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Abstract:  

For environment monitoring without human intervention, autonomous 3D mobile robot mapping is widely utilized. But, 

poor performance has been shown by the prevailing techniques in the complex environment. Thus, to deal with this 

limitation, a novel framework named 3-Dimensional Mobile Robot Mapping and Motion Planning using Deep Q-

Learning-based Markov Decision Model Deep Neural Network is proposed. Here, the primary sensors are utilized for 

robot navigation. Afterward, the point clouds are pre-processed and the similar pixels are grouped together; then, features 

are extracted. The Gazelle Optimization Algorithm (GOA) is utilized for enhancing the feature extraction phase. Next, 

the current posture of the robot is estimated by the Transformation matrix applied Single value decomposition Linear N-

Point Camera Pose Estimation (TMSVDLCPE); also, grounded on the estimated pose, the desired view is captured. The 

captured images are then converted into 3D formats. The robot’s 3D images, speed, and current position are inputted to 

the DQMD-DNN, which efficiently plans the next optimal move of the robot. The experimental outcomes exhibited that 

the proposed technique withstands higher decision accuracy when contrasted with the prevailing frameworks.  

 

Keywords: Light Detection and Ranging (LIDAR); Inertial Measurement Unit (IMU); Brownian motion (BM); Bayes 

Distribution-Gazelle Optimization algorithm (BD-GOA); Deep Q-Learning-based Markov Decision Model Deep Neural 

Network (DQMD-DNN).  

 

1. INTRODUCTION 

Strong mobility, precise positioning, simple structures, and simple control are several advantages of a unidirectional 

mobile robot (C. Wang et al., 2020). The basic problem of mobile robots is their navigation capability. By identifying 

starting point and an end target point, the optimal path is selected (Perminov et al., 2021). In the past few decades, 

autonomous robots, specifically wheeled mobile vehicles, have made rapid progress (G. Xue et al., 2022). In GPS-denied 

environments, a Simultaneous Localization and Mapping (SLAM) system is needed primarily for the completion of such 

tasks (W. Wang et al., 2022). Afterward, for deciding which location would be the next best goal, an exploration module 

that employs the obtained map and the localized robot is required (Zhu et al., 2020). 

The mapping quality has not been considered by the prevailing strategies (Yang et al., 2023). By identifying the paths 

with the maximum clearance from obstacles, fixed paths are generated by the Generalized Voronoi Diagram (GVD) path 

planner for any fixed environment, unlike the previous path-planning techniques (Jud et al., 2021). But, little work studied 

on how to establish a standard system for integrating and analyzing a variety of constraints that influenced robot 

navigation (Qi et al., 2022). However, this domain has 2 major limitations, namely (1) designing effective image features 

for expressing image information and (2) possible failure in cases of illumination change, camera parameter change, 

object movement, and single environments that lack texture (Xu et al., 2021) (W. Xue et al., 2020).  

 

1.1. Problem Statement  

The work is motivated by, 

❖ While using LIDAR for mapping, the result was accurate but of poor quality; this focused on enhanced mapping.  

❖ In unknown environments, manual control is required for crawling, which may result in inaccurate decisions. 

❖ For most of the algorithms, the exploration time was longer than usual.  

 

1.2. Objectives 

• The proposed technique enhanced the LIDAR-based Mapping Quality by utilizing an efficient pre-processing step.  

• The proposed system developed robust decision-making systems that can effectively handle crawling in unfamiliar or 

challenging terrains, ensuring accurate and reliable navigation even without human intervention. 

• The proposed method developed efficient exploration strategies in path planning techniques. The aim is to optimize 

the exploration time without compromising the accuracy and coverage of the mapping process. 

 

This paper is organized as: Section 2 surveys the related work; Section 3 elucidates the proposed system; Section 4 

illustrates the outcomes and discussion. Lastly, the paper is winded up in section 5. 

 

2. LITERATURE SURVEY  
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(Gobhinath et al., 2021) propounded SLAM and middleware concepts like open source (ROS). For the cost at which the 

presented mechanism was constructed, this distance was very higher. But, arrangement files were well-defined with setup 

limitations as well as startups so that the equipment was to be wielded.  

