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Abstract 

Phylogeny and genetic diversity of Amphioctopus fangsiao were assessed by sequence 

analysis of complete mitochondrial genomes, sequenced from 15 individuals of nine 

populations. The whole mtDNA genomes size were ranging from 15977 to 15990 bp. 

Data revealed 1642 polymorphic sites and 1023 parsimony informative sites.  The 

phylogenetic analysis based on neighbor joining tree disclosed two clades. It consisted 

of four (Dalian, Yantai, Qingdao and Nantong) and five populations (Shanghai, 

Zhoushan, Xiamen, Dongshan and Zhanjiang). Genetic differentiation coefficient (FST) 

was recorded higher i.e 0.61476. While, the AMOVA analysis showed that 61.48% of 

the genetic variation existed between the two clades. However, only 38.52% of the 

genetic variation existed within each clade. In further, the net genetic distance between 

the two groups was 0.030. The possible reason of differentiation is quaternary glacial 

period and Yangtze River.     
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Introduction 

Amphioctopus fangsiao belongs to 

family Octopodidae. It distributes 

widely in west Pacific Ocean, 

especially in Yellow Sea and Bohai Sea 

(Dong, 1988; Lu et al., 2012). A. 

fangsiao considered as a potential 

species for aquaculture (Wang et al., 

2015), due to its rapid growth rate and 

high nutritional value. Tons of its 

fisheries have annually been harvested 

alone in Shandong province. However, 

it has been reported that its natural 

population is decreasing because of 

over-exploitation (Zhang et al., 2009). 

Therefore, it is intuitive to have its 

resource management and conservation. 

Until now, few studies are available to 

elucidate A. fangsiao genetic aspects 

(Gao et al., 2002; Zhang et al., 2009, 

and Lü et al., 2010, Muhammad et al, 

2019). Gao et al. (2002) and Zhang et 

al. (2009) used allozyme and amplified 

fragment length polymorphism (AFLP). 

Lü et al. (2011, 2010) examined several 

A. fangsiao populations using 

mitochondrial 16S rRNA and the COI 

gene and Muhammad et al. (2019), 

investigated using three mtDNA genes 

(ATPase 6, ND2 and ND5). All the 

earlier studies showed certain level of 

differentiation. The whole mtDNA 

genome approach of investigation was 

not carried earlier.       

A. fangsiao is one of the marine 

species that spawn life time in marine 

ecosystem. The fluctuating physical 

properties of marine ecosystem 

influence organisms which restrict gene 

flow over large geographic distances 

(Maltagliati et al., 2002, Hellberg et al., 

2002, Fernandez et al., 2011). Unlike 

other marine organisms, having high 

range of dispersal capacity, large 

population sizes, high fecundity and 

planktonic mood of dispersal which 

helps in extensive gene flow (Bohonak 

1999, Zid et al., 2012), the Octopus 

species like Octopus minor, O. vulgaris 

and A. fangsiao show limited dispersal 

capacity both at larval and adult stages 

(Oosthuizen et al., 2004; Kim et al., 

2009; Kang et al.,  2012; Lü et al., 2013, 

De Luca  et al.,  2016, 2015, Melis et 

al., 2018). A. fangsiao adults are either 

slow mover or like sessile, crawling 

away on the sea bed or burrowing deep 

in mud. It has benthos-attached eggs, 

spent only a few days as planktonic 

larval stage. Therefore, it has weak 

dispersal and limited gene flow, 

resulting in the genetic differentiation 

among populations.  

Assessment of genetic diversity 

within and among populations has 

immense importance, which deliver a 

possible genetic source for future 

adaptation (Xu, 2012) and in area of 

evolutionary biology (Hao et al., 2015, 

Ortego et al., 2015).   In natural 

population its level is determined by the 

interplay of mutation, migration, drift 

and selection (Harrison, 1991, Vellend 

and Geber 2005, Wethington et al., 

2007). The role of each of these forces 

depends on the life history of the 

species. It’s mating system and 

dispersal abilities, as well as extrinsic 

factors such as the landscape matrix, its 

history and anthropogenic actions (Gow, 
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et al., 2004; Husemann et al., 2012).  In 

the present study, we analyzed data of 

fifteen complete mitochondrial genes 

gained, from fifteen individuals 

collected from nine localities across the 

Chinese coast. The sequences were 

examined to understand the genetic 

diversity and phylogeny of A. fangsiao 

and reveal the possible issues impacting 

the phylogeographic pattern. The 

results of the present investigation 

provide profound information for the 

future management and conservation of 

this species. 

