

Survey And Documentation Of Climbing Plant Species In The Vellambi Forest In Kanniyakumari District.

Shasheela P1* and Uma R2

^{1*}Research Scholar, Reg No: 21213152262014, Department of Botany, S.T.Hindu College, Nagercoil.
 ²Assistant Professor, Department of Botany, S.T.Hindu College, Nagercoil. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India). shasheelap@gmail.com

*Corresponding Author: Shasheela P

*Research Scholar, Reg No: 21213152262014, Department of Botany, S.T.Hindu College, Nagercoil.

ABSTRACT

In Kanniyakumari District's Vellambi Forest, a study was conducted to identify climbing plants and their practical use. Climbing plants can be woody or slender, but they have an unusual ability to circumnutate. They frequently possess unique morphological features that facilitate their ascent. They have been divided into several categories, such as tendrillar, twiners, creepers, climbers, etc., based on their habits and alterations. There were 27 climbing plants found in all. They are divided into 16 families, which correspond to 23 genera and 27 species. The study area's leading families include Convolvulaceae and Cucurbitaceae, each with four species; Fabaceae and Vitaceae follow with three species apiece, and Dioscoreaceae has two species. Eleven families, however, were monospecific. Locating the sources of climber in the Vellambi forest.

Keywords: cucurbitaceae, survey, climber, Vellambi forest

INTRODUCTION:

Based on the form of the stem, climbing plants or climbers can be roughly classified into two groups: vines and lianas (Caballe 1998). A vine is an herbaceous, relatively thin-stemmed climber that primarily inhabits areas that are either highly lighted or disturbed. The morning glory (Convolvulaceae) and gourd (Cucurbitaceae) families contain a wide variety of herbaceous vines.

As a common characteristic of tropical forests, climbing plants are more abundant and diverse than those found in temperate forests (Givnish & Vermeij 1976; Grubb 1977; Putz 1984; Gentry 1991; Richards 1996). Their presence is frequently a key physiognomic feature that distinguishes tropical from temperate forests (Reddy & Parthasarathy 2003; Schnitzer & Bongers 2002; Nabe-Nielsen 2001; Perez-Salicrup et al. 2001).

The current climatological trend has led to an increase of climbing plants in tropical woods (Malhi &Wright2004). Plant species classified as climbers rely on other plants for support to grow upwards through their canopy thanks to structural features. The vast variety of climbing found in the tropical jungle plants, some of which are enormous, medium-sized, and tiny. They exhibit starting range of green forms that are twisted and twining, greatly influenced by their surroundings (Singh and associates, 2015).

MATERIALS AND METHODS

A. Study Area

The present study is to collect the information of traditional uses of edible fruits used by the people of Vellambi forest. Vellambi forest is situated at Thovalai taluk, Kanya Kumari district. It is bounded by Thadikkaran Konam in south, Mara Malai in the north and Perunchani dam in the west. It is 27 kilometers away from Nagercoil. The people who lives in this area is called as 'kanikaran'. The word kanikaran means hereditary proprietor of the land. Its total population is 200. In which the number of literates is 23 and illiterates are 177. A very old Kali Temple is situated ½ km away from Vellambi forest. The natural vegetation of this region represents biomass ranging from Southern thorn forests to evergreen hill shoals with grass downs. This region comprises of a large number of edible fruits.

B. Data Collection

In the field study, the botanical knowledge of kani tribals was collected by the informal interviews to the elder peoples, between the age group of 50 and 90. The local name of the plants, uses, useful parts, cultural activities and indigenous technical knowledge were recorded. Plants were studied with reference to their local name, binomial, habit, description, useful parts and medicinal values by referring standard books and photographs were taken.

C. Plan of presentation of data:

Families are arranged in the alphabetic order and the species are also arranged alphabetically under each family. Each genus includes its correct name with author citation and species is provided with the correct name and author citation.

RESULT

They are 16 families with a total of 27 climbing plants known (Table.1). The highest family contributions among these were from the Convolvulaceae and Cucurbitaceae, with 4 species each. Each family, Fabaceae and Vitaceae, has 3 species. The Dioscoreaceae family has 2 species. The outcome with Shah *et al.*, (2013) findings.

Rich diversity has been reported in tropical regions by earlier investigations (Jayakumar and Nair 2013; Phillips and Miller 2002). A similar result was found in the current study, indicating a high correlation between the general type and location of forests and the regional distribution of climbing plant species In addition, characteristics of trees like flaky and rough bark might have an impact on where some climbing plant species are found (Van der Heijden et al 2008).

Table 1. List of plants recorded from the study area:

Table 1. List of plants recorded from the study area:								
Botanical Name	Common Name	Local Name	Family	Form of Uses/Recipe				
Abrus precatorius L.	Rosary pea	Kunni muthu	Fabaceae	Dried leaves and root powder is given orally in case of eye complaint				
Allamanda	Golden	Manjal patti	Apocynaceae	To induce vomiting in low dosage,				
cathartica L.	trumpet			as a high dosage can be toxic.				
Antigonon	Mexican	Ladies	Polygonaceae	Leaves used in the Caribbean as				
leptopus Hook & Arn.	creeper	necklace flower		poultices for boils and swelling.				
Aristolochia indica L.	Indian birthwort	Karuda kodi	Aristolochiaceae	The root is used in skin diseases and heals wounds				
Asparagus racemosus Willd.	Shatavari	Shatavari	Asparagaceae	Whole plant use Diabetes.				
Asystasia gangetica (L.) T. Anderson	Chinese violet	Vaadai poo	Acanthaceae	Roots that have been powdered are used to cure snakebites and stomach aches.				
Basella alba L.	Malabar spinach	keerai	Chenopodiaceae	Pulped leaves used to treat boils and sores.				
Bougainvillea spectabilis Willd.	Great bouganvillea	Paper poo	Nyctaginaceae	Ornamental				
Cardiospermum halicacabum L.	Ballloon vine	Ulincha	Sapidaceae	This plant is used for the treatment of abdominal pain.				
Cayratia pedata (Lam.) Gagnep.	Birdfoot grapevine	Kaatu pirandai	Vitaceae	It is used as treating ulcers.				
Cayratia trifolia (L.) Mabb. & J.Wen	Fox grape	Kaatu pirandai	Vitaceae	Paste of tubers applied to snake bites				
Cissus quadrangularis L.	Veld grape	Pirandai	Vitaceae	People use joint pain, low bone mass				
Clerodendrum thomsoniae Balf.f.	Bleeding-heart vine	Kadalapoovu	Lamiaceae	Ornamental				
Clitoria ternatea L.	Butterfly pea	Sanku pushpam	Fabaceae	It is used to memory enhancer				
Coccinia grandis (L.) Voigt	Ivy gourd	Kovaikai	Cucurbitaceae	Used to Currie				
Combretum indicum (L.) DeFilipps	Rangoon creeper	Maalai poo	Combretaceae	Ornamental				
Derris involuta (Sprague) Sprague	Jewel vine	Kaatu kodi	Fabaceae	A strong insecticide and fish poison.				
Dioscorea bulbifera L.	Air potato	Siru kizhangu	Dioscoreaceae	Cooking				
Dioscorea hispida Dennst.	Three- leaved yam	kizhangu	Dioscoreaceae	Cooking				
Distimake dissectus (Jacq.) A.R.Simoes & Staples	Alamo vine	Alamo kodi	Convolvulaceae	Poison plant				
Ipomoea indica (Burm.f.)	Blue dawn flower	Neela poo chedi	Convolvulaceae	Cure wound healing				

Ipomoea obscura	Small whit	Vella poo	Convolvulaceae	Used anti-inflammatory
(L.) Ker Gawl.	morning glory	chedi		
Ipomoea	Cypress vine	Ootu padathi	Convolvulaceae	Ornamental
quamoclit L.				
Luffa aegyptiaca	Sponge gourd	Chavuri kodi	Cucurbitaceae	Fruit is used to cleaning the vessels
Mill.				
Melothria pendula	Creeping	Padarum	Cucurbitaceae	Cure wound healing
L.	cucumber	vellari		
Mikania micrantha	Bitter vine	Kattu kodi	Asteraceae	Wound dressing and healing of
Kunth				sores
Momordica	Bitter gourd	pagarkai	Cucurbitaceae	Cooking
charantia L.				

CONCLUSION

Climbers provide great promise for providing millions of tribals and forest inhibitants in India's western ghats with a means of subsistence and survival tactics. The study found that are 27 species climbing plants in 16 groups. Certain foods are ingested raw, while others are eaten cooked through. These highly nutritious food plants are devoid of synthetic addictives. Therefore, protecting the Vellambi forest is crucial for the sake of our future generations.

ACKNOWLEDGEMENT

The authors wish to thank Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.

REFERENCE

- 1. Caballe, G. 1998. The self-supporting part of the tropical lianas: A synthesis of the strategies of growth. *Canadian J. Bot.* 76: 1703 1716.
- 2. Gentry, A.H. 1991. The distribution and evolution of climbing plants. In: F.E. Putz & H.A.
- 3. Mooney (eds.), *The Biology of Vines*. Cambridge University Press, Cambridge. Pp. 3 49.
- 4. Givnish, T.J. & Vermeij, G.J. 1976. Sizes and shapes of liana leaves. Am. Natur. 110: 743 778.
- 5. Grubb, P.J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. *Ann. Rev. Ecol. Syst.* 8: 83 107.
- 6. Jayakumar R and Nair KN. (2013). Diversity and distribution of vines in the tropical forests of Nilgiri biosphere reserve, India. Curr. Sci., 105(4): 470-479.
- 7. Malhi, Y. & J. Wright. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. *Biol. Sci.* 359: 311 329.
- 8. Nabe-Nielsen, J. 2001. Diversity and distribution of lianas in a neo-tropical rain forest, Yasuní National Park, Ecuador. *J. Trop. Ecol.* 17: 1 19.
- 9. Pe'rez-Salicrup, D.R.; Sork, V.L. & Putz, F.E. 2001. Lianas and trees in a liana forest of Amazonian Bolivia. *Biotropica* 33: 34 47.
- 10. Putz, F.E. 1984. The natural history of lianas on Barro Colorado Island, Panama. *Ecology* 65: 1713 1724.
- 11. Reddy, M.S. & Parthasarathy, N. 2003. Liana diversity and distribution in four tropical dry evergreen forest on the Coromandel coast of South India. *Biodiv. Consv.* 12: 1609 1627.
- 12. Richards, P.W. 1996. *The tropical rain forest: An ecological study*, 2nd edn., Cambridge University Press, Cambridge, UK.
- Schnitzer, S.A. & Bongers, F. 2002. The role of lianas in forests. Trends Ecol. Evol. 17: 223 230
- 13. Singh V, Singh RK and Gupta SL. (2015). Diversity of climbers, trailers and parasitic plants in botanical garden, Botanical Survey of India, Central regional centre, Allahabad. Indian Journal of Forestry, 38(2)195-200.
- 14. Van der Heijden GMF, Healey JR and Phillips OL. (2008). Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science 19:747-756.