(Shin & Na, 2020) proffered an approach for displaying the elevation and temperature of a surveillance area in the form 

of a map by utilizing the Convolution Neural Network (CNN) algorithm. Outcomes displayed a better detection rate. 

Nevertheless, the reconstruction error for the primary anomaly was higher. 

(Diane et al., 2019) established multi-aspect mapping technology at the level of their semantic representation. The 

developed mapping subsystem’s inputs were a series of Red Green Blue-Depth (RGB-D) streams. However, while using 

large sets, the time extends and creates unwanted classes. 

 (Noh et al., 2020) introduced a system that could autonomously navigate an unstructured indoor environment, which 

avoided collision with static or else dynamic objects. Although it performed well in collision avoidance, still infer about 

object intentions was lower. 

(Huang et al., 2019) developed a technique of concurrent construction of 2D as well as 3D maps grounded on the mobile 

robot. For achieving the robot’s pose, the particle filter approach was wielded, which had superior performance. Yet, the 

map resolution was very low. 

 (Tang et al., 2020) presented a 3D exploration system centered on the wavefront framework. The experimental results 

demonstrated a higher efficacy. But, under the people’s direct control of the environment, mapping could not be 

completed by mobile robots. 

(Eldemiry et al., 2022) propounded an exploration technique for concurrently optimizing exploration time by utilizing a 

lower-cost RGB-D camera. Owing to low computational cost and low exploration time, feature-centric RGB-D SLAM 

was wielded. Nevertheless, the online mapping quality was lower. 

 

3. PROPOSED METHODOLOGY FOR 3D MOBILE ROBOT MAPPING AND PATH PLANNING 

The proposed model efficiently identifies the obstacles in the robot’s path and makes optimal decisions for navigation, 

such as choosing a new path or adjusting the robot's speed and direction. Figure 1 elucidates the proposed system 

architecture.  

 

 
Figure 1: Architecture of the proposed framework 

3.1. Sensor sources 



Journal of Survey in Fisheries Sciences  7 (1) 130-139                                                          2020 

 

132 

LIDAR: LIDARs are utilized for mapping, localization, and navigation. It creates a point map (point cloud) of its 

surroundings. 

 

Inertial Measurement Unit (IMU): It measures linear acceleration, angular velocity, and the magnetic field around the 

robot respectively. 

 

RGB cameras: The images captured by the RGB cameras aid the robot identify objects and features in its surroundings. 

3.2. Preprocessing  

The point clouds from the LIDARs are preprocessed for removing noise and enhance the resulting point cloud’s quality 

using a Gaussian Filter (GF). The GF is defined by, 
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Where, ba, and c are the pixel coordinates and SD  exemplifies the standard deviation. The pre-processed point cloud 

is cP .  

 

3.3. Segmentation  

Grounded on the pixel similarity, the pixels from cP are grouped together using the K-Means algorithm, which is scalable 

to large datasets. The grouping of pixels aids the robot to understand the environment structure in a better way. The initial 

cluster centric )( iCn  is selected randomly. The pixels )( iPx , which have a minimum distance with )( iCn , are assigned 

to the clusters. The clustering distance )(Dist is computed by,  
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Here, i  implies iteration.     

 

3.4. Distortion correction 

When a robot moves through its environment, the motion can cause distortions in the point cloud, which make it difficult 

to accurately extract features. Thus, to deal with this, pre-integrated IMU outputs are wielded that correct the distortions 

and enhance the feature extraction accuracy. The pre-integrated IMU outputs represent the expected change in orientation 

and position of the robot over a while. Therefore, the minimum distortions )( dM  are selected by BD-GOA. The GOA 

can avoid local optima and get a globally optimal solution. The GOA uses BM in the exploitation phase. However, the 

unequal step length in BM might lead to false convergence. To overcome this, Bayes Distribution (BD) is employed for 

the step length of BM. The steps of BD-GOA are defined further,  

Primarily, the gazelle population (represents the position of the robot over a time )( , jip ) is initialized by,  

 

( ) jjjji LbLbUbrp +−=,     (3)
 

 

Where, r is a random number, jUb and jLb  are upper and lower bound, correspondingly. 

