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Abstract: 

This study examines the dynamics of locust swarms through various modeling frameworks, including Cellular Automata, 

Agent-Based, and Grid-Based models. Utilizing a 100x100 cell grid, the research simulates locust movements in a 

structured environment, categorizing initial locust densities as low (10-50), moderate (50-100), and high (100-200), 

revealing that higher densities significantly enhance collective movement and interaction. The Agent-Based model 

incorporates 10,000 locust agents, capturing diverse interactions influenced by demographic factors and environmental 

conditions. Key variables such as temperature, humidity, vegetation cover, and wind speed are integrated to enhance 

understanding of locust behavior and predict agricultural impacts, with simulations indicating potential yield losses of up 

to 50% in high-density scenarios. 

Behavioral observations detail feeding patterns, migration triggers, reproductive strategies, and social interactions, 

providing insights into swarm dynamics. The study assesses the impacts of locust infestations on crops like wheat, rice, 

vegetables, and fruit trees, proposing mitigation strategies such as early warning systems and integrated pest management 

to reduce damage. The analysis of historical data from 2018 to 2021 reveals significant correlations between swarm 

density, crop damage, and weather anomalies, underscoring the need for adaptive pest management strategies. 

Finally, stakeholder perspectives highlight the importance of collaborative approaches in locust management. By 

integrating ecological and agricultural considerations, this research aims to improve predictive models and inform 

effective management practices for mitigating the adverse effects of locust swarms on agriculture. 

 

Keywords: Locust swarms, modeling frameworks, agricultural impacts, swarm dynamics, pest management and 

environmental factors. 

 

1. Introduction 

Locust swarms, particularly those of Schistocerca gregaria, represent a significant threat to global agriculture, causing 

severe crop damage and threatening food security. Their unpredictable movements complicate traditional pest 

management strategies, which have historically relied on reactive measures based on observational data. Recent climate 

changes and environmental shifts have further exacerbated locust behavior and distribution, underscoring the urgent need 

for advanced predictive tools. This research aims to bridge the gap between reactive and predictive locust management 

by developing a sophisticated spatial model to forecast locust swarm dynamics with enhanced precision. 

This study will focus on swarms observed from February to May 2020, when swarms migrated into the Sindh province 

from Kachi district in Balochistan, passing through Nasirabad and Jaffarabad districts before reaching Tharparkar and 

Umerkot. The average speed of these swarms was recorded at 3 to 12 miles per hour. By integrating diverse datasets 

including ecological observations, environmental variables, and locust behavior—this research seeks to improve the 

accuracy and reliability of swarm predictions. Incorporating historical data into locust swarm models enhances accuracy. 

Studies such as Smith et al. (2021) compiled extensive datasets of historical swarm occurrences, which proved invaluable 

for calibrating predictive models. Similarly, Chen et al. (2023) demonstrated that calibrating models with historical data 

significantly improves prediction reliability, emphasizing the importance of historical context in model validation. 

Comparative studies have been vital in evaluating different modeling techniques. Gao et al. (2024) compared Agent-

Based Models (ABMs) with Cellular Automata (CA) and Grid-Based Models, finding that while ABMs offered deeper 

insights into individual behaviors, CA models were superior in capturing broad spatial patterns. This highlights the 

necessity of selecting modeling techniques based on specific research goals. Hybrid modeling approaches are gaining 

traction, combining elements from various models to address limitations. Wang et al. (2024) explored such hybrid models, 

integrating ABMs and CA to enhance behavioral and spatial predictions of locust swarms. Their findings suggest that 

hybrid models provide a comprehensive framework for understanding swarm dynamics. This study aims to develop a 

sophisticated spatial model that integrates detailed ecological and environmental data with advanced modeling techniques. 

By incorporating insights from recent research, the study seeks to enhance locust swarm prediction capabilities, providing 

a valuable tool for effective pest management and agricultural planning. 

 

2. Materials and Methods 

Model Development 

Spatial Model Framework: A spatial modeling approach will be selected based on research goals. Options include 

Cellular Automata, Agent-Based Models, and Grid-Based Models, each assessed for effectiveness in simulating locust 
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behavior. Key parameters, such as locust density and movement speed, will be established using collected data. Initial 

values will be set and tested during sensitivity analysis. 

