

Formation of boron-based Metal Complex via Sonochemistry approach and Its Insilco study

Arun Tomar^{1*}, Dr. Rajeev Rathore²

^{1*} Research scholar, Department of Chemistry, Meerut college, Western Kutchery Rd, Lalkurti Bazaar, Begambagh, Meerut, Uttar Pradesh, India 250003

²Guide, Department of Chemistry, Meerut college, Western Kutchery Rd, Lalkurti Bazaar, Begambagh, Meerut, Uttar Pradesh, India 250003

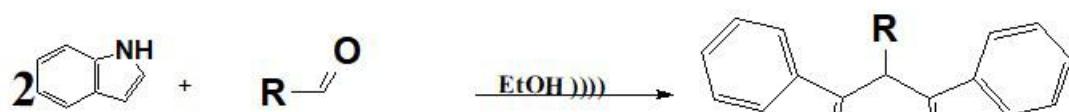
Abstract

A series of novel BODIPY–boron complexes were efficiently synthesized via a sonochemistry-assisted multicomponent reaction of indole and substituted aromatic aldehydes under green conditions. The ultrasonic irradiation protocol enabled rapid complex formation in short reaction times, minimizing solvent usage and energy input, while aligning with the principles of sustainable chemistry. This sono-assisted strategy offers an environmentally benign and time-efficient alternative to conventional synthetic methods for BODIPY-type boron complexes.

The structures of the synthesized complexes were unequivocally confirmed using a comprehensive set of spectroscopic techniques, including FTIR, ¹H NMR, ¹³C NMR, ¹¹B NMR, ¹⁹F NMR, and mass spectrometry, which collectively established the successful coordination of boron and the integrity of the BODIPY core structure. Furthermore, the drug-likeness and pharmacokinetic profiles of the newly synthesized derivatives were evaluated through in silico studies using Swiss ADME, including the prediction of physicochemical properties, pre-ADME parameters, and BOILED-Egg analysis for gastrointestinal absorption and blood–brain barrier penetration. The computational results indicated that the selected BODIPY–boron complexes possess favorable oral bioavailability and acceptable ADME profiles, highlighting their potential as promising candidates for further exploration in medicinal and imaging applications.

Keywords: Sonochemistry, Green Route, Pre-ADME, In-silico

Introduction: Heterocyclic compounds have been integral to organic chemistry for nearly a century, playing a pivotal role in contemporary industrial processes, medicinal agents, and elucidating biological mechanisms that enhance the quality of life. Boron-containing organic frameworks have garnered increasing interest owing to their distinctive Lewis acidity, tunable electronic properties, and extensive utility in materials science and medicinal chemistry. Within this field, boron-based 2-[di(2,3-dihydro-1H-indol-3-yl)] ligands represent a promising class of molecules with potential applications in catalysis, sensing, and biological systems, attributed to the versatile coordination behavior and bio-relevant nature of the indoline/indole scaffold. Although the synthetic routes and structural characterizations of such boron–indole derivatives have been documented, their detailed thermal behaviors and biological activity profiles remain insufficiently explored in the literature. Sonochemistry is emerging as a rapid, selective, and energy-efficient green methodology that can significantly accelerate organic transformations and improve yields under mild conditions, rendering it particularly attractive for the synthesis of advanced heterocyclic and organoboron architectures. Concurrently, in silico pharmacokinetic evaluation using tools such as SwissADME facilitates the early assessment of drug likeness, including parameters such as gastrointestinal absorption, blood–brain barrier permeation (BOILED-Egg model), and oral bioavailability radar plots, thereby guiding the rational design of biologically active boron–indole ligands. Consequently, the present study focuses on the sonochemical synthesis, thermal characterization, and biological evaluation of a series of novel boron 2-[di(2,3-dihydro-1H-indol-3-yl)]-based derivatives, complemented by pre-ADME and BOILED-Egg analyses to elucidate the structure–property relationships and identify candidates with promising pharmacokinetic profiles. Our previously reported synthesis via conventional heating methods is complemented by the application of sonochemistry.


Experimental Section:

Material and Methods: All chemicals and raw material purchased from local vendor and some special chemical from TCI, Analytical supported from GSS scientific service and NMR from Sathi, BHU, India.

Method:

Step:01 Preparation of Ligand

Take 50 ml RBF in refluxed mode, charge 0.50 mmole Indole and 0.25 mmole 1,3-benzodioxole-5-carbaldehyde in 5 volume ethanol as a solvent with few drops of acetic acid as a catalyst refluxed for 30 mins under the solicitation and Check TLC, Reaction compiles than recrystallize by ethanol. Then structure confirmation by FT-IR, Mass Spectra and NMR.

Indole Aromatic Aldehydes

R=Aromatic aldehyde

	Yield:75%	Color: Green Powder	m.p.: 239-245°C
	Mol.For.: C ₂₄ H ₁₈ N ₂ O ₂	Mol.Wt.:366.41 gm/mole	
	Mass (M/Z) :366.41	UV (λ_{max}) =278 nm,	