 

Materials and methods 

Samples were collected from nine 

locations (Fig. 1). Thereafter, they were 

preserved in 95% ethanol and 

transported to the laboratory. The total 

genomic DNA was isolated from 

muscle tissues using a standard protocol. 

A set of 20 PCR primers were used to 

amplify overlapping fragments that 

covered the whole mitochondrial 

genome of the Amphioctopus fangsiao. 

Primarily, primers were designed on the 

basis of complete mtDNA sequence   

Gene Bank under accession number 

NC_007896.1 (Akasaki et al., 2006). 

Later on, specific primers were 

designed according to newly obtained 

sequences to facilitate primer walking. 

Thermocycler conditions were as 

follows: denaturation at 94 
◦
C for 5 min, 

35 cycles 94
◦
C for 30s, annealing at 

50
◦
C for 30s, extension at 72

◦
C for 30s, 

and the final extension at 72
◦
C for 7 

min. Electrophoresis was performed on 

a 1.2% agarose gel and was sequenced 

using the same PCR primers. Sequences 

were aligned using CLUSTALX 1.83, 

Thompson et al. (1997) was used for 

alignment and editing of sequences and 

BioEdit 7.0.1, (Hall, 1999). Using CG 

View Server to draw the mtDNA ring 

diagram. The neutrality test of 

haplotype and nucleotide diversity 

indices their variances as well 

(Tajima’s D, Fu and Li’s D*, Fu and 

Li’s F*) were calculated using DnaSP 

version 5.0 software package, (Librado 

and Rozas, 2009). Genetic distance 

calculation and cluster analysis were 

carried out by using Mega 6.0 software. 

The phylogenetic tree was constructed 

by UPGMA model and the bootstrap 

(repetition number 1000) was used to 

check the branch trust. Octopus Aegina 

(NC_029702.1), (Zhang et al., 2015), 

Octopus variabilis (NC_015896.1), 

(Cheng et al., 2012) Octopus vulgaris 

(NC_006353.1), (Yokobori et al., 2004), 

Octopus bimaculoides (NC_028547.1), 

Domínguez et al. (2015) mtDNA were 

used as the out group in the 

Phylogeography analysis. The 

haplotype networking was created using 

NETWORK software version 5.0.0.1 

(Bandelt et al., 1999). The genetic 

structure of the population was assessed 

using the FST statistic, and its 

significance was repeated using 

Arlequin 3.5 for 1 000 cycles. The 

relationship between (1-FST) / 2-FST 

and the geographical distance of the 

sample is plotted to determine whether 

the population genetic structure 

conforms to the geo-isolation model 

(Slatkin, 1993).  
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Figure 1: Map showing collection sites of Amphioctopus fangsiao specimens. 

 

The genetic structure of the population 

was further detected using the 

molecular variation analysis AMOVA 

method in Arlequin 3.5 software. 

Homoplasic sites were exposed by the 

use of the phylogeny network 

investigation as applied in the Network 

4.6 program. 

The historical dynamics of the 

population was carried out using two 

methods: (1) using Tajima's D and Fu's 

Fs test to determine whether the neutral 

hypothesis was established, Tajima's D 

and Fu's Fs neutral test results were 

negative and significantly deviated 

from neutral, (2) The use of nucleotide 

mismatch distribution (mismatch 

distribution) analysis to test the 

existence of group expansion; unpaired 

distribution test and neutral hypothesis 

test were used Arlequin3.01 software. 

The differentiation time of the CO1 

gene and cytochrome b gene were 

calculated by molecular clock theory. 

The evolution rate of CO1 gene was 

calculated by 0.5% to 1. 4%/ million 

years (MY), and the evolution rate of 
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cytochrome b gene were calculated by 

2.15% to 2.6% / MY, Zhao et al. (2013). 