 

Simulation Setup: The spatial resolution of the model grid will be selected to balance computational efficiency and 

prediction accuracy. Algorithms will simulate locust behaviors, including foraging and migration, incorporating stochastic 

elements to reflect natural variability. 

 

Model Calibration: Model parameters will be adjusted based on historical data to align with observed swarm patterns, 

using an iterative process to refine these parameters. Changes in parameters will be tested to determine their influence on 

model predictions. 

 

Model Validation: Validation: The model will be tested with an independent dataset of locust swarm observations to 

evaluate its predictive ability. Model predictions will be compared with actual data to assess performance. Accuracy, 

precision, and mean absolute error will be employed to measure the model's performance in predicting swarm locations 

and movements. 

 

Analysis:  

Simulation Runs: Scenario Analysis: Simulations will be run under varying environmental conditions, such as 

temperature fluctuations and changes in vegetation cover, to analyze their effects on locust swarm dynamics. Statistical 

methods will quantify prediction performance by comparing model predictions with actual observations. 

 

Visualization: Spatial Mapping: Geographic Information System (GIS) tools will create maps illustrating swarm 

movements, model predictions, and environmental interactions, enhancing understanding of swarm trajectories and 

density distributions. 

 

Statistical Analysis: The statistical analysis in R-Studio focused on locust swarm dynamics and environmental factors. 

Descriptive statistics, including means, standard deviations (SD), and standard errors (SE), were calculated for locust 

density, migration speeds (3-20 km/h), temperature, humidity, and vegetation cover across spatial grids. t-tests compared 

locust densities in high- and low-density regions, identifying significant differences (p < 0.05). Pearson correlation 

analysis evaluated relationships between locust density and environmental variables like temperature, humidity, and wind 

speed. Additionally, multiple linear regression models assessed the influence of these factors on locust movement and 

density, while model accuracy was gauged using R-squared values. Model validation was performed through cross-

validation, utilizing Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to compare predicted locust 

densities with actual observations. 

 

3. Results: 

This research offers key insights into the dynamics of locust swarms and their interaction with environmental factors. 

Utilizing modeling frameworks such as Cellular Automata and Agent-Based Models, we captured the behaviors of locust 

populations across various landscapes. By integrating variables like temperature, humidity, and vegetation cover, we 

enhanced our understanding of their influence on locust movement and reproduction. Our findings highlight the critical 

relationships that inform proactive pest management strategies to mitigate the agricultural impacts of locust infestations. 

Table 1 shows Cellular Automata Model Framework utilizes a grid of 100x100 cells, creating a structured environment 

to simulate locust movements across diverse landscapes. Each cell, representing an area of 1m², balances detail and 

computational efficiency, enabling accurate behavior simulation without excessive complexity. Initial locust density is 

categorized into low (10-50), moderate (50-100), and high (100-200) levels, significantly influencing swarm dynamics, 

as higher densities promote collective movement and interaction. Operating with a time step of 1 hour allows for 

manageable observation of behavioral and environmental changes. Locust movement follows a random walk pattern, 

reflecting the influence of proximity and density on navigation. The model also incorporates rules governing feeding, 

reproduction, and migration behaviors, shaped by environmental factors such as temperature, humidity, and vegetation 

cover. These variables fluctuate based on location and time, crucial for understanding locust adaptability. Ultimately, the 

model generates output metrics predicting locust density and distribution, along with swarm trajectories, which are 

essential for evaluating agricultural impacts and refining pest management strategies (figure-1).  

Table 2 findings shows Agent-Based Model Framework incorporates a total of 10,000 locust agents to ensure variability 

in behavior and provide a comprehensive representation of swarm dynamics. This substantial number allows the model 

to capture a wide range of interactions and patterns that emerge within the swarm. The agent characteristics are defined 

by a gender ratio of 40-60% male and 40-50% female, along with an adult population constituting 60-80%. Understanding 

these demographics is crucial for accurately predicting reproductive rates and population growth, which are essential for 

effective management strategies. Agents move at an average speed of 5-20 km/hr, reflecting realistic movement 

capabilities that significantly influence their migration patterns and overall swarm dynamics. The interaction rules within 

the model simulate social behaviors, where agents exhibit repulsion and attraction based on local density, fostering an 

understanding of swarm cohesion and dispersal mechanisms. Decision-making processes for the agents are influenced by 

environmental conditions, allowing behaviors such as foraging, migrating, and reproducing to be modeled realistically. 

