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Abstract : 

This paper explains the convergence results of common best proximity points of various of non-self mappings in the 

setting of Banach spaces. In detail, we approximate new line a common fixed point for the class of relatively non expansive 

mappings by using fixed point . Through this result, we approximate common best the help of projective operators. And, 

we prove the new line convergence results of geometry involving in Banach spaces, generalized non expansive new line 

and proximally quasi-contractive multivalued mappings in uniformly convex Banach.  
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Introduction: In this paper we list some geometric properties of Banach spaces and some fixed point theory results which 

we use in the subsequent title. Certain geometric properties of a Banach space X are helpful to study the existence of fixed 

points for non expansive mappings and asymptotically non expansive mappings on closed bounded convex subsets of X. 

In this paper  we give a brief introduction to Geometry of Banach spaces, a brief introduction to fixed point theory, a brief 

introduction to best proximity point theorems, and finally we give contents of the paper. 

Let X be a normed linear space with norm ‖.‖. We denote the closed unit ball of X by 𝐵𝑥, which is defined by 𝐵𝑥 := {x ∈ 

X : ‖𝑥‖  ≤ 1} and the closed unit sphere of X by 𝑆𝑥 which is defined by 

 𝑆𝑥 := {x ∈ X : ‖𝑥‖ = 1}. For a nonempty subset M of X, x ∈ X and δ > 0, let  

PM(x) := {y ∈ M : 𝐾𝑥 − 𝐾𝑌 = dist(x, M)}; 𝑃𝑀 (x, δ) : 

= {y ∈ M : 𝐾𝑥 − 𝐾𝑦 ≤ dist(x, M) + δ}. 

 

The set 𝑃𝑀 (x) is called the set of all best approximations of M to x. The set 𝑃𝑀 (x, δ) is always nonempty whereas the set 

𝑃𝑀 (x) need not be nonempty. The set M is said to be proximal at x if 𝑃𝑀 (x) is nonempty and Chebyshev at x if 𝑃𝑀 (x) is 

singleton. A sequence (𝑥𝑛) is said to be a minimizing sequence of M at x if k𝑥𝑛 − 𝑥𝑘 → dist(x, M).  

The set M is said to be approximatively compact at x if every minimizing sequence of M at x has a convergent subsequence 

in M. The set M is said to be proximal, Chebyshev and approximatively compact if it is proximal, Chebyshev and 

approximatively compact at every x ∈ X respectively. We will see that there are nice relations between some geometric 

properties of X and approximation properties of closed convex subsets of X. A normed linear space X is said to be strictly 

convex if it does not contain a nontrivial line segment on its unit sphere and X is said to have KK property if the weak 

convergence and strong convergence are equivalent on its unit sphere.  

We obtain some results for order-preserving continuous maps without monotone non expansive condition in a uniformly 

convex Banach space having monotone norm. Under similar situation we also obtain a fixed  point theorem in a reflexive 

Banach lattice. Throughout this chapter, a Banach space is over K which is either the filed R of real numbers or the filed 

C of complex numbers unless otherwise specified. The norm on a Banach space is denoted by ‖. ‖ 

 

Asymptotically non expansive and monotone asymptotically non expansive mapping :  

Definition 1. Let X be a Banach space and K be a nonempty subset of X. A map T : K → K is said to be 

1. Non expansive if ‖T(x)  −  T(y)k ≤  𝐾𝑥  −  y ‖ for every x, y ∈ K,  

2. asymptotically non expansive if there exists a sequence (𝑘𝑛) of positive real numbers with lim
𝑛→∞

𝑘𝑛  =  1  such that 

‖𝑇𝑛(𝑥) −  𝑇𝑛(𝑦) ‖ ≤ 𝑘𝑛 ‖𝑥 − 𝑦‖ 

 for every x, y in K and n = 1, 2, . . .. 3. pointwise asymptotically non expansive if for each x ∈ K there exits a sequence 

𝛼𝑛 (x) of positive real numbers which converges to 1, such that ‖𝑇𝑛(𝑥) −  𝑇𝑛(𝑦) ‖≤ 𝛼𝑛(x) 𝑘𝑥 − 𝑦𝑘                                                                              

for each integer n ≥ 1 and for each y in K  

Hence non expansive mappings are also asymptotically non expansive mappings and asymptotically non expansive 

mappings are also pointwise asymptotically non expansive mappings. 

 

Definition 2. A Banach space X is said to be uniformly convex (UC), if for every ∈ with 0 < ∈ ≤ 2  
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𝜹(€) : =  {𝟏 −  ‖
𝑥 + 𝑦

2
‖ ∶  ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1, ‖𝑥 − 𝑦‖ ≥∈} >  0 

The function δ is called modulus of convexity of the Banach space X. It is known that δ is an increasing continuous 

function on (0, 2]. This fact is used to prove . 

