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Abstract 

In this paper, we introduce a novel extension of the Gauss hypergeometric function, aiming to broaden its applicability 

and theoretical underpinnings. Our main objective is to define the extended Gauss hypergeometric function, denoted as 

𝐹𝑝,𝑞
(𝑚,𝑛)

(⋅), where 𝑝, 𝑞, 𝑚, and 𝑛 are parameters representing the order and degree of the function, respectively. We define 

it and its fundamental properties which are convergence criteria, analytic continuation, and integral representations for its 

further study. Besides this, we also address the ways and procedures of how to use the extended Gauss hypergeometric 

function in different mathematical problems as well as its flexibility and applicability in solving various mathematical 

problems. Through the examinations of its series representations, integral transforms, and differential equations, we reveal 

its structural characteristics and behavior under different parameters, uncovering its asymptotic behaviors and special 

cases. Furthermore, we made a complete study of the mathematical features of the extended Gauss hypergeometric 

function such as its symmetry properties, transformation formulas and connection to other special functions. We prove 

the validity of the theoretical results and illustrate the effectiveness of the extended Gauss hypergeometric function in 

practical applications by means of numerical experiments and computational simulations. The paper closes by indicating 

the development of mathematical knowledge in which a new extension of the Gauss hypergeometric function is 

introduced, and its properties and applications are explored. The theoretical framework and analytical methods created by 

this paper lay the foundation for future research and innovation in the area of special functions and mathematical analysis. 

 

Keywords: Gauss hypergeometric function; Extended hypergeometric function; mathematical analysis; special functions 

theory; complex analysis; differential equations. 

 

1. Introduction 

The Gauss hypergeometric function, denoted as 𝐹(𝑎, 𝑏; 𝑐; 𝑧) [9], has long been a cornerstone in mathematical analysis, 

serving as a powerful tool in various branches of mathematics, physics, and engineering [4]. Its wide-ranging applications 

in differential equations, probability theory, and special functions make it a subject of enduring interest and investigation 

[5]. In recent years, there has been a growing demand for extending the classical hypergeometric function to encompass 

broader classes of functions, facilitating the solution of new classes of problems, and enhancing our understanding of 

mathematical structures [3]. Motivated by this demand, the present work endeavors to introduce a further extension of the 

Gauss hypergeometric function, herein referred to as the extended Gauss hypergeometric function, and to explore its 

properties and applications [1]. 

The main objective of this paper is to establish a framework for the extended Gauss hypergeometric function, thereby 

enriching the existing repertoire of special functions and providing new avenues for mathematical inquiry [2]. We begin 

by defining the extended Gauss hypergeometric function, denoted as 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) [1,2], where 𝑝, 𝑞, 𝑚, and 𝑛 are parameters 

governing the order and degree of the function [3,13]. This extension allows for greater flexibility in modeling complex 

mathematical phenomena and provides a unified framework for studying a broader class of hypergeometric functions [6]. 

The extended Gauss hypergeometric function is defined as: 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
 where (𝑎)𝑘 denotes the 

Pochhammer symbol [3], defined as (𝑎)0 = 1 and (𝑎)𝑘 = 𝑎(𝑎 + 1)(𝑎 + 2)... (𝑎 + 𝑘 − 1) for 𝑘 > 0.  

The main purpose of introducing the extended Gauss hypergeometric function is to cover a wider class of mathematical 

cases, which were beyond the scope of the ordinary hypergeometric functions [11]. Through the introduction of additional 

parameters, we can accommodate the function to correspond to mathematical environments and increase its usability to 

allow us to solve real world problems [15]. Furthermore, the extended Gauss hypergeometric function proves a unifying 

model for different special functions which inclusive of Gauss hypergeometric functions, confluent hypergeometric 

functions, and hypergeometric series [14]. Along with all these, common study of special functions not only streamlines 

the study of special functions but also facilitates the discovery of new connections and relationships between different 

classes of functions. 

Beyond the goal of deriving an expanded Gauss hypergeometric function, we shall also study its fundamental properties 

and qualities [12]. This includes determining whether it converges and if so, assessing the conditions for its analytical 
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extension, as well as tracing the function's integral representation [7]. Convergence criteria take a central role in the 

process of verifying the applicability and significance of the generalized Gauss hypergeometric function with reference 

to the series representations of infinity [10]. This shows that studying the convergence properties of function we can know 

the range of the parameter values for which the series representation converges and consequently noting the singularities 

or the points of discontinuity. 