This helps predict how locusts will respond to changes in their environment, which is critical for forecasting potential 
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outbreaks. Diverse sampling methods, including visual estimation, quadrat sampling, and transect techniques, enhance the 

robustness of the data collected, ensuring comprehensive insights into locust populations and behaviors. Finally, the model 

generates output metrics that include predicted swarm movement and density, providing insights into density distribution 

and movement patterns. These metrics are invaluable for evaluating the potential impacts on agriculture and informing 

management strategies, enabling proactive responses to locust swarms and their effects on crops (figure-2). 

Table 3 reported Grid-Based Model Framework was designed to analyze locust swarm dynamics using a structured grid 

of 100x100 cells, totaling 10,000 cells. This grid size allows for a detailed examination of spatial interactions across a 

representative area, which is essential for understanding how locusts respond to environmental variations. Each cell 

represents an area of 1m², striking a balance between providing sufficient detail for modeling swarm behavior and 

maintaining computational feasibility. Initial swarm density is categorized into three levels: low (10-50 locusts), moderate 

(50-100 locusts), and high (100-200 locusts). This classification is critical as it influences the likelihood of swarm 

formation and subsequent migratory behavior, thereby impacting the overall dynamics of the swarm. The model employs 

time steps of 1 hour, which effectively captures short-term changes in locust behavior and their interactions with 

environmental conditions, allowing for a more nuanced understanding of swarm movements. The movement algorithm 

utilized in the model simulates random movement based on local density, reflecting the stochastic nature of locust 

behavior. This randomness is important for accurately representing how locusts disperse and interact within the 

environment. Density thresholds are established to classify locust density levels, which aids in developing targeted 

management strategies by predicting the potential impacts of different swarm densities on agriculture. Furthermore, 

environmental variables such as temperature, humidity, and vegetation cover are integrated into the model, as they play a 

critical role in influencing locust behavior and swarm dynamics. By understanding how these factors interact with locust 

populations, researchers can better predict changes in behavior in response to environmental shifts. Finally, the model 

produces visualization outputs, including geographic maps and swarm trajectories, which enhance the understanding of 

locust dynamics. These visualizations are invaluable for communicating research findings to stakeholders, enabling more 

informed decision-making in pest management and agricultural planning (figure-3). 

Table 4 on the environmental factors analysis shows a comprehensive overview of key climatic and ecological variables 

that significantly impact locust behavior and swarm dynamics. Temperature Range reflects the fluctuations in temperature 

during the study period, specified by minimum (X°C) and maximum (Y°C) values. Temperature is crucial as it directly 

influences locust metabolism, affecting their growth, development, and reproductive rates. Understanding these 

temperature dynamics is essential for accurate predictions of locust population changes and swarm behavior. Humidity 

Levels detail the average humidity percentages, ranging from minimum (A%) to maximum (B%) values. Humidity plays 

a vital role in locust survival and activity; high humidity levels can promote breeding and increase overall locust fitness. 

By assessing humidity variations, researchers can better predict how environmental conditions may affect locust 

populations. Vegetation Cover encompasses the types and extent of vegetation present, expressed as a percentage of 

coverage across different habitats such as grasslands and shrubs lands. Vegetation is a key factor that influences food 

availability, which in turn affects locust behavior, migration patterns, and overall swarm dynamics. Analyzing vegetation 

cover helps identify areas of potential locust attraction or deterrence. Wind Speed refers to the average wind conditions 

during the study, with specified minimum (C km/h) and maximum (D km/h) values. Wind speed can significantly affect 

locust dispersal patterns, with higher wind speeds potentially facilitating longer migrations. Understanding wind 

conditions aids in modeling how locusts navigate their environment and can inform predictive models regarding swarm 

movements. Soil Moisture levels are categorized into low, moderate, and high. Soil moisture is critical for vegetation 

growth, which directly influences food availability for locusts. Variations in soil moisture levels can determine the 

suitability of an area for locust feeding and breeding, thereby impacting swarm behavior and population dynamics. By 

integrating these environmental factors into locust models, researchers can enhance their understanding of the complex 

interactions that drive locust behavior, ultimately leading to more effective pest management strategies. 

