequent stages: 

 

Preprocessing Phase 

To generate metadata, the original data is preprocessed using a predefined algorithm. The original file and metadata (for 

verification purposes) are both uploaded to the cloud service provider. 

 

Verification Phase 

The challenge request is transmitted by the auditor (TPA or proprietor) to the CSP, which generates the proof of 

possession utilizing the original data and metadata. The auditor is presented with the challenge proof in order to verify 

the integrity of the data stored in the cloud. 

 

Provable Data Possession Characteristics  

The functionality that a data integrity scheme offers to authenticate the ownership of data can be used to classify its 

characteristics. Security services, features, performance metrics, data verification coverage, and the state of verifiability 

are additional functional categories. It is responsible for ensuring data integrity and may also address availability and 

confidentiality. 

The attributes that ought to be incorporated are robust integrity and soundness, which ensure that the information 

provided is accurate and verify data without the need to obtain the actual files. In relation to the computational cost of 

metadata data and data verification, communication expenses of data exchange, storage expenses, and detection 

probability, the performance of the protocol must be optimal. Coverage for data verification includes both static and 

dynamic data verification. As illustrated in Figure 1, the state of verifiability is contingent upon whether it offers public 

or private verifiability. 
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Figure 1: Provable Data Possession Characteristics (Sookhak et al.,2014) 

 

Provable Data Possession Techniques 

Pledgeable data possession (PDP) refers to the methods utilized to guarantee the ownership of data stored in the cloud. 

This segment provides an overview of the most recent PDP techniques developed by various researchers to validate the 

integrity of outsourced data without requiring the retrieval of the original data from cloud storage. This section will 

additionally examine how data integrity verification protocols account for the dynamic character of data through the 

utilization of various data structures. 

 

Homomorphic verifiable tag based PDP 

The initial model of PDP was introduced, which conducts data verification without requiring the download of the source 

data from an untrusted cloud server. PDP was introduced by the author as a solution to integrity checking issues caused 

by other protocols' deterministic approach and the server's costly computation of the entire file. Owner incurs local 

storage overhead and costly communication complexity by retaining metadata for a subsequent auditing task. 

The author classified PDP into the following four polynomial time algorithms KeyGen, TagBlock, GenProof, and Check 

Proof according to its definition:  

The algorithm KeyGen (1k) → (pk, sk) is executed by the client in order to initialize the scheme. The objective of this 

algorithm is to produce the pair of public and private keys (pk, sk) that will be utilized by the scheme to generate and 

validate proofs, generate metadata, and generate metadata. 

TagBlock (pk, sk, f) → Tm: Tagblock is a client-side function that generates metadata tags in accordance with the input 

file and a pair of public and private keys.  

GenProof(pk, F, cal, ο) →V: Following the challenge message, GenProof is executed on the cloud server in order to 

calculate the proof of the provided challenge. It accepts the public key, f blocks, a challenge, and the metadata elements 

associated with the f blocks that are being challenged. 

CheckProof (pk, sk, chal,V) → "success", "failure": executes once the client has obtained the proof of challenge. It 

accepts as input a pair of public and private keys, the challenge, and evidence of possession transmitted from the cloud 

storage.  

Dynamic provable data possession (DPDP), an extended variant of the protocol introduced by [14] to accommodate the 

constraints of data dynamics, was proposed by [12]. In addition to its foundation on homomorphic verifiable tags, the 

protocol also introduces a secondary construction that utilizes an authenticated dictionary and an RSA tree [15]. The 

protocol operates on an n-block file F. It permits the deletion of any block in the file, modification of an existing block, 

and insertion of a new block at any ith position. 

Additionally, a secure and efficient method for possessing provable data was suggested, which relies on homomorphic 

verifiable identifiers. The protocol enables public verifiability for data dynamic operations (insert, delete, update, insert), 

meaning that an authorized third party can determine whether or not the data is intact. Privacy is of the utmost 

importance when the TPA is involved, given that it can retrieve data from data proof. Additionally, the author assures 

confidentiality in the protocol's design. 