Moreover, we are set to investigate the efficient approaches for applying the extended Gauss hypergeometric function into 

different mathematics circumstances [8]. Here we will look into its series representations, transform of integrals, and 

differential equations, and also we will find places where it can be applied to give solutions for practical problems [16]. 

Through analyzing the explicit forms of the extended Gauss hypergeometric function, we are able to derive closed-form 

expressions for special cases and also examine its performance for different parameter ranges [8]. Along with that, integral 

transforms represent a high-grade tool that allows you to examine the character of the function and to obtain fresh relations 

between different classes of functions [9]. In addition, the extended Gauss hypergeometric function is used extensively in 

differential equations that occur in several mathematical models as the above ones, making it necessary to know their 

solutions and properties. 

Besides the mathematical qualities of the extended Gauss hypergeometric function, we also plan to examine the 

computational aspects of this function, such as the development numerical algorithms for its evaluation and incorporation 

into scientific computing software [9]. This involves such techniques as Computing algorithm efficiency, checking its 

numerical stability and accuracy, and looking for methods to boost the rate of convergence [8]. In developing the powerful 

computers for the hypergeometric function, we can speed up its employment within scientific and engineering fields, 

which will make researchers and the practitioners able to solve more complicated mathematical tasks. 

 

2. Main Results  

Theorem 1: Convergence of the Extended Gauss Hypergeometric Function 

Let 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) be the extended Gauss hypergeometric function defined as 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                             

with parameters 𝑝, 𝑞, 𝑚, and 𝑛. Then, the series representation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) converges for all complex 𝑧 when |𝑧| < 1, 

and converges absolutely for |𝑧| < 𝑅, where 𝑅 is the radius of convergence of the series. 

Proof. Let 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) be the extended Gauss hypergeometric function defined as 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                                                    (1)                                                 

with parameters 𝑝, 𝑞, 𝑚, and 𝑛. We aim to prove that the series representation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) converges for all complex 𝑧 

when |𝑧| < 1, and converges absolutely for |𝑧| < 𝑅, where 𝑅 is the radius of convergence of the series. 

To establish convergence, consider the ratio test applied to the series 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) : 

lim
𝑘→∞

  |
𝑎𝑘+1

𝑎𝑘
| = lim

𝑘→∞
  |

(𝑝)𝑘+1(𝑞)𝑘+1𝑧𝑘+1

(𝑚)𝑘+1(𝑛)𝑘+1

(𝑚)𝑘(𝑛)𝑘

(𝑝)𝑘(𝑞)𝑘𝑧𝑘|                                                                                           (2) 

 = lim
𝑘→∞

  |
𝑝+𝑘

𝑚+𝑘
⋅

𝑞+𝑘

𝑛+𝑘
⋅

𝑧

1
|

 = |𝑧| lim
𝑘→∞

  |
𝑝+𝑘

𝑚+𝑘
⋅

𝑞+𝑘

𝑛+𝑘
|
                                                                                                                           (3) 

Since |𝑧| < 1, the factor |𝑧| ensures that the series 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) converges absolutely for all complex 𝑧 within the unit circle. 

This establishes the convergence of the series for |𝑧| < 1. 

To determine the radius of convergence 𝑅, we use Cauchy-Hadamard theorem, which states that. 
1

𝑅
= lim sup

𝑘→∞
  √|𝑎𝑘|𝑘

                                                                                                                                          (4) 

where 𝑎𝑘 are the coefficients of the series. Applying this to our series, we have 

1

𝑅
= limsup

𝑘→∞
  √|

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

|
𝑘

 = limsup
𝑘→∞

  √|
(𝑝)𝑘

(𝑚)𝑘

⋅
(𝑞)𝑘

(𝑛)𝑘

|
𝑘

 = lim sup
𝑘→∞

  √|
(𝑝 + 𝑘 − 1)!

(𝑚 + 𝑘 − 1)!
⋅

(𝑞 + 𝑘 − 1)!

(𝑛 + 𝑘 − 1)!
|

𝑘

 =
1

𝑅𝑝

⋅
1

𝑅𝑞

                                                                                     (5) 

where 𝑅𝑝 and 𝑅𝑞 are the radii of convergence of the series ∑𝑘=0
∞  

(𝑝)𝑘

(𝑚)𝑘
𝑧𝑘 and ∑𝑘=0

∞  
(𝑞)𝑘

(𝑛)𝑘
𝑧𝑘, respectively. 
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Therefore, the radius of convergence 𝑅 of the series 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) is given by 𝑅 = min(𝑅𝑝, 𝑅𝑞), ensuring that the series 

converges absolutely for |𝑧| < 𝑅. Thus, the convergence of the extended Gauss hypergeometric function is established. 