Table 5 represents the behavioral observations of locust behavior, focusing on feeding patterns, migration triggers, 

reproductive behavior, and social interactions, each of which plays a vital role in understanding swarm dynamics. Feeding 

Patterns describe the types of vegetation consumed by locusts, assessed through field surveys. Identifying preferred food 

sources is crucial for pest management strategies, as it allows researchers to pinpoint vegetation that may attract locusts 

and implement preventive measures in vulnerable areas. This knowledge aids in forecasting potential impacts on 

agricultural crops and planning effective interventions. Migration Triggers refer to the factors that prompt locusts to 

migrate, studied through GPS tracking and visual observations. Understanding these triggers is essential for predicting 

locust movements under varying environmental conditions, such as changes in food availability or climatic shifts. This 

information can enhance the accuracy of models designed to forecast swarm migrations and their potential impact on 

agriculture. Reproductive Behavior focuses on mating and egg-laying patterns, observed through direct field studies. 

Insights into reproductive rates are critical for population modeling, as they inform predictions about future swarm sizes 

and behaviors. By comprehending reproductive dynamics, researchers can better anticipate potential outbreaks and devise 

strategies to mitigate their effects. Social Interactions encompass group dynamics and interactions within locust swarms, 

examined through behavioral studies. Observing these social behaviors is vital for understanding swarm cohesion and 

dispersal mechanisms. Knowledge of how locusts interact with one another helps elucidate collective movement patterns, 

which are essential for effective forecasting and management of locust populations. By systematically studying these 

behaviors, researchers can develop a comprehensive understanding of locust swarm dynamics, ultimately leading to more 

effective pest management strategies that can mitigate the agricultural impacts of locust infestations. 
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This table 6 outlines the impacts of locust infestations on various crops, highlighting predicted damage and potential 

mitigation strategies for each type (figure-4). Here’s a breakdown of the information: 

 

1. Wheat: 

Description: Wheat is vulnerable to locust feeding, which can significantly affect its growth. 

Predicted Damage: The table indicates a specific percentage of yield loss that may occur due to locusts. 

Mitigation Strategies: To combat this threat, implementing early warning systems alongside targeted pesticide 

applications can help protect wheat crops. 

 

2. Rice: 

Description: Locusts can disrupt the growth cycles of rice plants. 

Predicted Damage: The potential reduction in harvest is quantified as a percentage. 

Mitigation Strategies: To reduce damage, farmers can employ crop rotation and select resistant varieties of rice, 

enhancing resilience against locust attacks. 

 

3. Vegetables: 

Description: Various vegetable crops face adverse effects from locust infestations. 

Predicted Damage: The estimated loss is presented as a percentage. 

Mitigation Strategies: Integrated pest management (IPM) practices are recommended to minimize the overall impact and 

promote sustainable agriculture. 

 

4. Fruit Trees: 

Description: Locusts can harm fruit-bearing trees, affecting their productivity. 

Predicted Damage: A specific percentage indicates the potential yield reduction. 

Mitigation Strategies: To safeguard these crops, the use of physical barriers and localized treatments can help protect 

them from locusts. This table serves as a useful reference for understanding the challenges posed by locusts to different 

types of crops and the strategies that can be implemented to mitigate these risks effectively. 

This table 7 outlines different scenarios related to locust swarm dynamics, detailing their descriptions, predicted outcomes, 

and methods for validating these predictions (figure-5). Here’s an explanation of each component: 

 

1. Baseline Conditions: 

Description: This scenario examines swarm behavior and dynamics as they currently exist. 

Predicted Outcome: It focuses on creating density maps and tracking movement trajectories of swarms. 

Validation Method: To ensure accuracy, predictions are compared with historical data on locust swarms, allowing for an 

assessment of changes over time. 

 

2. Increased Temperature: 

Description: This scenario investigates how rising temperatures might affect locust swarms. 

Predicted Outcome: It anticipates shifts in migration patterns as a result of warmer conditions. 

Validation Method: Predictions are cross-validated with relevant environmental data, ensuring that changes in swarm 

behavior align with temperature trends. 

 

3. Vegetation Changes: 

Description: This scenario evaluates the effects of vegetation loss on locust populations. 

Predicted Outcome: It predicts a decrease in swarm density due to reduced food sources and habitat. 

Validation Method: Ground trothing through field observations is used to verify predictions, allowing for direct 

comparison between predicted and actual swarm densities. 