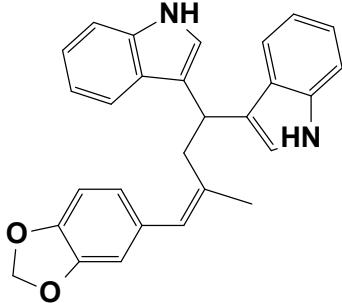
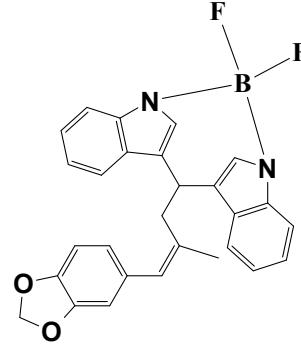
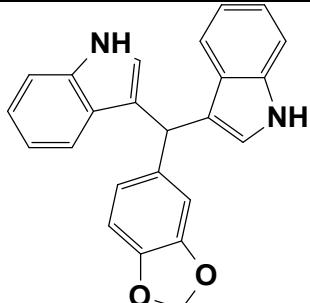
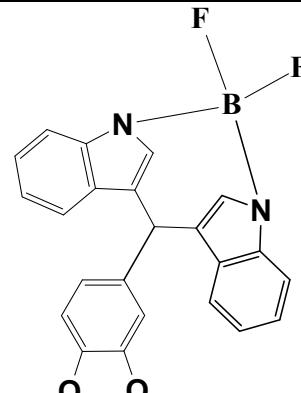
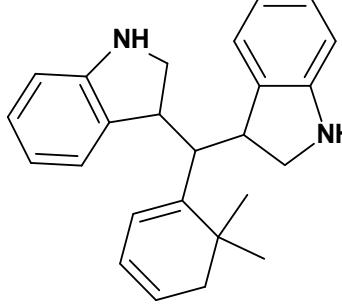
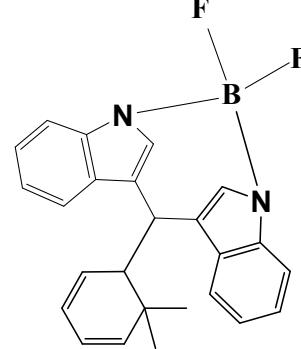
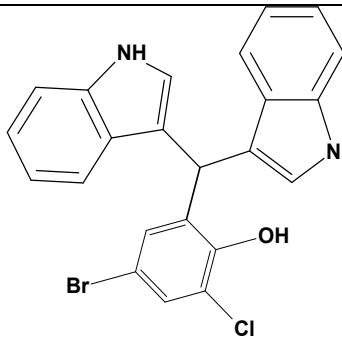
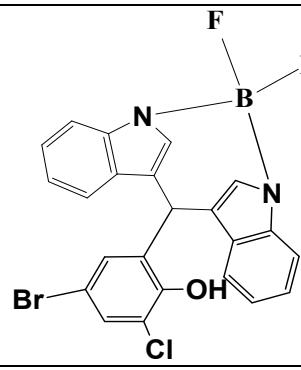
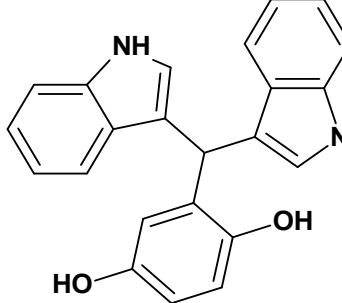
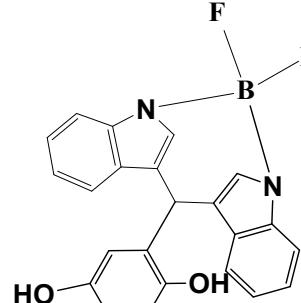
C,H,N,S Calc	C:78.67; H:4.95; N:7.65; O:8.73
C,H,N,S observed	C:79.10; H:5.25; N:7.85; O:8.96
FT-IR	3473.80,3658.78,3163.16,3153..56,2996.16,1818.87,1782.23,1665.51,1655.69,1567.27,1531.48,1498.59,1438.90,1377.74,1188.15,1143.79,1093.64,1058.92
1HNMR(400 MHz)	5.27 (1H), 5.93 (2H), 6.92 (1H), 6.92-7.72 (6H), 7.34-7.77 (8H)
13CNMR(100 MHz)	101.2 (1C), 106.7 (1C), 108.3 (1C), 111.5-111.6 (3C), 117.3 (2C), 119.7 (2C), 120.1 (2C), 122.3 (2C), 124.2 (2C), 127.8-129.0 (3C), 135.94 (1C), 138.4 (2C), 148.0(2C).