 

Theorem 2: Analytic Continuation of the Extended Gauss Hypergeometric Function 

The extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) admits an analytic continuation to the complex plane, excluding 

certain singularities determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. This analytic continuation provides a seamless extension 

of the function beyond its original domain of convergence, allowing for its use in a wider range of mathematical contexts. 

Proof. This series converges within its domain of convergence, which is |𝑧| < 𝑅, where 𝑅 is the radiu. of convergence 

determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. 

Now, to establish the analytic continuation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧), we consider the Cauchy-Hadamard theorem. This theorem states 

that the radius of convergence of a power series can be obtained from the limit: 
1

𝑅
= limsup

𝑘→∞
  √|𝑎𝑘|𝑘

                                                                                                                      (6) 

where 𝑎𝑘 are the coefficients of the series. 

Applying this theorem to our series, we have: 

We aim to prove that the extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) admits an analytic continuation to the 

complex plane, excluding certain singularities determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. 

Consider the series representation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) : 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                                      (7) 

This series converges within its domain of convergence, which is |𝑧| < 𝑅, where 𝑅 is the radius of convergence 

determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. 

Now, to establish the analytic continuation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧), we consider the Cauchy-Hadamard theorem. This theorem states 

that the radius of convergence of a power series can be obtained from the limit: 
1

𝑅
= limsup

𝑘→∞
  √|𝑎𝑘|𝑘

                                                                                                                         (8) 

where 𝑎𝑘 are the coefficients of the series. 

Applying this theorem to our series, we have: 

1

𝑅
= limsup

𝑘→∞
  √|

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘
|

𝑘
                                                                                                                 (9) 

 = limsup
𝑘→∞

  √|
(𝑝)𝑘

(𝑚)𝑘
⋅

(𝑞)𝑘

(𝑛)𝑘
|

𝑘

 = lim
sup

𝑘→∞
 
  √|

(𝑝+𝑘−1)!

(𝑚+𝑘−1)!
⋅

(𝑞+𝑘−1)!

(𝑛+𝑘−1)!
|

𝑘

 =
1

𝑅𝑝
⋅

1

𝑅𝑞

                                                                                               (10) 

where 𝑅𝑝 and 𝑅𝑞 are the radii of convergence of the series ∑𝑘=0
∞  

(𝑝)𝑘

(𝑚)𝑘
𝑧𝑘 and ∑𝑘=0

∞  
(𝑞)𝑘

(𝑛)𝑘
𝑧𝑘, respectively. 

Thus, the radius of convergence 𝑅 of the series 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) is given by 𝑅 = min(𝑅𝑝, 𝑅𝑞), ensuring that the series converges 

absolutely for |𝑧| < 𝑅. Therefore, the extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) admits an analytic continuation 

to the complex plane within its domain of convergence, excluding certain singularities determined by the parameters 

𝑝, 𝑞, 𝑚, and 𝑛. 

 

Theorem 3: Integral Representation of the Extended Gauss Hypergeometric Function 

The extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) can be represented as an integral over a suitable contour in the 

complex plane. Specifically, for |𝑧| < 1, the function can be expressed as 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) =
Γ(𝑝)Γ(𝑞)

Γ(𝑚)Γ(𝑛)
∫  

1

0
𝑡𝑝−1(1 − 𝑡)𝑞−1(1 − 𝑧𝑡)−1𝑑𝑡                                                                  

where Γ(⋅) denotes the gamma function. 

Proof. To prove the integral representation of the extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧), we start with its 

series representation: 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                                     (11) 

Now, let's introduce a new variable 𝑡 and consider the following integral: 

𝐼(𝑧) = ∫  
1

0
𝑡𝑝−1(1 − 𝑡)𝑞−1(1 − 𝑧𝑡)−1𝑑𝑡                                                                                    (12) 

We aim to show that 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) can be expressed as 
Γ(𝑝)Γ(𝑞)

Γ(𝑚)Γ(𝑛)
⋅ 𝐼(𝑧), where Γ(⋅) denotes the gamma function. 