 

Results 

A total of 15 complete mtDNA 

genomes of Amphioctopus fangsiao 

were characterized (Gene Bank 

Accession No (MF 029678–MF 

029691). The mtDNA genome sizes 

range from 15977 to 15990 bp, with the 

G+C content ranging from 22.39% to 

22.93%. The mtDNA genome contains 

all 37 genes as typically present in 

mollusks, which include cytochrome c 

oxidase subunits I–III (COI, COII, 

COIII), ATPase subunit 6 and 8 (ATP6, 

ATP8) and NADH dehydrogenase 

subunits 1–6 and 4L (ND1– 6, ND4L); 

22 tRNA genes, two rRNA genes. Eight

of 22 tRNA genes (tRNA-Lys, tRNA-

Ala, tRNA-Arg, tRNA-Asn, tRNA-Ile, 

tRNA-Ser, tRNA-Asp, and tRNA-Thr) 

were located in the light chain and the 

remainders were found in the other 

chain (Fig. 2). In the A. fangsiao 

mtDNAs, 1642 positions were variable 

and 1023 were parsimony-informative. 

The complete mitochondrial genomes 

of A.  fangsiao and other related species 

such as O. bimaculatus, O. 

conispadiceus, A.  fangsiao and O. 

vulgaris were compared to estimate 

intraspecific nucleotide diversity (Pi) 

(Librado and Rozas, 2009). The 

analysis showed that gene by gene Pi 

values were highly variable (Table 1). 

Nucleotide diversity in A.  fangsiao 

varies from ~0.2% in ATP8 genes to 

6.5% in the ATP6 genes, with highest 

among protein-coding genes value of Pi 

(~1%) detected in ATP6 gene (Table 1).  

 

 
Figure 2: Neighbor-joining tree inferred from complete mitochondrial genomes of Amphioctopus fangsiao, 

Octopus bimaculatus, Octopus variabilis, Octopus vulgaris and Amphiotopus aegina. The 

representatives of other four related species were used as outgroups. The highly significant statistical 

supports are listed in the order ML/NJ (≥95%/N75%). Statistically supported mtDNA clades are 

designated by Latin letters. Scale bar indicates replacements per site. Key: SH: Shanghai, ZS: 

Zhoushan, XM: Xiamen, DS: Dongshan, ZJ: Zhanjiang, QD: Qingdao, NT: Nantong, YT: Yantai. 
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Table 1: Nucleotide diversity (Pi) of mtDNA genes in Amphioctopus fangsiao. 

Locus Length (bp) Position Pi 

CO3 780 1-780 0.02862 

ND3 351 1115-1465 0.03305 

ND2 1038 1533-2570 0.03035 

CO1 1533 2542-4074 0.02865 

CO2 687 4078-4764 0.02756 

ATP8 156 4831-4986 0.01600 

ATP6 705 4989-5681 0.06513 

ND5 1719 5729-7465 0.03964 

ND4 1344 7533-8858 0.04104 

ND4L 237 8873-9124 0.01584 

CYTB 1140 9314-10445 0.02484 

ND6 513 10438-10950 0.04702 

ND1 942 11026-11967 0.03907 

There were 15 haplotypes among all the 

15 mtDNA genomes. The genetic 

distances across the mtDNA genomes 

ranged from 0.007 to 0.059 (Table 2). 

The phylogenetic trees were generated 

using NJ and ML methods, where O. 

aegina, O. variabilis, O. vulgaris, O. 

bimaculoides used as outgroup (Fig. 3) 

it revealed two clades A (Dalian, Yantai, 

Qingdao, Nantong populations) and B 

(Shanghai, Zhoushan, Xiamen, 

Dongshan and Zhanjiang populations) 

(Table 3). The haplotype network 

analysis also revealed two cladded and 

none of the haplotype was shared (Fig. 

4).  The AMOVA analysis showed that 

61.48% of the genetic variation existed 

between the two clades, while only 

38.52% of the genetic variation existed 

within each clade. FST of the two 

clades reached 0.61476. The net genetic 

distance between the two groups was 

0.030.  

The molecular clocks showed that 

the genetic distances between the two 

clades of COI gene were 0.027, and the 

genetic distances between the two 

clades of Cytb gene was 0.215.The 

differentiation time was estimated to be 

about 119×104~ 540×104 million years 

ago before the Tertiary period 

(according to the fish and shrimp and 

crab’s COI gene 0.5% to 1.4% per 

million years of evolution rate inferred 

(Knowlton and Weigt, 1998), the 

evolution rate of the cytochrome b gene 

was calculated by 2.15% to 2.6%/ 

million years).  

