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Abstract  

Assessing software effectiveness, reliability, and quality involves a systematic approach to identifying bugs within the 

product. The detection of bugs during software development has spurred the development of various prediction methods 

to address them. Predicting bugs in concurrent software products is crucial for reducing development time and costs. This 

study delves into experiments conducted on a publicly available bug prediction dataset, which encompasses numerous 

open-source software projects. Employing the Genetic algorithm, relevant features were extracted from the datasets to 

mitigate overfitting risks. These features were then categorized as defective or non-defective using classification 

techniques such as random forest, decision tree, and artificial neural networks. Evaluation of these techniques included 

metrics like accuracy, precision, recall, and F-score. Results revealed that random forest outperformed other algorithms 

in accuracy, precision, and F-score, with average scores of 83.40%, 53.18%, and 52.04%, respectively. Additionally, the 

neural network demonstrated superior recall, achieving an average score of 60% among the algorithms. Consequently, 

this system offers valuable support to software developers, aiding them in delivering high-quality software with minimal 

defects to customers. 

 

Keywords: Random Forest, Decision Tree, Artificial Neural Network, Software Defect Prediction, Software metrics, 

Genetic Algorithm  

 

1. Introduction  

A software defect refers to a flaw, fault, or failure within a computer system or program, resulting in unexpected or 

incorrect behaviors [9]. These discrepancies are typically discovered during software testing and categorized as defects. 

Utilizing software defect prediction methods proves to be more cost-effective in detecting such issues compared to 

traditional testing and reviews. Recent studies suggest that the probability of detecting software bugs through prediction 

models may exceed that of current software review methods [8]. Prompt identification of software bugs allows for the 

efficient allocation of testing resources and aids in enhancing a system's architectural structure by identifying high-risk 

segments [8]. Recognizing fault-prone code at each stage of software testing contributes to the development of high-

quality software. 

Feature selection serves as a crucial technique for managing extensive metric sets by identifying which metrics 

significantly influence software defect prediction performance. By employing feature selection, redundant and 

nonindependent attributes are eliminated from the dataset [5]. In this study, the genetic algorithm was employed to extract 

relevant features from raw datasets. Two primary approaches for constructing a software defect prediction model are 

supervised learning and unsupervised learning. However, supervised learning necessitates historical data or known results 

to train the model, presenting challenges. 

 

While a multitude of techniques and learning algorithms are available for selecting software metrics, this paper utilized 

the Random Forest, Decision Tree, and Artificial Neural Network techniques for the prediction model, utilizing a minimal 

set of metrics to achieve acceptable results. The performance of these techniques was assessed using accuracy, precision, 

recall, and F-score. Accuracy reflects the number of correctly classified instances, precision measures the proportion of 

identified faulty files that are genuinely faulty, and recall evaluates the proportion of faulty files correctly identified as 

such.  

 

2. Related Work  

Menzies et al. [7] utilized OneR, a classification rule algorithm, to evaluate thresholds of single attributes, concluding 

that OneR is often outperformed by the J48 decision tree. Shafi et al. [10], in addition to OneR, employed another 

classification rule technique called ZeroR, which was found to be surpassed by OneR. ZeroR predicts the value of the 

majority class. Arisholm et al. [2, 3] conducted two separate studies using the meta-learners Decorate and AdaBoost along 

with J48 decision tree. They reported that Decorate outperformed AdaBoost on small datasets and performed comparably 

well on large datasets; however, they did not specify their definition of small and large datasets. 
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Grishma and Anjali investigated the root cause for fault prediction by applying clustering techniques and identifying 

defects occurring in various phases of the SDLC. They utilized the COQUALMO prediction system to predict defects in 

software and applied various clustering algorithms such as k-means, agglomerative clustering, density-based scan, 

COBWEB, expectation maximization, and farthest first. The implementation was carried out using the WEKA tool. 

Ultimately, they concluded that the k-means technique exhibited superior performance compared to other algorithms [4]. 

 

Studies in [11, 6] analyzed the applicability of various machine learning methods for fault prediction. Sharma and Chandra 

[11] expanded their study to incorporate important previous research on each machine learning technique and current 

trends in software bug prediction using machine learning. This study serves as a foundation or stepping stone for future 

work in software defect prediction. Agasta and Ramachandran [1] addressed the challenging task of predicting the fault-

proneness of program modules when fault labels are unavailable in the software industry. They attempted to predict the 

fault-proneness of program modules in the absence of fault labels, proposing supervised techniques like the Genetic 

algorithm-based software defect prediction approach for classification. 