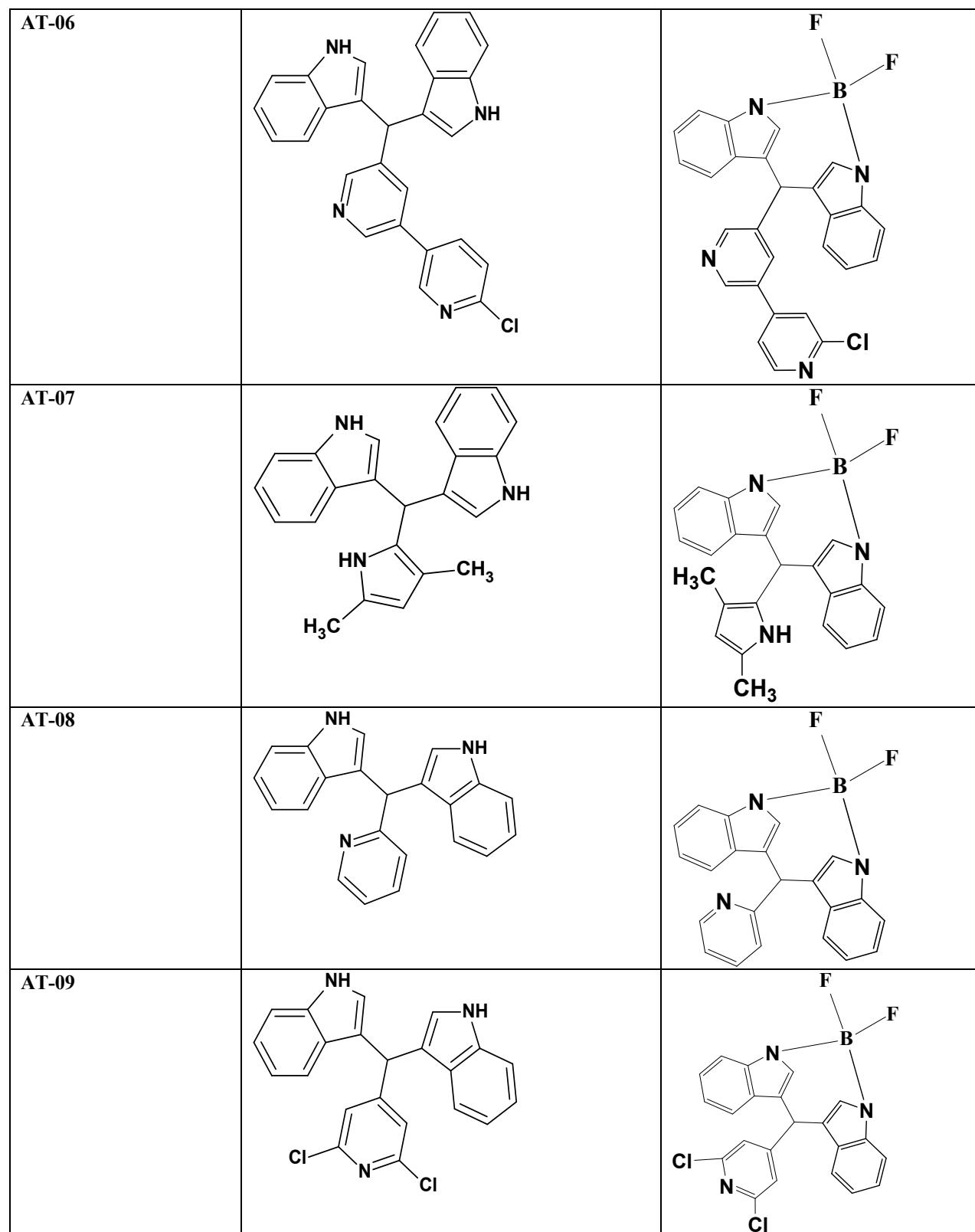
	Yield:62%	Color: White powder	m.p.: 310-315°C
	Mol.For.: C ₂₃ H ₁₆ BrClN ₂ O	Mol.Wt.:451.74 gm/mole	
	Mass (M/Z) :453.19	UV (λ_{max}) =280nm,	
C,H,N,S Calc	C, 61.15; H, 3.57; Br, 17.69; Cl, 7.85; N, 6.20; O, 3.54		
C,H,N,S observed	C, 61.11; H, 4.01; Br, 17.81; Cl, 8.10 N, 6.29; O, 3.70		
FT-IR	3410.20,3389.19,3105.99,2931.18,1650.15,1450.11,1310.10,1070.25,951.18		
1HNMR(400MHz)	4.47 (1H), 4.98 (1H), 6.57 (1H), 6.99-7.25 (3H), 7.23-7.53 (8H), 7.74 (1H), 8.50 (1H).		
13CNMR(100MHz)	71.1 (1C), 111.7 (2C), 114.9 (1C), 117.2 (1C), 118.3 (1C), 119.7 (1C), 120.1 (1C), 122.1 (2C), 124.8 (1C), 126.3 (1C), 126.5 (1C), 127.0 (1C), 127.7 (1C), 128.7 (1C), 130.1 (1C), 131.3 (1C), 137.1 (1C), 142.0 (1C), 143.6 (1C), 151.3-151.5 (2C).		

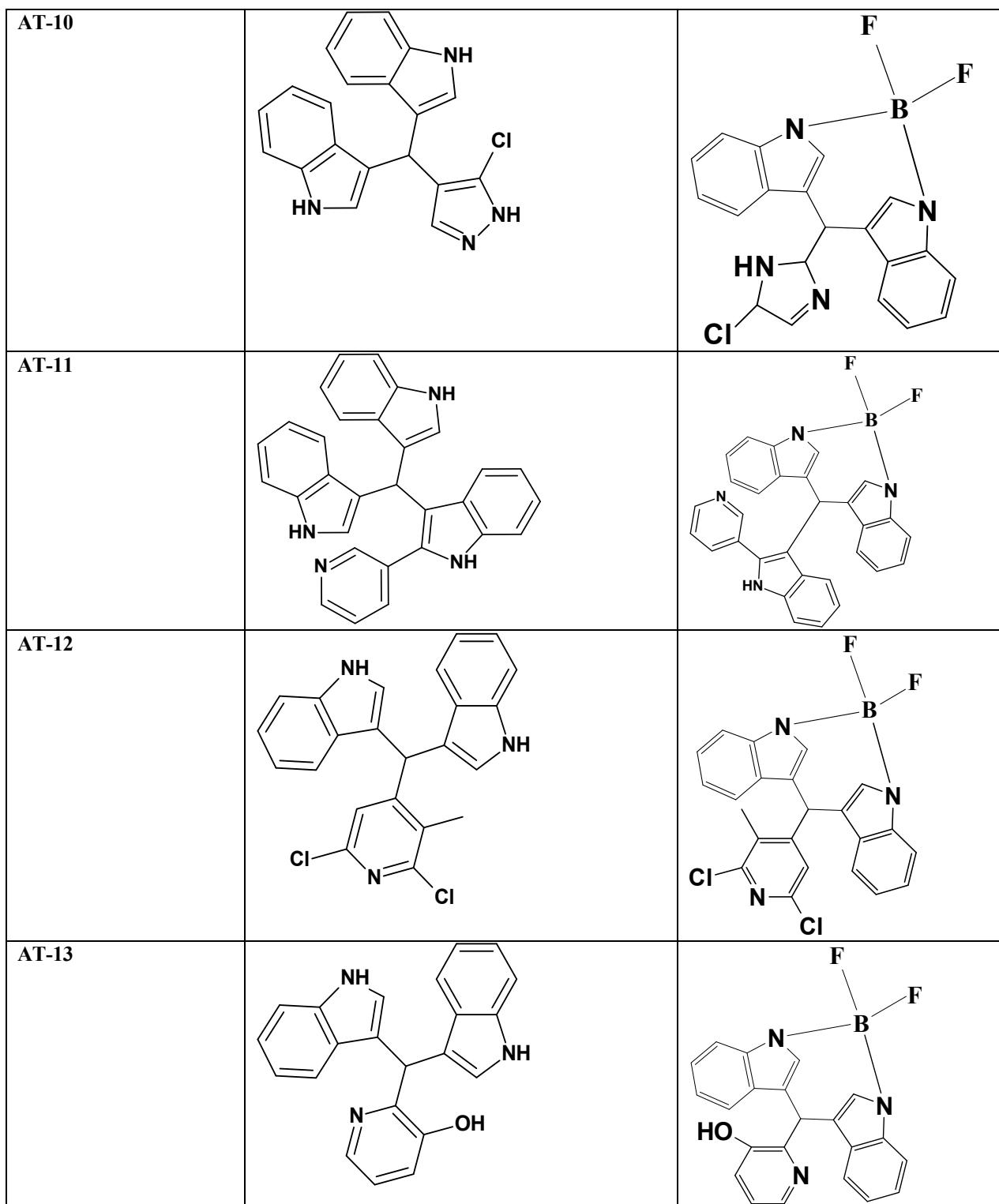
	Yield: 61%	Color: Light Yellow	m.p.: 210-212°C
	Mol.For.: C ₂₀ H ₁₅ N ₄ Cl		Mol.Wt.: 346.81 gm/mole
	Mass (M/Z) : 347.1		UV (λ_{max}) = 310 nm,
C, H, N, S Calc	C, 69.26; H, 4.36; Cl, 10.22; N, 16.15		
C, H, N, S observed	C, 69.56; H, 4.46; Cl, 10.50; N, 16.41		
FT-IR	3460.53, 3159.63, 3093.63, 2918.15, 2553.84, 2422.67, 1623.60, 1589.40, 1489.10, 1373..6, 1257.63, 1171.33, 1083.89, 1057.03, 887.28, 825.56, 756.12		
¹ H NMR	4.97(3H), 5.74(1H), 6.82-7.28(5H), 7.35-7.66(6H).		
¹³ C NMR	19.9(1C), 112.5-116.3(3C), 117.5-120.2(2C), 122.2-134.3(2C), 138.2(3C), 150.23(1C), 155.6(1C)		