In the present study we projected the 

ratio of the number of non-synonymous 

substitutions per non-synonymous sites 

(KA) to the number of synonymous 

substitutions per synonymous sites (KS) 

of (CYTB), and (COX3) gene, 

(NADH3) gene, (NADH2) gene, 

(COX1) gene, COX2) gene, ATP 

synthase F0 subunit 8 (ATP-8) gene, 

ATP synthase F0 subunit 6 (ATP-6) 

gene and found low KA/KS values in 

both clades (KA/KS =0.0126 and 

0.9827 in clades A and B, respectively), 

representing the influence of negative 

selection. 
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Table 2: Genetic distances between pairwise populations of Amphioctopus fangsiao. 

 DL QD YT NT SH ZS XM DS ZJ 

DL          

QD 0.012         

YT 0.008 0.007        

NT 0.007 0.006 0.001       

SH 0.044 0.043 0.038 0.037      

ZS 0.053 0.051 0.047 0.045 0.019     

XM 0.049 0.048 0044 0.043 0.030 0.037    

DS 0.059 0.057 0.053 0.050 0.031 0.041 0.031   

ZJ 0.054 0.052 0.048 0.046 0.029 0.037 0.031 0.026  

 

 
Figure 3: Mitochondrial genome map of Amphioctopus fangsiao. 

 

Table 3: Geographical distribution of Amphioctopus fangsiao samples used in this study. 

Sequence ID Site ID Province Country Clade GenBank Accession No 

DL Dalian Liaoning China A MF029678 

QD Qingdao Shandong China A MF029684 

YT Yantai Shandong China A MF029690 

NT1 Nantong Jiangsu China A MF029680 

NT19 Nantong Jiangsu China A MF029681 

NT21 Nantong Jiangsu China A MF029682 

NT26 Nantong Jiangsu China A MF029683 

SH1 Shanghai Shanghai China B MF029685 

SH21 Shanghai Shanghai China B MF029686 

SH22 Shanghai Shanghai China B MF029687 

SH23 Shanghai Shanghai China B MF029688 

ZS Zhoushan Zhejiang China B MF029692 

XM Xiamen Fujian China B MF029689 

DS Dongshan Fujian China B MF029679 

ZJ Zhanjiang Guangdong China B MF029691 
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Figure 4: Median-joining network of mtDNA haplotypes observed in 15 Amphioctopus fangsiao 

specimens. This network illustrates the relationships between two major clades A and B. 

Median vectors are shown by red dots. 

 

Discussion 

Amphioctopus fangsiao is a potential 

species for aquaculture (Wang et al., 

2015; Feng et al., 2017) and over- 

exploitation causes its population 

decline (Zhang et al., 2009). Therefore, 

basic information of phylogeny and 

population history counts valuable. A 

few investigations are in account for its 

population genetics, by utilizing  AFLP , 

microsatellite and Allozyme (Gao et al., 

2002, Zhang et al., 2009, and Feng et 

al., 2017) and detailed genetic structure 

(Muhammad et al., 2019). These earlier 

investigations excluding Muhammad et 

al. (2019) are limited to northern part of 

the coast and do not provide complete 

profile of population genetic of this 

economically important species. 

However, our previous prediction of 

population differentiations of A. 

fangsiao be validated by present 

investigation (Lü et al., 2010, 2011). 

Here, we are describing the phylogeny 

and population history of nine 

populations of A. fangsiao (Fig. 1) 

using complete mtDNA from 15 

individuals. Molecular markers 

separated north (Dalian, Nantong, 

Qingdao, Yantai) and south populations 

(Huizhou, Shanghai, Xiamen and 

Zhenjiang), which is in accordance with 

our previous results of CO1 and 16S 

rDNA (Lü et al., 2010, 2011), and 

differ with AFLP results where 

northern populations Dalian, Qingdao 

were placed in one clade while Yantai 

and Lianyungang were reported to be 

another clade. This pattern of separation 

is like Octopus minor populations 

where south and north populations are 

distinctly distributed into two clades 

(Lü et al., 2013). 