 

Identity based PDP 

The scheme was proposed with the data owner's identity as its foundation. It is suggested that identity-based PDP be 

implemented in order to simplify certificate management. The protocol's certificate administration contributes to its 

inefficiency. The system under consideration operates under the random Oracle paradigm with large public exponents 

and RSA assumptions. It also provides support for variable-sized data blocks and public auditing. 

The protocol comprises the following principal entities: (i) the user, (ii) the cloud server, (iii) the third party auditor 

(TPA), and (iv) the private key generator (PKG). The identity-based integrity verification algorithm is implemented 
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procedurally as follows:  

Configure it to generate a master public key and master secret key. Extract generates the secret key in accordance with 

the user's identity. TagGen generates the metadata identifiers for individual file blocks from the provided input of the 

file and identity ID. 

It is the duty of Challenge to generate a challenge in accordance with the user ID. ProofGen generates the challenge's 

proof. 

ProofCheck is responsible for validating the server-generated proof [17]. PDP based on Symmetric Key Cryptography 

proposed an additional A scalable and efficient PDP that operates exclusively on symmetric key cryptography and 

cryptographic hash functions; does not necessitate mass encryption; and supports dynamic data operations such as block 

appending, deletion, and modification. In the past, protocols employed asymmetric key cryptography, which required 

substantial computation power for large files and failed to account for dynamic data updates.  

Data, data owner, server, hash function (e.g., SHA-1, SHA-2), authenticated encryption/decryption scheme that provides 

both privacy and authenticity, pseudo-random function that efficiently computes random values, and pseudo-random 

permutation indexed under key are the fundamentals outlined in [19] for scalable and efficient PDP. AES, which 

generates a random sequence from a specified range, is regarded as an effective PRP. 

 

BLS Signature 

PDP was suggested by [7], which permits public auditing and data dynamics. The primary participants in the protocol 

are the file-storing client, the data-storing Cloud Storage server (CSS), and the third-party auditor (TPA), which can 

verify the integrity of the data by challenging the CSS. The rationale behind utilizing a third party is that the client may 

lack the necessary time, resources, or feasibility to monitor their data in the cloud. Therefore, any trusted TPA that 

possesses the client's public key can serve as a verifier. 

To ensure that the data could be verified by the public, the author implemented a homomorphic authenticator based on 

BLS signatures and public key encryption. To process dynamic data, the author implemented a Merkle hash tree (MHT) 

[20]. The primary objective of MHT is to guarantee the integrity and security of the collection of elements by preventing 

any alterations or damage. The element hashes are stored in the leaves of MHT, which is designed as a binary tree. As 

the base node is composed of child nodes, any modification made to a child node will be promptly observed at the root 

node. 

The primary operation of the protocol is to partition a file F into n sections. Generate the public and private key pair 

using the KeyGen() function. SigGen() accepts the private key and file blocks as input and returns a block-specific 

signature. The client then generates the origin of the MHT, which is a hash of the offspring nodes that correspond. The 

client signs the root with its private key before transmitting to the cloud storage file blocks, signature, and MHT. The 

data blocks are challenged by the verifier to the server, which then generates the proof using the data blocks, signature, 

and MHT. 

 

Algebraic Signature based PDP 

A dynamic PDP based on an algebraic signature was proposed in [3]. An algebraic signature is essentially an algebraic-

property-containing hash function. The primary characteristic utilized in the development of data verification schemes is 

that calculating the sum of the signatures of a given number of random blocks yields an equivalent result to calculating 

the sum of the signatures of the corresponding block [21].  

Additionally, [22] put forth a five-phase algorithmic signature scheme known as Setup, TagBlock, Challenge, ProofGen, 

and Proof Verify. While this approach effectively verifies static data, it fails to accommodate the dynamic characteristics 

inherent in big data. 

 

Data Dynamics 

To address the issue of dynamic data, numerous researchers have implemented various data structures. An explanation 

of the state-of-the-art solution is provided below. 