 

After that, the fitness Ft is computed grounded on the minimum distortion )(DsMin , which is referred to as, 

)(DsMinFt =
      (4)

 

 

Exploitation: When the gazelles are stalked by predators while grazing, the gazelles move in BM, this process is defined 

by,   

 

( )iRiRii gBEBRkgg
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Where, 1+ig


and ig
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 are the solution of the next iteration and current iteration, correspondingly, k  symbolizes grazing 

speed, iE


implies elite, R


 is random numbers in [0, 1], and RB


is a BM value. In BM, the step length is determined by 

BD,  
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)()(*)()( LPbStPbStLPbLStPb =
   (6) 

 

Where, )(StPb  is the prior probability of step length, )(LPb  is the total probability of overall step length. 

 

Exploration: Once the predator is spotted, the gazelle runs, and the predator chases. The sudden change of direction u  

is, 

 

( )iRiRii gLELRuKgg

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Where, K  describes the top speed of gazelle and RL


 signifies Levy distributions. The behaviour of the predator chasing 

the gazelle is displayed as, 
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1 signifies the controlling parameter. Grounded on )( dM , the point cloud is corrected

CS . 

 

Input: Position of the robot over a time )( , jip  

Output: Minimum distortion )( dM  

Begin 

Initialize the population )( , jip  

Compute the fitness value )(Ft
 

While )1( Maxitoi = do 

Update the gazelle’s position using, 

( )iRiRii gBEBRkgg


−+=+1  

Re-compute the fitness value )(Ft
 

If )( SatifiedFt ==
 

End the iteration 

Else 

Update the gazelle’s positionusing, 

( )iRiRii gLELRuKgg


−+=+1  
  End if 

Ftgi ==+1


 

End while  

Return )( dM  

End 

 

3.5. Feature extraction 

From CS , important features )(F like line (detect walls, objects edge, and other straight or curved features in the 

environment), gradient (detect changes in elevation or slope in the environment), along with spatial features (track objects 

in the environment) are extracted. 

 

3.6. LIDAR Odometry 

Afterward, the LIDAR odometry )(OT is constructed using F , which estimates the robot's position and orientation. This 

is important for robot navigation and localization. 
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To construct )(OT , )(F  are matched between consecutive LIDAR scans. Once the matched features are identified, their 

relative motion is estimated by, 

( )
2

),(min= YX FFDArgOT
    (9)

 

 

Where, D symbolizes Euclidean distance, XF and YF are corresponding features in the point clouds.  

 

3.7. Pose estimation  

Grounded on the estimated motions )(Es , the robot’s current posture in an environment is determined using a 

TMSVDLCPE, which is computationally efficient. In LCPE, the Projection Matrix (PM) is wielded for estimating the 

camera pose. But, the PM can result in an incorrect estimation of the camera pose owing to degenerate cases. To overcome 

this issue, a Transformation Matrix (TM) is utilized. The steps are as follows: 

 

Step 1: Normalize the odometry image points by, 

 

aa fxxcc )( 11 −=
                (10) 

 

bb fxxcc )( 22 −=
                (11) 

 

Where, 1c and 2c are the normalized image coordinates, ax and bx are principal point coordinates, afx and bfx are focal 

lengths. 

Step 2: The measurement matrix ][M is constructed from the normalized image points and 3D coordinates of the known 

points ],[],[ BA and ][C
. 
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Step 3: The SVD of ][M is computed, this yields left )(L and right )(R singular vectors )(Sv . The SVD is, 

 

RSvLM *=                (13) 

 

Step 4: After that, TM is computed by, 

 

RmTm = Im                 (14) 

 

Step 5: Lastly, the camera pose is recovered by decomposing TM into the camera extrinsic matrix )(Em  and the intrinsic 

matrix (Im) by, 

 

))3:1((Im],[ TmrqEm =
              (15)

 

 

)4(:*Im 1 TmTv −=
               (16)

 

 

Where, rq is decomposition factor, Tv is translation vector, )3:1(Tm selects all rows and the first three columns ofTm

, and )4(:Tm selects all rows and the fourth column ofTm . Therefore, the estimated pose is defined by Ep .  