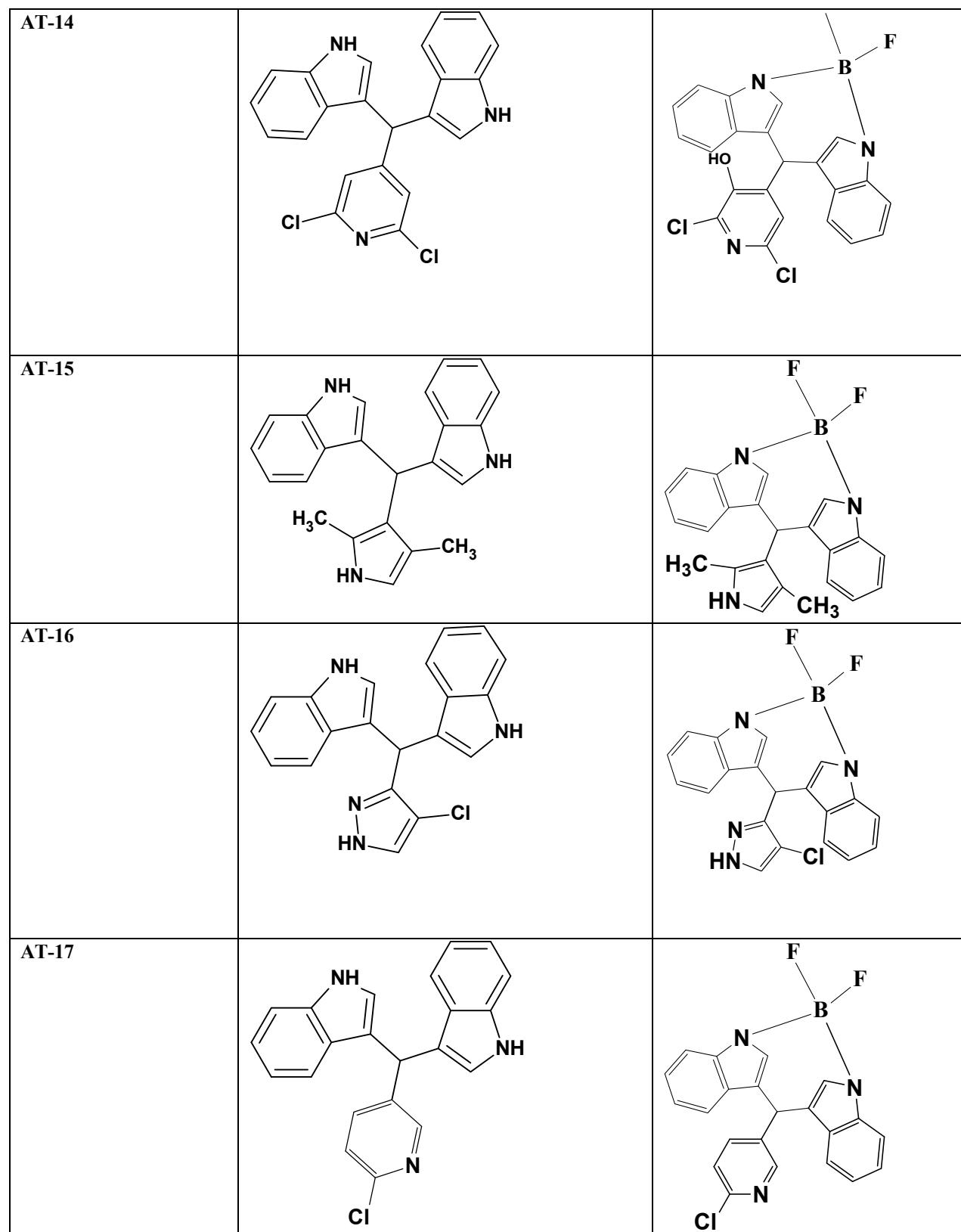
Step:02 Preparation of BODIPY:

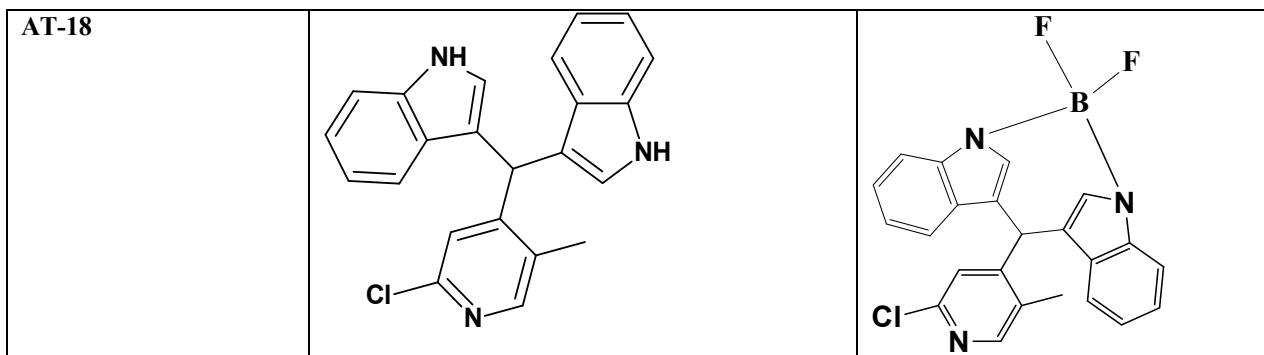
BODIPY Derivatives was prepared from condensation of Schiff's base in CH₂Cl₂ and then reacted with BF₃OEt sonication for 1.5 hours at 85°C and 40HZ formed the precipitation filter it and washed by ethanol and dry it. this reaction must be in Amber colour flask due to the this compound easy to reaction in sunlight and compound turn to blackish colour.











Synthesis of 2-[3-(2,3-dihydro-1,4-benzodioxin-6-yl)allyl]-6,11-dihydro-5H-indolo[3,2-c]carbazole AL1 L(BF2)2:

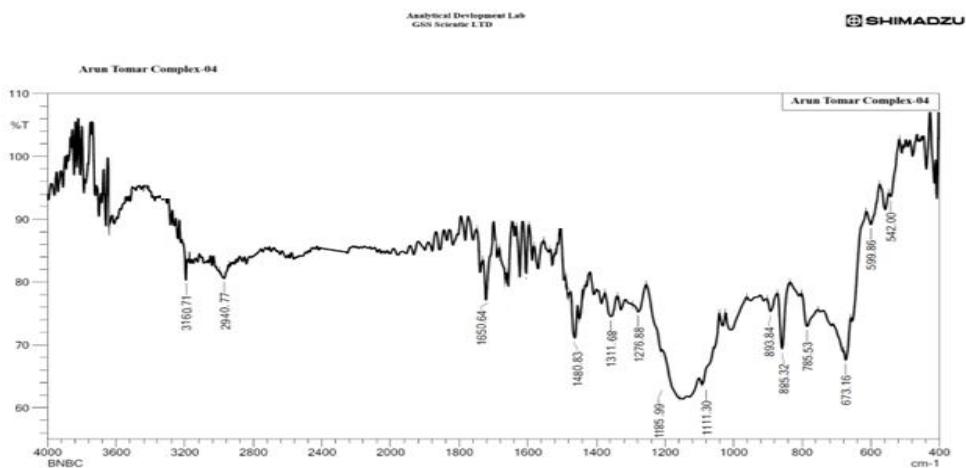

2.65 g, 0.63 mmol was dissolved in CH₂Cl₂ (50 mL) in a 100 mL round-bottomed flask. Subsequently, TEA (1.10 mL, 7.1 mmol) was added to the solution, followed by stirring for 2 min at 50°C under sonication. BF₃·Et₂O (1.5 mL, 12.6 mmol, corresponding to 2 equivalents relative to the ligand), 1.92 mL (15.6 mmol), and 2.2 mL (17.6 mmol) were then gradually introduced to the resulting mixture. The reaction was maintained for 1 h at 85°C under an argon atmosphere with sonication at 40 Hz. The progress of the reaction was monitored using TLC with a CHCl₃/EtOH (10:1) solution. The resulting mixture was then diluted with CHCl₃ (40 mL) and subsequently washed with a NaHCO₃ solution. The extraction with CHCl₃ (3 × 15 mL) was conducted. The organic layer was then collected, dried with Na₂SO₄, filtered, and evaporated. The raw product was finally purified by column chromatography on silica gel with CHCl₃/methanol (100:1) as the mobile phase. The same protocol was followed, but ligand amount was the only factor that was changed and it should be tailored according to the specifications. All other substances remained the same. The solvents, namely CH₂Cl₂, ethanol, and methanol, should be chosen according to the specific requirements of the experiment.