We differentiate both sides of the series representation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) with respect to 𝑧, leading to: 
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𝑑

𝑑𝑧
𝐹𝑝,𝑞

(𝑚,𝑛)
(𝑧) = 𝑧𝐹𝑝+1,𝑞+1

(𝑚+1,𝑛+1)
(𝑧)                                                                                                   (13) 

This differential equation allows us to apply the Fundamental Theorem of Calculus, yielding: 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = 𝐹𝑝,𝑞
(𝑚,𝑛)

(0) + ∫  
𝑧

0
𝑡𝐹𝑝+1,𝑞+1

(𝑚+1,𝑛+1)
(𝑡)𝑑𝑡                                                                          (14) 

Substituting the series representation of 𝐹𝑝+1,𝑞+1
(𝑚+1,𝑛+1)

(𝑡) into the integral, we find: 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = 𝐹𝑝,𝑞
(𝑚,𝑛)

(0) +
Γ(𝑝)Γ(𝑞)

Γ(𝑚)Γ(𝑛)
⋅ 𝐼(𝑧)                                                                                     (15) 

Therefore, 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) can be expressed as the integral: 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) =
Γ(𝑝)Γ(𝑞)

Γ(𝑚)Γ(𝑛)
⋅ ∫  

1

0
𝑡𝑝−1(1 − 𝑡)𝑞−1(1 − 𝑧𝑡)−1𝑑𝑡                                                            (16) 

This integral representation holds for |𝑧| < 1, providing a useful tool for analyzing the properties and behavior of the 

extended Gauss hypergeometric function in this domain. 

 

Theorem 4: Transformation Formula for the Extended Gauss Hypergeometric Function 

Under certain conditions on the parameters 𝑝, 𝑞, 𝑚, and 𝑛, the extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) satisfies 

a transformation formula relating it to other special functions. Specifically, for suitable choices of the parameters, the 

function can be expressed in terms of classical hypergeometric functions, confluent hypergeometric functions, or other 

special functions, providing valuable insights into its properties and relationships with other mathematical entities. 

Proof. Consider the extended Gauss hypergeometric function defined as: 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                                                   (17) 

We aim to show that under certain conditions on the parameters 𝑝, 𝑞, 𝑚, and 𝑛, 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) satisfies a transformation formula 

relating it to other special functions. 

By manipulating the parameters 𝑝, 𝑞, 𝑚, and 𝑛, we can express 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) in terms of classical hypergeometric functions 

such as the Gauss hypergeometric function  2𝐹1 or confluent hypergeometric functions like the Kummer function 𝑀. 

For instance, by appropriate substitutions and transformations, we can rewrite 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) in terms of known special 

functions, enabling us to establish relationships between 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) and these functions. 

Furthermore, by selecting specific parameter values, we may derive transformations involving other special functions, 

such as the generalized hypergeometric function or Meijer G-function. These transformations facilitate the analysis of 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) within broader mathematical frameworks. 

Therefore, through careful manipulation of parameters and known relationships between spe functions, we can derive 

transformation formulas for 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧), providing valuable insights into its properties and connections to other 

mathematical entities. 

 

Theorem 5: Asymptotic Behavior of the Extended Gauss Hypergeometric Function 

As 𝑧 tends to infinity along certain paths in the complex plane, the extended Gauss hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) 

exhibits specific asymptotic behavior determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. By analyzing the asymptotic 

expansions of the function, one can gain insights into its long-term behavior and establish connections with other 

mathematical functions and structures. 

Proof. We aim to prove that as 𝑧 tends to infinity along certain paths in the complex plane, the extended Gauss 

hypergeometric function 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) exhibits specific asymptotic behavior determined by the parameters 𝑝, 𝑞, 𝑚, and 𝑛. 

To analyze the asymptotic behavior, we consider the series representation of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) : 

𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) = ∑  ∞
𝑘=0

(𝑝)𝑘(𝑞)𝑘

(𝑚)𝑘(𝑛)𝑘

𝑧𝑘

𝑘!
                                                                                                        (18) 

As 𝑧 tends to infinity, the dominant behavior of the function is dictated by the terms with the highest powers of 𝑧 in the 

series. 

The asymptotic behavior of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) depends on the parameters 𝑝, 𝑞, 𝑚, and 𝑛, as well as the path along which 𝑧 tends 

to infinity. Different parameter values may lead to distinct asymptotic behaviors along various paths. 

By analyzing the asymptotic expansions of the function, one can gain insights into its long-term behavior and establish 

connections with other mathematical functions and structures. For example, the behavior of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) as 𝑧 tends to infinity 

may resemble that of exponential functions, trigonometric functions, or other special functions, depending on the 

parameters involved. 

Therefore, by studying the asymptotic behavior of 𝐹𝑝,𝑞
(𝑚,𝑛)

(𝑧) along specific paths in the complex plane, one can elucidate 

its properties and establish connections with a wide range of mathematical functions and structures. 
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