 

Yu et al. [12] developed a model named ConPredictor, utilizing a combination of derived metric sets to improve the 

prediction of defects in concurrent software programs using deep learning techniques. 

  

3. Methodology  

Data Collection  

The datasets used in this study were obtained from a publicly available bug prediction dataset, which serves as a repository 

for defect prediction in numerous open-source software projects. Specifically, the dataset selected for analysis in this 

paper was the "weighted-ent" dataset, derived from files within each repository. Weighted entropy, referred to as 

"weighted-ent" in this context, quantifies the information provided by a probabilistic test, considering both the objective 

and qualitative weights of its elementary events. 

 

Feature Selection  

Feature selection, also known as attribute selection, is the process of choosing a subset of relevant features for use in a 

prediction model. In this study, this process was accomplished using the genetic algorithm, which extracted the features 

that have the greatest impact on the outputs, namely the number of bugs in a software product. A typical genetic algorithm 

flowchart is depicted in Figure 1 below. 

 

 
Fig.1:-The Flowchart of a Typical Genetic Algorithm 
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Machine Learning Algorithms  

While machine learning algorithms typically learn to predict outputs based on previous examples, in this paper, the 

experiment aimed to test the extracted features, employing learning algorithms with their standard settings in the 

MATLAB environment using the statistical toolkit. The learning algorithms utilized for constructing the defect prediction 

model in this study include Random Forest (RF), Decision Tree (DT), and Artificial Neural Network (ANN). 

  

Random Forest  

The essence of this technique lies in constructing small decision trees with only a few features, making it computationally 

inexpensive.   

However, Random Forest (RF) operates as an ensemble learning algorithm. By concurrently considering weak and small 

decision trees, these trees can be amalgamated to create a robust and singular learner through majority voting. Moreover, 

random forests are frequently noted for their high accuracy in learning algorithms. Therefore, the pseudo code employed 

in this paper is provided below in Algorithm 1. Consequently, generating a larger number of trees using the random forest 

learning algorithm not only remains a viable option, but these trees also exhibit lower correlation, enhancing the 

algorithm's overall performance. 

 

Algorithm1: Pseudocode ofRandomForest   

Precondition: Atrainingset𝑆➟(𝗑1,𝑦1),…,(𝗑𝑛,𝑦𝑛),features𝐹,andn umbero ftreesinforest 𝐵 FunctionRandomForest(𝑆,𝐹)  

𝐻➛Ø  

Fori∈1,…,do (i)➛Abootstrapsample𝑆 ℎi➛ Randomized Treelearn ((i), 𝐹)  

➛*ℎi+ Endfor Return𝐻  

Endfunction  

Function Randomized Treelearn (𝑆,𝐹) Ateachnode:  

𝐹➛verysmallsubseto f𝐹  

Split on best feature in 𝐹Return the learned tree Endfunction  

  

Decision Tree  

A decision tree can be described as one of the supervised learning algorithm that is widely used for classification and 

regression task). The cognitive procedure of acquiring knowledge and classification measure of decision tree are not 

complex. In this work, after the conducted experiments a decision tree was generated from the training samples and the 

defects were classified as represented in algorithm 2 below.  

 

Algorithm2: Pseudocode of Decision Tree Learning  

Tree-Learning (TR,Target,Attr)TR: trainingexamples  

Target: targetattribute  

Attr: setofdescriptiveattributes  

{  

Generatea Rootnode for thetree.  

If TR have the sametargetattributevalue𝑡i,  
Then Returnthe single-nodetree,thatis. Root, withtarget attribute  

=𝑡i  
IfAttr= empty (simpl ymeans no expressi veattri butespresent), Then Return thesingle -nodetree, i.e. Root, 

withmostcommon valueofTargetin TR  

Otherwise { Selectattribute A from At trthat classifiesbetter TR dependingonan entropy-basedmeasure Set A the attribute 

for Root Foreac hlega lvalue of A, i, do { Addabranch below Root, correspondingto A=𝑣i Let 𝑇𝑅 𝑣ibethesubset of TR 

thathaveA=𝑣i  

If𝑇𝑅𝑣iisempty,  

Then add a leaf node beneath the branch with target value = most  

common value ofTargetinTR Elsebe low thebranch, addthesu btreelearnedbyTreeLearning(𝑇𝑅𝑣i, Target,Attr-{A})   

Return (Root) where 𝑡i= the value of the target attribute and 𝑣i=the value of descriptive attributes  

  

Neural Network  

Neural networks(NN) is simply an important tool for classification. There cent wide research activities in neural 

classification having existed that NN are a promising alternative to various conventional classification methods. In the 

classification stage, neural network is capable of producing an intended result with the use of labeled training segments.  