 

3.8. Pan tilt mechanism 

Centered on Ep , the Pan Tilt mechanism controls the movement of the RGB to capture a desired view of the scene. The 

captured images are further processed to extract frontier and area information, which provides valuable insights about the 

environment.  

 

3.9. 3D mapping 
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To navigate to a destination point, the captured images are converted into 3D maps along with the goal coordinates. 3D 

mapping allows robots to better understand their environment by creating a detailed map in three dimensions. With a 3D 

map of the environment, robots can more easily navigate to a destination point by calculating the most efficient path and 

avoiding obstacles. Moreover, the 3D map can provide valuable information about the terrain, such as the height of objects 

and the depth of water, which can be utilized for making more informed decisions about how to move through the 

environment. 

 

3.10. Wheel velocity 

From 3D mapping, the information, such as the method of movement, track deviation from the landmark, and desired 

landmark are inputted to the Proportional-Integral-Derivative, 

(PID) controller, which adjusts the wheel velocity to attain desired motion. The PID controller is expressed as,  

 

dttdeGdttEGtEGT DIP )(*)(*)(*  ++=
             (17) 

 

Where, the control parameter is notated asT , proportional, integral, and derivative gains are exemplified as
PG , 

IG  and

DG , correspondingly, the error rate at the time t  is specified as )(tE , the error over time’s integral is signified as

dttE )( , and the derivative of the error at t  is elucidated as dttde )( .  

 

3.11. Decision making 

The robot’s current position, current velocity, and 3D maps are inputted to the DQMD-DNN, which efficiently makes 

decisions about the optimal action to take, namely normal run, enhanced search, and avoidance run.  

 

Reinforcement learning is used by the DQMD-DNN to train the DNN by iteratively adjusting the Q-values grounded on 

feedback from the environment. To maximize the reward function, this work uses MD. The MD explores the complex 

environment and adapts to change the environment over time, allowing it to continue learning and updating the optimal 

rewards. Hence, the algorithm makes better decisions about how to navigate the environment over time. Figure 2 displays 

the DQMD-DNN architecture. 

 

 
Figure 2: DQMD-DNN architecture 

 

Afterward, the Q-values for each possible action are computed. The expected reward to take a specific action in the current 

state is represented by the Q-values. 

 

)],([),(),( asQMaxasRwasQ += 
             (18)

 

 

Where, the Q-value of the current state )(s -action pair )(a  is notated as ),( asQ ,    defines discount factor, 

)],([ asQMax  is the maximum Q-value over all possible actions a  in the next state s , and )(sRw is the reward 

obtained MD, this is given by, 

][)( 1 sRwRwexsRw t  += +               (19)
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Where, ][ 1 sRwRwex t  ++ is the expected reward for the next state, and the reward received for taking action in the 

state )(s  is represented as 1+tRw .  

Then, the best action is selected grounded on the Q-values by,  

 

)),((max* asQBArgB −=
               (20) 

 

Where, 
*B  is the best action, BArg −max  symbolizes the action, which maximizes the Q-value. 

 

The Q-value is updated for 
*B  using the Q-learning update rule, 

 

)),(),((),(),( asQasMaxQOrasQasQ −++= 
            (21)

 

 

Where, the learning rate is exemplified as  , the observed reward is implied as Or , the discount factor for future 

rewards is notated as  . 

 

Lastly, the loss function )(Ls  is determined by, 

 
2)),(( yasQL −=

               (22)
 

 

Where, y  is the target Q-value; the parameters are adjusted through back-propagation to minimize )(Ls . 

 

4. RESULTS AND DISCUSSION 

Here, the experiments conducted in the working platform of MATLAB are presented. 

 

4.1. Dataset description 

Toronto-3D, which is obtained by a Mobile Laser Scanning (MLS) system in Toronto, Canada for semantic segmentation, 

is a large-scale urban outdoor point cloud dataset. It approximately covers 1 km of road and comprises about 78.3 million 

points. 

 

4.2 Performance Analysis 

Here, the proposed 3DMRM-MP’s performance is validated. 