The genetic distance between the 

two clades was 0.030, and the genetic 

differentiation index FST reached 

0.61476. The higher FST values 

illustrate lower level of gene flow (Nm) 
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and higher genetic differentiation 

among populations (Hedrick 2005; Ye 

et al., 2015). The standard values of FST 

are illustrated as 0.05 defines negligible 

genetic differentiation while greater 

than 0.25 defines high genetic 

differentiation within the analyzed 

population (Weir and Cockerham, 

1996). Based on given standard 

obtained results showed greater 

differentiation among A. fangsiao 

populations.  The higher genetic 

diversity was also reported in other 

species of the area, such as; genetic 

diversity between seven populations of 

Octopus variabilis was (0.91) based on 

the 12S rRNA and COIII gene (Xu et 

al., 2011).   Kang et al. (2012) reported 

variations in Octopus minor populations 

of different localities ranging from 

(0.109 to 0.999).    The genetic 

divergence of Maoricolpus roseus, 

found less than (1%) using mtDNA 16S 

and CO1 gene, Kirsten et al. (2015). 

Muhammad et al. (2018) investigated 

eight populations ranged (0.011 to 

0.992). Comparison to said studies, 

present investigation showed moderate 

level of differentiation. There are two 

concepts to illustrate the genetic 

variations in A. fangsiao populations. It 

might be due to life style such as lack 

of planktonic larval stages and limited 

migration range (Lv et al., 2013). These 

factors might limit the dispersal ability 

and resulting reduction of gene flow. 

Nevertheless, this explanation does not 

support in case of clade A where no 

signification differentiation found 

within the group. The probable reasons 

for genetic differentiation are results of 

various factors including geographic 

isolation, current, life history 

characteristics, (Gao et al., 2016), 

Islands and Gulfs also contribute in 

gene flow complications, the early 

glacier activities, where sea level 

encountered climatic fluctuations 

during the Pleistocene period and 

caused gene flow restriction in marine 

organisms (Imbrie et al., 1992). Besides 

it, the Changjiang River might   

influence in genetic structure of A. 

fangsiao populations along China coast 

(Lü et al., 2011). It is generally 

believed that the marine hydrological 

conditions, the ecological 

characteristics of the species and the 

life history can cause the differentiation 

of marine life (Muss et al., 2001; Yong 

et al., 2009). An intriguing possibility is 

that this type of environmentally driven 

genetic structure in Ocean species 

promotes allopatric speciation, whereby 

genetically different population 

divergence during glacial cycles 

(France and Kocher 1996, Zardus et al., 

2006, Schüller 2011). A number of 

divergent forces effect genetic variation, 

including geographic separation, 

existing and life history features (Gao et 

al., 2016). 

 Estimation of the differentiation 

time of the octopus group using 

different molecular clocks showed that 

the genetic distances between the two 

clades of COI gene was 0.027, and the 

genetic distances between the two 

clades of Cytb gene was 0.215, so the 

differentiation time was estimated to be 
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about 119×104~ 540×104 million years 

ago (MYA) before the Tertiary period 

(according to the fish and shrimp and 

crabs’ COI gene 0.5% to 1.4%/ MYA 

of evolution rate inferred (Knowlton 

and Weigt, 1998), the evolution rate of 

cytochrome b gene was calculated by 

2.15% to 2.6%/ MYA), corresponding 

to the early Pleistocene period the 

genetic differentiation between both 

populations has been attributed to the 

repeated Pleistocene glaciations (1.25-

0.7 MYA), (Mark et al., 2005, Clark et 

al., 2006). 

There were 15 haplotypes among all 

the 15 mitochondrial DNA genomes. 

The genetic distances across the 

mtDNA genomes ranged from 0.007 

between NT and YT, to 0.059 between 

north-south region (Dongshan located 

in the south of China and Dalian 

located in the north of China), with an 

average genetic distance of 0.057. To 

test whether there is a signature 

selection in the A. fangsiao 

mitochondrial genome, we assessed the 

ratio of the number of non-synonymous 

substitutions per non-synonymous sites 

(KA) to the number of synonymous 

substitutions per synonymous sites (KS) 

and found low KA/KS values in both 

clades (KA/KS = 0.0126 and 0.9827 in 

clades A and B, respectively), 

representing the influence of negative 

selection. Negative selection plays an 

important role in maintaining the long-

term stability of biological structures by 

removing deleterious mutations, Ana M 

Pérez O’Brien et al. (2014). However, 

further studies are required to confirm 

differentiation of A. fangsiao.  

 

Conclusion 

Among populations main divergence 

factor is the ice age quaternary glacial 

period. Yangtze River acts as a physical 

barrier to larval dispersal and variation 

between both populations. This lays the 

foundation for the future development 

and utilization of the octopus resources 

in China. 
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