 

Definition 3. A nonempty subset M of X is said to be k-strongly Chebyshev at x ∈ X if M is approximatively compact at 

x and 𝑑𝑖𝑎𝑚𝐾(𝑃𝑀(x, 0)) = 0. 

 

Definition 4. For k ∈ 𝑍+ , the space X is said to be k-strongly convex if X is reflexive, k-rotund and it has KK property. 

This notion of k-strongly Chebyshev coincides with strongly Chebyshev when k = 1. If M is k-strongly Chebyshev at 

every element of a set N then we say that M is k-strongly Chebyshev on N. If M is k-strongly Chebyshev on X then we 

say M is k-strongly Chebyshev. 

 

An Introduction to Geometry of Banach Spaces :  

Let X be a normed linear space with norm‖. ‖ We denote the closed unit ball of X by 𝐵𝑥 , which is defined by 𝐵𝑥 := {x ∈ 

X : ‖. ‖  ≤ 1} and the closed unit sphere of X by SX which is defined by 𝑆𝑥 := {x ∈ X : ‖. ‖  = 1}. For a nonempty subset 

M of X, x ∈ X and δ > 0, let  

𝑃𝑀(x) := {y ∈ M : ‖𝑥 − 𝑦‖ = dist(x, M)};  

𝑃𝑀 (x, δ) := {y ∈ M : ‖𝑥 − 𝑦‖ ≤ dist.(x, M) + δ}. 

The set 𝑃𝑀(x) is called the set of all best approximations of M to x.  

The set 𝑃𝑀 (x, δ) is always nonempty whereas the set 𝑃𝑀 (x) need not be nonempty. The set M is said to be proximal at x 

if 𝑃𝑀 (x) is nonempty and Chebyshev at x if 𝑃𝑀 (x) is singleton. A sequence (𝑥𝑛) is said to be a minimizing sequence of 

M at x if  ‖𝑥𝑛 − 𝑥‖ → dist(x, M). The set M is said to be approx. amatively compact at x if every minimizing sequence 

of M at x has a convergent subsequence in M. The set M is said to be proximal, Chebyshev and approximatively compact 

if it is proximal, Chebyshev and approximatively compact at every x ∈ X respectively. We will see that there are nice 

relations between some geometric properties of X and approximation properties of closed convex subsets of X. A normed 

linear space X is said to be strictly convex if it does not contain a nontrivial line segment on its unit sphere and X is said 

to have KK property if the weak convergence and strong convergence are equivalent on its unit sphere. 

 

Definition . A real normed linear space X is said to be k-rotund (k-R) if 𝑥1, 𝑥2 , . . . . . . 𝑥𝑘+1 ∈ 𝑆𝑥 with V(𝑥1, 𝑥2 , . . . . . . 𝑥𝑘+1 >
0), then 

‖
𝑥1, 𝑥2 , . . . . . . 𝑥𝑘+1

𝑘 + 1
‖ < 1. 

Sullivan [13] introduced the concept of k-uniform rotundity (k ∈ 𝑍+) in a real normed linear space as a generalization of 

uniform convexity and k-strict convexity. 

 

Theorem 1. A normed linear space X is reflexive if and only if every closed convex subset of X is proximal. 

If X is reflexive then every bounded sequence has a weakly convergent subsequence. Using this fact, it is easy to see that 

in a reflexive space, every closed convex set is proximal. For the converse we use the following characterization of 

reflexivity due to James as stated below. 

Theorem 2. (James). A Banach space X is reflexive if and only if every bounded linear functional on X is norm attaining. 

Note that a linear functional f on X is said to be norm attaining if there exists x ∈ 𝐵𝑥 such that f(x) = ‖. ‖ One can verify 

that a normed linear space X is strictly convex if and only if the set 𝑃𝑀(x) contains atmost one point for every closed 

convex subset M of X and x in X. 

Theorem 3. A normed linear space X is strictly convex and reflexive if and only if every closed convex subset of X is 

Chebyshev. 

Theorem 4. A normed linear space X is reflexive and KK if and only if every closed convex subset of X is approximatively 

compact. A normed linear space X is said be strongly convex if X is reflexive, strictly convex and it has KK property.  

Clarkson introduced a notion called uniform convexity in normed linear spaces. Uniformly convex spaces unify inner 

produced spaces and 𝐿𝑝 spaces for 1 < p < ∞.  

Theorem 4. Let X be a real Banach space. The following statements are equivalent. 

 1. X is uniformly convex.  

2. 𝐵𝑥 is uniformly strongly Chebyshev on X.  

3. 𝐵𝑥 is uniformly strongly Chebyshev on 2𝑆𝑋.  

4. 𝑆𝑋 is uniformly strongly Chebyshev on r𝑆𝑋 for every r > 0.  

5. 𝑆𝑋 is uniformly strongly Chebyshev on 
1

2
𝑆𝑋.  

6. (𝑆𝑋, 
1

2
 𝑆𝑋) has property UC. 