However, an Artificial Neural Network(ANN) is a structure built on the performance of biological neural networks.ANN 

is a learning algorithm based on a model that can simply be used for classification. Furthermore, some algorithms are in 

existence used in training neural network like Newton Method, Gradient Descent, Levenberg-Marquardt(LM) e. t. c. In 

this paper, LM was adopted which is used for training the ANN. Algorithm3 shows the pseudo code of Levenberg-

Marquardt used for the defects classification.  
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Algorithm3:PseudocodeofLevenberg-Marquardt  

InitializeWeights;  

While not stop Criterion doCalculates(w)foreachpattern  

𝑃  

𝑒1=∑=1(w)(w)  

𝑃  

Calculates(w)foreachpattern Repeat  

Calculates ∆w  

𝑃  

𝑒2=∑=(w+∆w)𝑇𝑒𝑃(w+∆w)  

𝑃  

If𝑒1≤𝑒2then  

𝜇=𝜇*𝖰End IfUntil𝑒1<𝑒2  

𝜇=𝜇/𝖰  

w=w+∆w  

Endwhile where  

(𝑤)is the Jacobian matrix of the error vector (𝑤)ise valuated in 𝑤 𝐼is the specification matrix.  

Hence, the parameter 𝜇 is increased or decreased at each step.  

  

Classification Stage  

In the classification phase, the extracted features underwent classification into defect or non-defect categories using 

random forest, neural network, and decision tree methods, as outlined in the preceding section. To evaluate the prediction 

model, a fourfold cross-validation was conducted four times. The dataset was divided into four equal parts, with three 

parts utilized for the extraction process and training, and the remaining part used for testing. This process was repeated 

four times to ensure that every part of the dataset served as both training and testing data. Cross-validation was chosen 

due to the limited number of data, providing an advantage over traditional performance evaluation techniques. By 

adopting cross-validation, all instances were utilized once for both testing and training, addressing potential bias concerns. 

This approach generated a total of 16 folds, resulting in a more reliable error estimate. 

 

The performance of the software defect prediction was evaluated using various metrics, including True Positive, False 

Positive, False Negative, and True Negative prediction outcomes. Subsequently, the defect prediction performance was 

assessed based on the following criteria: [Include specific criteria as needed]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=   

   𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒    

𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒g𝑎𝑡i𝑣𝑒 (1)  

This gives the quantitative relation of predictionthat are correct.  

 𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛=  𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡i𝑣𝑒  (2)  

 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠i𝑡i𝑣𝑒  

   

Called holdout  method. In the hold out method, one part of the datasets is used for  

𝑅𝑒𝑐𝑎𝑙𝑙= 𝑇𝑟𝑢𝑒𝑃𝑜𝑠i𝑇𝑟𝑠𝑡i𝑣𝑒i𝑡+i𝑣𝑒𝐹𝑎𝑙𝑠𝑒𝑁𝑒/ g𝑎𝑡i𝑣𝑒 (3)  

   

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒=2×(𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)/  
𝑃𝑟𝑒𝑐i𝑠i𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙         (4)  

By collecting these performance measurements, future predictions on unseen files can be estimated. The block diagram 

of the defect prediction model is presented in Figure 2.  

 

 
Fig.2:-Proposed Architecture 
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4. Results and Discussion  

The outcomes obtained from the feature set extracted from the raw datasets are compared, followed by the utilization of 

three techniques for defect prediction with cross-validation. Cross-validation tests are implemented in various manners, 

but the approach adopted in this paper involves dividing the training data into multiple folds. The classifiers are assessed 

based on their classification performance, including accuracy, precision, recall, and F-score, on one fold after being 

trained on the other folds. This process is iterated until all folds contribute to the evaluation. The tables presented below 

illustrate the performance evaluation of the techniques, focusing on accuracy, precision, recall, and F-score, as outlined 

in Section 3 of this paper. 