Table :3 Ligand quantity as below:

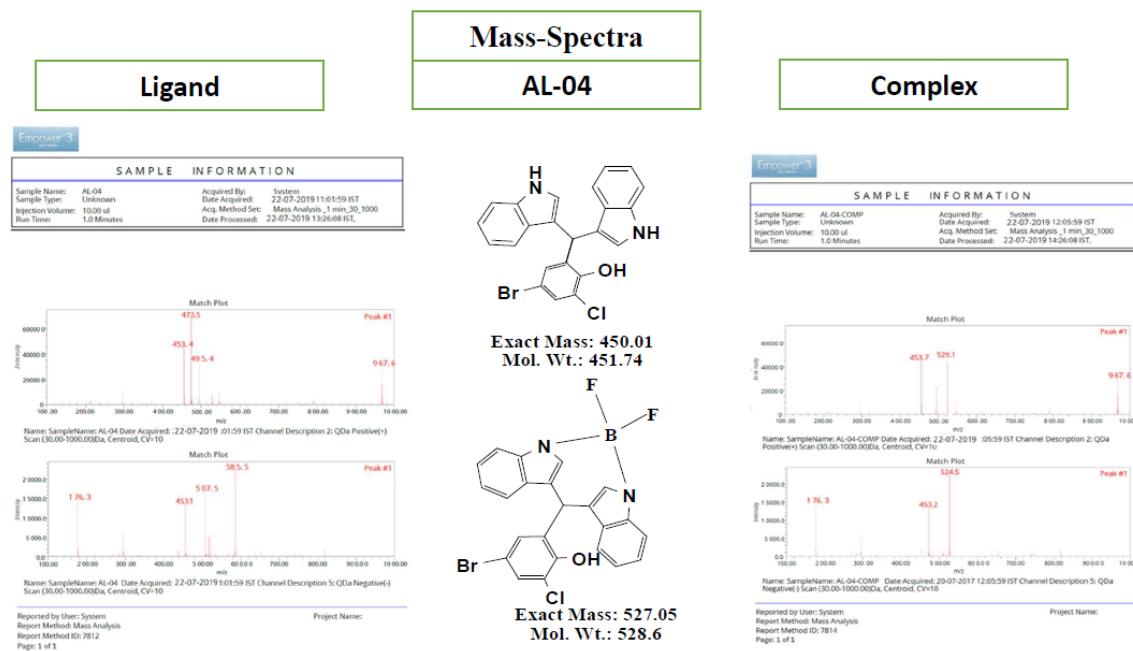

Ligand	Qty in grams	MW	Complex Code
L1	2.65	420.5	AL1
L2	2.31	366.41	AL2
L3	2.22	352.47	AL3
L4	2.85	451.74	AL4
L5	2.23	354.4	AL5
L6	2.74	434.92	AL6
L7	2.14	339.43	AL7
L8	2.04	323.14	AL8
L9	2.46	391.06	AL9
L10	2.19	346.81	AL10
L11	2.76	438.52	AL11
L12	2.55	405.08	AL12
L13	2.14	339.39	AL13
L14	2.46	391.06	AL14
L15	2.14	339.43	AL15
L16	2.19	346.81	AL16
L17	2.26	357.84	AL17
L18	2.34	371.86	AL18


Table3.2.1 Ligand and Metal Complex:

Code	Ligand structure	Complex
AT-01		
AT-02		
AT-03		
AT-04		
AT-05		

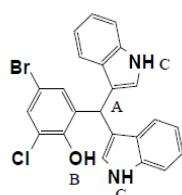


FT-IR SPECTRUM CONFIRMATION**AT-04**

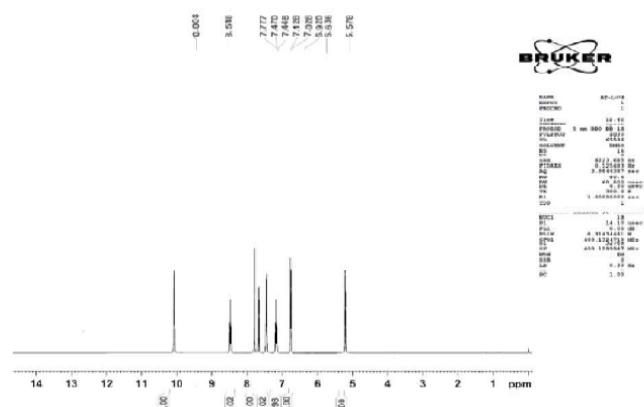

Range in cm^{-1}	Probable functional group,
3350.71, 3360.71	O–H stretch (phenolic hydroxyl group), N–H stretch (indole, azine NH group)
2970.38	Aromatic C–H stretch (phenyl, indole),
1724.36	C=O stretch
1662.64, 1625.99, 1585.49	C=N stretch (azomethine from Schiff base)
1481.13, 1440.83	Aromatic C=C stretch
1357.89	
1211.30, 1056.99 1008.77	C–O stretch (phenol or ether linkage)
858.32	Aromatic C–H out-of-plane bending

Results and Discussion:

Range in cm^{-1}	Probable functional group,
3160.71, 2940.77	O–H stretch (phenolic hydroxyl group), N–H stretch (indole, azine NH group)
1650.64	Aromatic C–H stretch (phenyl, indole),
1480.83	C=O stretch
1311.68	B–N bond formation
1276.88	Aromatic C=C stretch
1185.99, 1111.30	B–F stretch (for boron–fluorine units if present)
885.32	Aromatic C–H out-of-plane bending
758.53, 673.16	C–Cl stretch (aromatic chlorine); C–Br stretch (aromatic bromine)