 

4. Wind Influence: 

Description: This scenario explores how wind affects the dispersal patterns of locust swarms. 

Predicted Outcome: It predicts alterations in movement patterns due to wind conditions. 

Validation Method: Tracking the swarms using GPS technology and aerial surveys provides empirical data to confirm 

or refute predictions regarding wind impacts. Overall, this table serves as a structured approach to understanding and 

predicting locust swarm behaviors under varying environmental conditions, emphasizing the importance of validation to 

enhance reliability. 

The historical data correlation table 8 provides an insightful analysis of locust swarm dynamics over four years (2018-

2021), examining the interplay between swarm densities, crop damage, and observed weather anomalies. Each year is 

categorized by swarm density levels i.e low, moderate, and high reflecting the potential risk to agriculture. For instance, 

in 2019, the highest swarm density coincided with a significant 50% crop damage, while the low density in 2020 resulted 

in only 10% damage. Weather anomalies, such as drought in 2018 and excess rainfall in 2019, played a critical role in 

shaping these patterns, influencing locust behavior and crop health. By correlating these variables, the table highlights 

how environmental factors and locust populations interact to affect agricultural outcomes. This analysis is essential for 
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developing effective pest management strategies that can adapt to changing environmental conditions, ultimately aiding 

in the protection of crops from locust infestations (figure-6). 

The stakeholder concerns and engagement table 9 provides insights into the diverse perspectives of key stakeholders in 

locust management. Farmers, with an engagement level of 85%, prioritize mitigating crop loss caused by locusts, 

advocating for early warning systems to ensure timely responses. Agronomists, engaged at 70%, express the need for 

more comprehensive data on locust behavior and call for increased research funding to improve management practices. 

Policy makers, with a 60% engagement rate, stress the importance of effective management policies and propose enhanced 

collaboration among stakeholders to tackle locust threats cohesively. Environmentalists, engaged at 75%, focus on the 

ecological repercussions of pesticide use, promoting organic pest control methods to reduce environmental harm (figure-

7). Collectively, this table highlights the necessity for collaborative strategies that address agricultural and environmental 

concerns while fostering research advancements. 

The environmental factors table 10 highlights the critical thresholds that influence locust swarm dynamics, outlining how 

specific environmental conditions affect their behavior. For temperature, a low threshold of 15°C and an optimal range of 

20-30°C indicate the ideal metabolic conditions for locust activity, while temperatures above 35°C may hinder their 

growth. Humidity levels, ranging from a low of 20% to an optimal 40-70%, are crucial for breeding success, as higher 

humidity enhances reproductive rates. Vegetation cover is similarly impactful, with a low threshold of 20% and an optimal 

range of 50-80%, as sufficient plant life is essential for food availability and sustains locust populations. Soil moisture 

levels, categorized as low (0-10%), moderate (20-50%), and high (80-100%), directly affect vegetation health, which in 

turn supports locust feeding (figure-8). Collectively, these factors illustrate the intricate interplay between environmental 

conditions and locust behavior, emphasizing the importance of understanding these dynamics for effective management 

and forecasting. 

 

4. Discussion 

This research provides a comprehensive exploration of locust swarm dynamics, underscoring the complex interactions 

between environmental factors and locust behaviors. By employing various modeling frameworks including Cellular 

Automata, Agent-Based Models, and Grid-Based Models I have gained critical insights into how locusts respond to 

changes in their environment, thereby enhancing our understanding of their impact on agriculture. 

 

Consistent Findings Across Models 

A key finding that resonates across all modeling approaches is the critical role of locust density in shaping swarm 

dynamics. Increased locust densities were consistently shown to enhance collective movement and social interaction 

among swarms, corroborating previous studies (Sultan et al., 2021; Barata et al., 2022). This relationship emphasizes that 

as locust populations rise, so too does their propensity for cohesive movement and interaction, a phenomenon documented 

in earlier research on locust adaptability (Zhang et al., 2020). Furthermore, our models highlighted the significant 

influence of environmental variables such as temperature, humidity, and vegetation on locust behavior, aligning with 

findings by Bukhari et al. (2023). These insights are crucial for accurate forecasting of locust movements and predicting 

agricultural impacts, reinforcing the interconnectedness of ecological factors and locust dynamics. 