(a) (b) 

Figure 3 (a): Trajectory computation (b) Autonomous exploration of robot 

 

The trajectory computed by the robot and the ground truth trajectory is compared in Figure3 (a), whereas the robot’s 

autonomous exploration ability is displayed in Figure 3 (b). From the analysis, it is clear that the proposed system 

efficiently aids the robot in avoiding obstacles and passing safely in the exploration. 
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Table 1: Performance of the proposed 3DMRM-MP in terms of Frontier detection, Obstacle detection, and decision 

accuracy  

Techniques 
Performance metrics 

Frontier detection Obstacle detection Decision accuracy 

Proposed 3DMRM-MP 97.26 97.96 98.32 

 

The proposed technique’s performance is demonstrated in Table 1. The proposed 3DMRM-MP efficiently handles the 

distortions caused by the LIDARs. Furthermore, the proposed. 3DMRM-MP uses TMSVDLCPE for pose estimation and 

adjusts the RGB cameras as per the estimated results. Owing to this, the proposed 3DMRM-MP achieves 97.26% of 

frontier detection, 97.96% of Obstacle detection, and 98.32% of decision accuracy.  

 

Table 2: Performance of the proposed 3DMRM-MP in terms of error rates 
Techniques Performance metrics 

RMSE Localisation error Loss value 

Proposed DQMD-DNN 1.76 2.36 1.68 

DNN 6.78 7.34 4.87 

RNN 9.38 10.58 6.74 

LSTM 13.06 15.69 9.38 

 

The proposed DQMD-DNN’s performance is demonstrated in Table 2. The proposed DQMD-DNN is efficiently learned 

by the Deep Q-Learning method. Further, better rewards are selected by employing the MD technique. Hence, the RMSE, 

Localisation error, and Loss value of the proposed DQMD-DNN are 1.76%, 2.36%, and 1.68%, correspondingly. 

Therefore, the proposed DQMD-DNN is capable to make decisions with a limited error rate.  

 

 
Figure 4: Efficiency comparison 

 

Figure 4 displays the efficiency of the proposed 3DMRM-MP and the conventional mechanisms. The proposed 3DMRM-

MP efficiently corrects the distortion rates and maintains the RGB cameras to capture the desired location. As a result of 

this, the proposed technique’s navigation efficiency is higher than the prevailing research works. 
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Figure 5: Performance comparison 

The proposed 3DMRM-MP and the conventional techniques’ performance are exhibited in Figure 5. The proposed 

3DMRM-MP efficiently selects the reward. Thus, the proposed 3DMRM-MP achieves precision, recall, F-measure, and 

Estimation accuracy of 97.8%, 97.5%, 97%, and 99%, correspondingly, whereas the existing techniques obtain lower 

performance rates. Hence, the proposed E-RS-GRU classifies the attacked and non-attacked data efficiently.  

 
Figure 6: Fitness vs. Iteration Comparison 

 

Figure 6 compares the proposed BD-GOA’s optimization ability with Particle Swarm Optimization (PSO), Butterfly 

Optimization Algorithm (BOA), GOA, along with Ant Colony Optimization (ACO). The proposed BD-GOA improves 

the exploration phase with the BD technique. Thus, the proposed BD-GOA renders the optimum outcome with a minimum 

number of iterations; however, to attain convergence, more iterations are required by the conventional mechanisms. 

5. CONCLUSION 

This paper proposed 3-dimensional mobile robot mapping and motion planning using DQMD-DNN. The system 

undergoes several operations like preprocessing, segmentation, Distortion correction, Feature extraction, Odometry 

creation, 3D mapping, and Decision making. Afterward, the experimental assessment is conducted, where the proposed 

system’s performance, as well as comparative evaluation, is executed for validating the technique’s efficacy. The 

presented framework could handle several uncertainties and renders more promising outcomes. For the assessment, the 

point cloud LIDAR (Toronto 3D) dataset is wielded, where the proposed system attains 98.32% of decision accuracy. 

This work mainly concentrated on 3D mobile robot mapping in an unknown environment with autonomous control; 

however, there are some undefined problems in real-time environments like sudden climatic changes, unpredictable holes 

in the ground, et cetera. In the future, the work could be focused to make decisions grounded on these sudden undefined 

changes also. 
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