 

Merkle Hash Tree 

The process of modifying data in the cloud is as follows: the client initiates a request to the server to modify a specific 

portion of file. The initial client computes the modified block's signature before transmitting the updated data block 

accompanied by the computed signature. The server modifies the updated data block with the previous one, updates the 

corresponding signature and hash, and generates a new root upon request (see Figure 2). 
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Figure 2: MHT Modification Operation 

 

Data insertion and data modification are analogous in that the client generates the signature and transmits the 

corresponding data block. As illustrated in Figure 3, the insertion of the data block and signature occurs at the nth 

position. 

 

 
Figure 3: MHT Block Insertion Operation (Wang et al., 2012) 

 

Any data element that the proprietor requests to be deleted is actually removed. The server deletes the data block and its 

corresponding signature following the deletion request. In addition, the server rebalances the tree and removes the 

corresponding block's hash in order to preserve the binary tree's property (Fig. 4). 

 

 
Figure 4: MHT Block Deletion Operation (Wang et al., 2012) 

 

ITable 

By utilizing ITable, the dynamic data modifications in [16] are rendered possible. ITable comprises entries including the 

version number of the data block, the original number of file block Bi, and the time stamp of the block's insertion or 

update. Fig. 5 illustrates the table updates in ITable. 
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Figure 5: ITable Data Dynamic Operations 

 

Divide and Conquer Table 

Insertion of a new data block occurs subsequent to the identification of the ith block, followed by an update to the file's 

metadata in DCT. 

 

 
Figure 6: Block Insertion in DCT 

 

The data is appended to the conclusion of the file via the data append operation. As shown in Fig. 7, at DCT, the entries 

in the final DCT table are also modified with the index of the appended block and the version number of the new block. 

When the DCT is at capacity, a new DCT table is generated. 

 

 
Figure 7: Block Append in DCT 

 

By executing the data delete operation, a specified portion is removed from the original file. The proprietor requests 
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deletion of the data block index. Before the data fragment is purged from cloud storage, its corresponding signature is 

also removed. The entry from DCT is subsequently removed through a search. As illustrated in Figure 8, the remaining 

blocks are rebalanced by relocating upward. 

 

 
Figure 8: Block Deletion in DCT 

 

Comparison 

A comparison of various extant works on cloud data integrity verification is presented in Table I. Additionally, the table 

details the constraints of each individual task. 

 

Table I. Comparison of Existing Work on Data Integrity 

Presented Approach 
Dynamic Updates 

approach 
Weakness 

Ateniese et 

al.,(2007) 
Homomorphic verifiabletas N/A 

Causes high computational expenses because 

of using RSA numbering. 

Erway et 

al.,(2009) 
Homomorphic verifiable tags 

Using Authenticated 

rank based skip list 

High computational cost and does not provide 

block less verification. 

Ateniese et 

al.,(2008) 

Cryptographic hash function and 

symmetric key cryptography 

Token based list 

manipulation 

High computational cost because of no 

derebalancing after dynamic insertion, 

deletion. 

Wang et 

al.,(2012) 

BLS 

Homomorphic authenticator 
Merkle hash tree 

After every updates function needs to 

calculate the root which incurs computational 

cost. 

Yang & 

Jia,(2013) 
Homomorphic verifiable tags ITable 

High computational cost because of nodere 

balancing in ITable after dynamic insertion, 

deletion. 

Presented Approach 
Dynamic Updates 

approach 
Weakness 

Yu et 

al.,(2016) 
RSA based N/A Does not support dynamic data updates. 

Chen(2013) Algebraic signature N/A Does not support dynamic data updates. 

Sookhak 

etal.,(2007) 
Algebraic signature 

Divide and conquer 

table 

Searching is not efficient and also creates 

bottle neck because of shifting of DC Ten 

tries. 

 

Conclusion 

Due to the fact that the proprietor of the data has less control over the data, which is accumulating daily in the cloud, the 

data is susceptible to a variety of attacks. This article examines the data integrity and organization strategies for 

outsourced data on cloud storage. 
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