 

Accuracy  

Table 1 displays the accuracy of the techniques applied to the dataset utilized in this study. The average accuracy for each 

learning algorithm was computed and is presented as a percentage. From Table 1, it is evident that the random forest 

algorithm surpassed the other classifiers. In conclusion, random forest emerges as the top-performing algorithm for the 

overall datasets assessed in terms of accuracy  

 

Table1:-The algorithm performance per dataset rated by accuracy 

Datasets  Artificial  

NeuralNetwork  

Random  

Forest  

Decision 

Tree  

ECLIPSEJDTCORE  86.93%  83.92%  75.88%  

ECLIPSEPDE UI  83.28%  83.61%  81.81%  

EQUINOXFRAMEWORK  70.77%  76.92%  73.85%  

LUCENE  91.3%  89.13%  89.86%  

AVERAGE  83.07%  83.40%  80.3%  

  

Precision  

Precision is another performance metric that assesses the accuracy of the prediction model in classifying faulty files that 

are genuinely faulty. Table 2 showcases the individual scores of each learning algorithm per dataset, along with the 

average for each classifier. In summary, random forest emerges as the top algorithm for the overall datasets based on 

precision, with an average score of 53.18%, followed by ANN with 44.11%.  

 

Table2:-The algorithm performance per dataset rated by precision 

Datasets  ArtificialNeuralNet work  RandomFo 

rest  

DecisionT 

ree  

ECLIPSEJDTCORE  53.49%  76.74%  4.65%  

ECLIPSEPDE UI  31.91%  34.04%  6.38%  

EQUINOXFRAMEW 

ORK  

57.69%  76.92%  76.92%  

LUCENE  33.33%  25%  0%  

AVERAGE  44.11%  53.18%  21.99%  

  

Recall  

The Recall metric indicates the proportion of faulty files that the prediction model successfully identifies. As shown in 

Table 3 below, decision trees estimate the recall for the LUCENE dataset at 0%. Additionally, the artificial neural network 

emerges as the top algorithm for the overall datasets in terms of recall, exhibiting a notable gap compared to the other 

classifiers. 

 

Table3:-The algorithm performance per dataset rated by recall 

Datasets  ArtificialNeuralN 

etwork  

RandomFo 

rest  

Decision 

Tree  

ECLIPSEJDT 

CORE  

79.31%  60%  22.22%  

ECLIPSEPDEUI  45.45%  47.06%  21.43%  

EQUINOXFRAME 

WORK  

65.22%  68.97%  64.52%  

LUCENE  50%  33.33%  0%  

AVERAGE  60%  52.34%  27.04%  

  

F-Score  

F-Score is the last performance measure as highlighted in the section III above. This is a combination of recall and 

precision. Table4 contains the values for all the datasets and the overall average value for Each learning algorithms. 
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Decision tree value for dataset LUCENEstill stays at 0% fscore. However, the best algorithm isthe random forest for 

overall rated by f-score with 52.04%.  

  

Table4:-The algorithm performance per dataset rated by f-score 

Datasets  ArtificialNeuralNet 

work  

RandomFo 

rest  

DecisionT 

ree  

ECLIPSEJDT CORE  63.89%  67.35%  7.69%  

ECLIPSEPDEUI  37.5%  39.5%  9.83%  

EQUINOXFRAMEW 

ORK  

61.22%  72.73%  70.18%  

LUCENE  40%  28.57%  0%  

AVERAGE  50.65%  52.04%  21.93%  

  

5. Conclusion  

The evolution of the software development process has led to the emergence of various defect prediction techniques and 

models aimed at enhancing the reliability and quality of software products. This paper conducts experiments on publicly 

available bug prediction datasets, extracting relevant features from the original sets to prevent overfitting. The results 

unveil the performance evaluation of the techniques across different datasets. Notably, the random forest algorithm 

emerges as the best performer overall, as clearly demonstrated in the tables presented in Section IV. Conversely, the 

utilization of decision tree technique does not yield superior prediction performance, as evidenced by the overall average 

of each performance measure. Furthermore, the results presented in this paper are compared to other software defect 

prediction models, demonstrating superior performance in certain cases. 
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