In [19] the authors have given some characterizations of strong convexity in terms of property UC as follows. 

Theorem 5. (Nadler). Let (X, d) be a complete metric space and      T : X → 𝐶𝐵(X) be a multivalued contraction. Then 

there exists 𝑥0 ∈ X such that 𝑥0 ∈ T(𝑥0). 
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Nadler’s theorem gives the existence of a fixed point for a multivalued contraction map. Note that the multivalued 

contraction map need not have unique fixed point. Let D be a nonempty closed convex subset of a Banach space X.  

If we assume S : D → D is a continuous map such that S(D) is contained in a compact set, then Theorem 4 ensures that S 

has a fixed point. If we assume S : D → X is a continuous map such that S(D) is contained in a compact set, then S need 

not have a fixed point or if we assume T : D → X is a contraction map then T need not have a fixed point. In 1955, 

Kwasniewski [14] proved a fixed point theorem combining two fixed point theorems namely, Banach fixed point theorem 

and Schauer fixed point theorem which gives the existence of a fixed point for the sum of two maps. 

Theorem 6. Let D be a nonempty closed convex subset of a Banach space X and S, T : D → X be maps such that 

(i)T is a contraction map;  

(ii) S is continuous and S(D) is contained in a compact set;  

(iii) T(D) + S(D) ⊆ D.  

Then there exists 𝑥0 ∈ D such that T 𝑥0 + S𝑥0 = 𝑥0.  

When S = 0, Theorem 1 reduces to Banach contraction theorem and when T = 0 Theorem1. reduces to Schauer fixed point 

theorem. In 2004, Ran and Reu rings [4] proved an analogue version of Banach contraction theorem in a partially ordered 

complete metric space as stated below. Later many authors [17,18,19,20] studied this result in many directions. 

Lemma : Let K be a nonempty subset of a normed linear space X. A map        T : K → K is said to be non expansive if 

‖𝑇𝑥 −  𝑇𝑦‖ ≤ ‖𝑥 −  𝑦‖, for all x, y ∈ K. 

It is easy to see that a non expansive map on a compact set need not have a fixed point. To prove the existence of fixed 

points for non expansive mappings on closed bounded convex sets, we mainly focus on some geometric properties of the 

normed linear space X. Fixed point theory of non expansive maps and asymptotically non expansive maps is to determine 

the conditions on the structure of the set K or on the space X which guarantee the existence of fixed points for non 

expansive mappings and asymptotically non expansive mappings. In 1965 Browder [10] and Godha [16] proved 

independently the existence of fixed points for non expansive mappings in uniformly convex Banach spaces as stated 

below. 

Fixed Point Theory :  

Let D be a nonempty subset of X. Let T be a map from D to Y , where Y is a subset of X. In fixed point theory we mainly 

search for some suitable conditions on X, D or T such that the equation 𝑇𝑥 = x has a solution for some x in D. Such a point 

x is said to be a fixed point of T. Now we discuss some applications of fixed point theory.  

1. Picard’s Existence and uniqueness Theorem (in ordinary differential equations): Let us consider the following first 

order differential equation. 
𝑑𝑥

𝑑𝑡
 = f(t, x(t)) 

with the initial condition x(𝑡0) = 𝑥0 . 

Suppose f is a real valued continuous function on 

D := {(t, x) : |t − 𝑡0| ≤ a, |x − 𝑥0| ≤ b} 

for some a, b > 0 and hence there exists c such that |f(t, x)| ≤ c for all     (t, x) ∈ D. Suppose there exists a constant k such 

that  

|f(t, x) − f(t, y)| ≤ k|x − y| for (t, x),(t, y) ∈ D. 

Using Banach contraction theorem, the initial value problem has a unique solution on an interval [𝑡0 − α, 𝑡0 + α], where 

α < min {𝑎 ,
𝑏

𝑐
 ,

1

𝑘
} . 

2. Invariant subspace problem: The invariant subspace problem in operator theory is one of the most famous unsolved 

problems. If X is a Banach space and T is a bounded linear operator on X, then T has a nontrivial closed invariant subspace 

or not is not known for a long time. In this direction in 1987 Enfold gave an example of an operator in a Banach space 

which has no nontrivial closed invariant subspace. Though the problem is still open in Hilbert spaces, in 1973 Lomonosov 

proved the following theorem. 

 

PRELIMINARY CONCEPTS AND SOME FIXED POINT RESULTS :  

During last three decades the fixed point theory is developed in different ways by various mathematicians by either 

enriching the space structure and relaxing the mapping condition or vice -versa. Hereby we restrict our study in geometry 

, Banach, 2- fixed point  and 3- Banach spaces and their applications. In the context of the results we obtain in subsequent 

chapters, we need some fundamental concepts and the fixed point results already obtained by the authors mentioned in 

introduction & theorems , lemma In this section we give preliminary definitions and examples related to fixed point theory. 
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