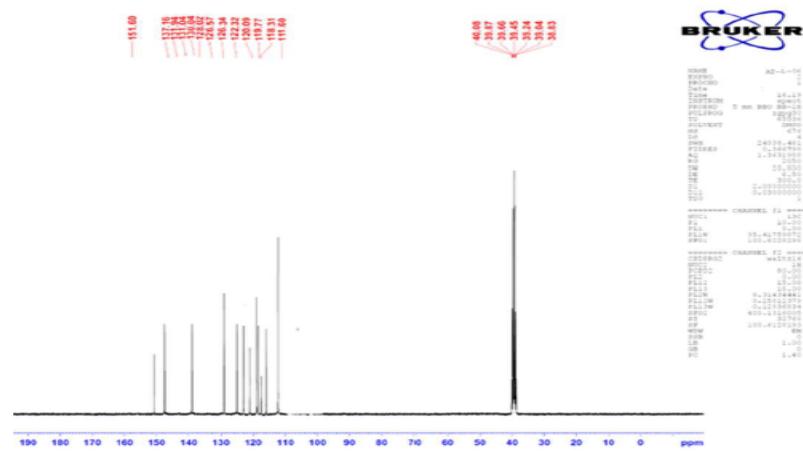

The FT-IR spectra of Ligand-04 exhibit peaks at 1662, 1625, and 1585 cm^{-1} , indicative of C=O and C=N bond formation in the Schiff base. In contrast, the FT-IR spectra of Complex AL-04 reveal a new peak at 1185 and 1111 cm^{-1} , which corresponds to the B-F stretching, signifying the formation of a metal bond.

Mass-Spectra

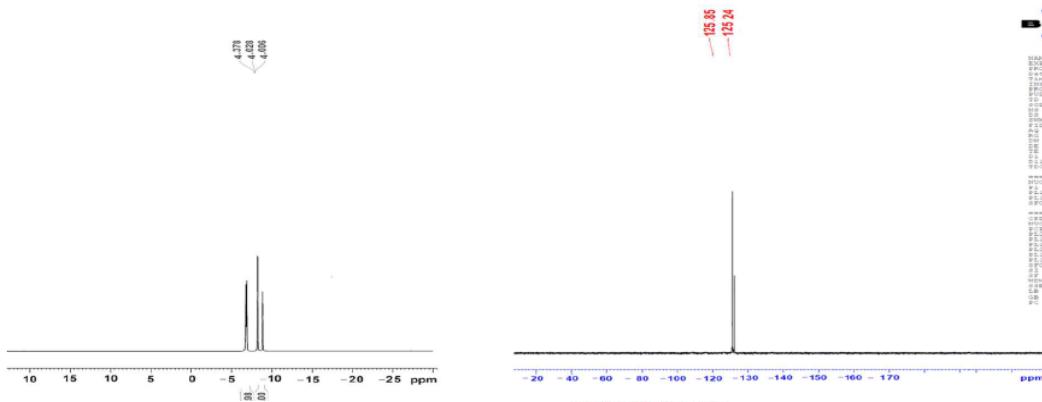


¹H NMR

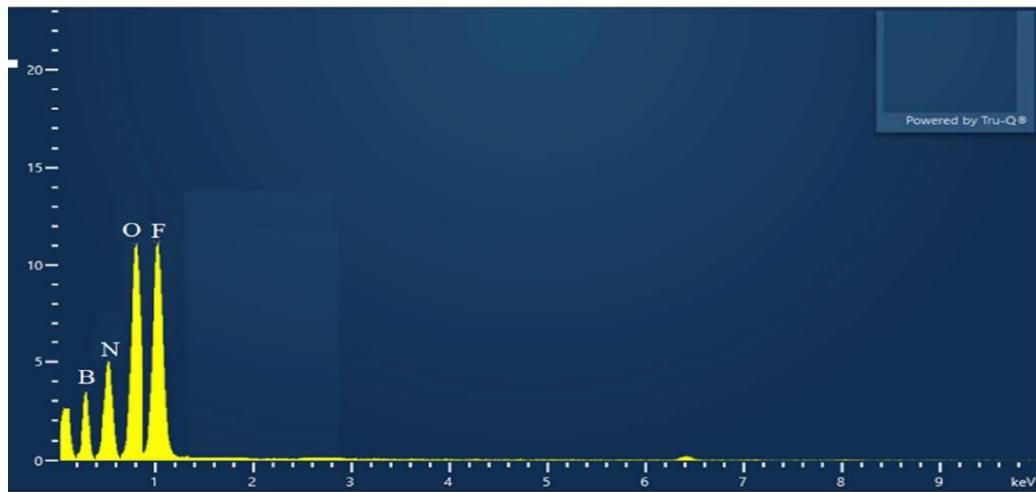
AL-04



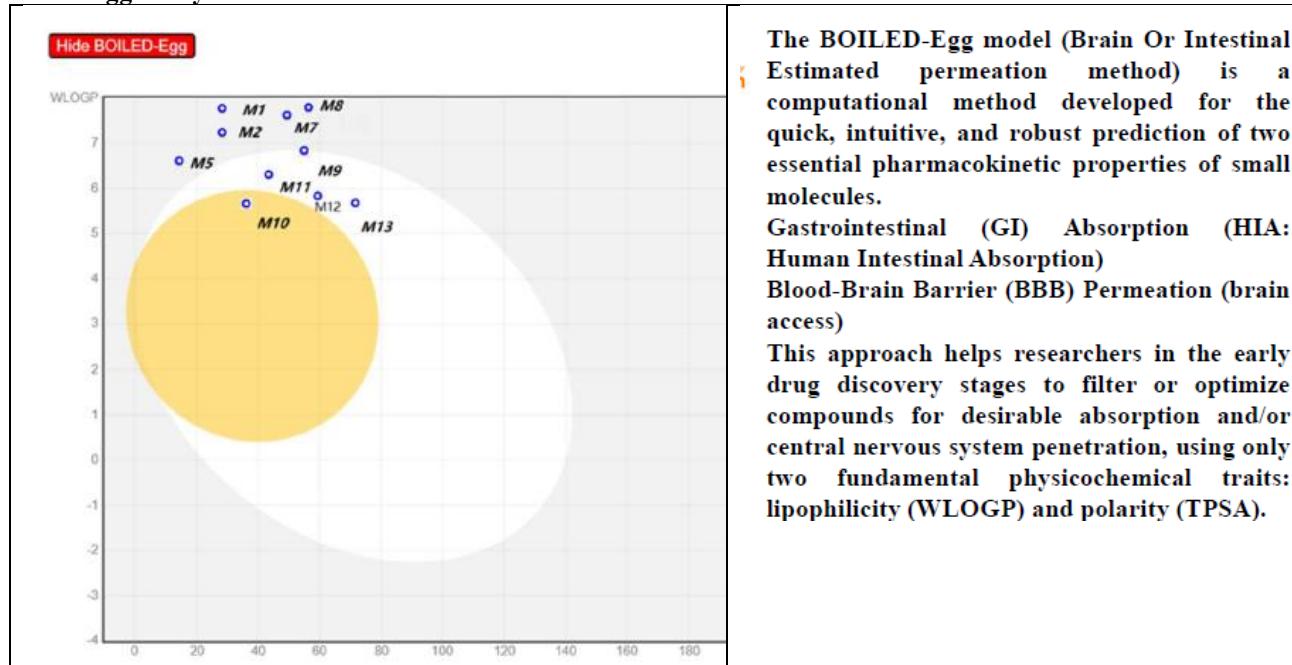
$\text{C}_{23}\text{H}_{16}\text{BrClN}_2\text{O}$
 A:5.57(1H)
 B:10.00(1H)(OH)
 C:8.51(2H)(NH)


¹³CNMR

AL-04



19F NMR: COMP-01


11^B NMR: COMP-01

EDX IMAGE

Boiled Egg Study:

Conclusion:

Sonochemistry applicable for green and environment friendly method for the formation of indole-based Schiff bases, for boron based BODIPY synthesis, with boron and fluoride metal complexation. This method is quick and rapid synthesis within 15-30 minutes for Schiff base and BODIPY compounds with high selectivity, purity. The sono-chemical method for metal complex formation for green chemistry approach reaction time compared to traditional methods, its same fundamental applicable for BODIPY derivatives. The sonochemical method is a novel, fast, and selective method for the synthesis of Schiff base and boron compound and complex formation, which is more suitable for BODIPY compounds and boron metal complexes. The synthesized compounds confirmed by FT-IR, NMR and MASS SPECTROSCOPY discussed in results and discussion.

The FT-IR spectra of Ligand-04 exhibit peaks at 1662, 1625, and 1585 cm^{-1} , indicative of C=O and C=N bond formation in the Schiff base. In contrast, the FT-IR spectra of Complex AL-04 reveal a new peak at 1185 and 1111 cm^{-1} , which corresponds to the B-F stretching, signifying the formation of a metal bond.

The FT-IR spectra of Ligand-16 exhibit peaks at 3460, 1623 cm^{-1} , indicative of C=O and C=N bond formation in the Schiff base. In contrast, the FT-IR spectra of Complex AL-16 reveal a new peak at 1589 and 1489 cm^{-1} , 1257, 1157 which corresponds to the B-F stretching and B-N stretching, signifying the formation of a metal bond.

Due to all observation, we conclude that B-F and B-N peak observed In FT-IR

After this we observed the H^1NMR , C^1NMR the no of hydrogen and Num of carbon is matched with molecular formula, Then we checked this Complex via BORON and Fluoride NMR we observed the Boron and Fluorine peak due to present of boron and fluorine bond coordination.

Due all of above analysis, we conclude the al ligand turn to metal complex formation and its biological potent some molecules Most molecules M1, M2, M5, etc near the GI (white) or BBB (yellow) favorable zones. So its biological potent.

Reference:

1. Mahida, J., & Patel, R. B. (2019). Application of Silica Supported Aluminium Hydroxide as a Low Cost Green Catalyst for the One Pot MCR Synthesis via Thermal Method. *Journal of Drug Delivery & Therapeutics*, 9.
2. Comprehensive Investigation of Thermal and Biological Properties of novel boron based Metal Complex", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.6, Issue 6, page no.222-228, June-2019
3. C.K. Modi, D.H. Jani, *J. Therm Anal Calorim.*, 102(3), **2014**, 1001.
4. C.K. Modi, D.H. Jani, H.S. Patel and H.M. Pandya, *spectrochimica Acta*, 75A, **2010**, 1321.
5. (a) M.F. Ikander, L. Saved, A.F.M. Hefny, S.E. Zayan, *J. Inorg. Nucl. Chem.*, 38, **1976**, 2209.
6. H. Adams, D.E. Fenton, C. Minardi, E. Mura, M. Angelo, *Inorg. Chem. Commun.*, 3, **2000**, 24.
7. Z.Y. Yang, R.D. Yang, F.S. Li, K.B. Yu, *Polyhedron*, 19, **2000**, 2599.
8. S.Sathiyaraj, K. Sampath, C. Jayabalakrishnan., *Chem.*, 44, **2014**, 161.
9. K. M. Vyas, R. N. Jadeja, D. Patel, R. V. Devkar, V. K. Gupta, *Polyhedron*, 80, **2014**, 20.
10. J. Hu, L. Liu, D. Jia, J. Guo, X. Xie, D. Wu, R. Sheng, *Chem.*, 217, **2011**, 117.
11. B. Pang, G. Liu, L. Liu and D. Jia, *Tetrahedron*, 61, **2005**, 5926
12. K.C Gupta, A.K. Sutar, *Coord. Chem. Rev.*, 252, **2008**, 1420.
13. R. Kumar, G. Mani, *Dalton Trans.* 44, **2015**, 6896.

14. 10. K. Nejati, Z. Rezvani, B. Massoumi. *Dyes Pigments*, 75, **2007**, 653.
15. M.F Ikander, L. Saved, A.F.M Hefny, S.E Zayan, *J.Inorg. Nucl.Chem*, 38, **1976**, 2209. **2000**, 24