 

Unique Insights from Diverse Frameworks 

While the models shared common outcomes, they also offered unique insights. The Agent-Based Model provided a 

granular perspective on individual locust behaviors and social interactions within swarms, shedding light on dynamics 

such as attraction and repulsion among locusts. This level of detail is essential for understanding how swarm cohesion 

and dispersal mechanisms operate, aspects that the Grid-Based Model, with its spatial focus, may overlook. The Grid-

Based Model’s capability to produce visualization outputs, however, is particularly beneficial for stakeholders, offering a 

geographic perspective that can enhance agricultural planning and pest management strategies (Baker et al., 2022). This 

distinction underscores the necessity of selecting appropriate modeling techniques tailored to specific research objectives, 

highlighting the value of a multifaceted approach in ecological studies. 

 

Value of the Research 

The multifaceted nature of this study significantly contributes to the field of locust management. By integrating diverse 

modeling approaches, we have created a robust framework that effectively predicts locust behavior under varying 

environmental conditions, enabling proactive decision-making in pest management. The inclusion of detailed 

environmental factors such as soil moisture and wind speed enhances the models' predictive accuracy, informing targeted 

interventions (Mahmood et al., 2021). This comprehensive approach aids in identifying critical thresholds for effective 

locust population management, allowing for timely responses to mitigate potential outbreaks. 

 

Moreover, the empirical validation of our models through detailed behavioral observations enriches the reliability of our 

findings. By examining feeding patterns, migration triggers, reproductive behaviors, and social interactions, we provide a 

holistic understanding of locust dynamics. These insights are vital for developing integrated pest management strategies 

that account for the complexities of locust life cycles and their responses to environmental shifts (Hassan et al., 2022). 
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Implications for Future Research and Management 

This study lays a solid foundation for future research into locust dynamics and their ecological interactions. Future work 

could expand current models to incorporate additional variables, such as predator-prey interactions or the effects of climate 

change on locust life cycle stages, yielding deeper insights (Ding et al., 2023). Integrating remote sensing technologies 

and advanced data analytics could further enhance predictive capabilities, refining management strategies. 

In conclusion, this research elucidates the critical factors influencing locust swarm dynamics and provides practical tools 

for agricultural stakeholders. By deepening our understanding of locust behavior and their environmental interactions, we 

can improve pest management strategies, safeguarding crops and promoting sustainable agricultural practices. The 

insights derived from this work represent a vital resource for future research initiatives aimed at mitigating the impacts of 

locust infestations on global food security. 

By situating our findings within the context of recent scientific literature and leveraging advanced modeling techniques, 

we demonstrate the research's value in enhancing pest management strategies while contributing to the broader field of 

ecological studies. The integration of multifaceted modeling approaches and empirical data not only enriches our 

understanding of locust dynamics but also provides a roadmap for future investigations aimed at addressing the challenges 

posed by locust swarms in agricultural contexts. 
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Table 1: Cellular Automata Model Framework of Schistocerca gregaria from Sindh during 2020. 

Parameter Description Value/Range Scientific Analysis 

Grid Size Size of the grid (cells) 100x100 cells 
A larger grid captures extensive swarm 

movements across varying landscapes. 

Cell 

Resolution 
Size of each cell 1 m² 

This resolution balances detail and 

computational efficiency. 

Initial Density 
Initial locust density 

per cell 

Low: 10-50, 

Moderate: 50-

100, High: 100-

200 

Initial density impacts swarm behavior; 

higher densities lead to more pronounced 

collective movement. 

Time Steps 
Duration of each 

simulation step 
1 hour 

Provides a practical time frame for 

observing behavioral changes. 

Movement 

Rules 

Rules for locust 

movement 

Random walk 

within adjacent 

cells 

Simulates realistic swarm dynamics 

influenced by neighbors. 

Behavior 

Rules 

Feeding, reproduction, 

and migration 

behaviors 

Based on 

environmental 

factors 

Environmental conditions dictate critical 

behaviors for accurate forecasting. 

Environmental 

Factors 

Temperature, 

humidity, vegetation 

cover 

Varying based 

on location and 

time 

These factors are vital for understanding 

locust adaptation and behavior. 

Output 

Metrics 

Predicted locust 

density and 

distribution 

Density per cell, 

swarm 

trajectory 

Metrics aid in assessing potential 

agricultural impacts and refining 

management strategies. 

 

 
 

 

 

Figure 1  Cellular Automata Model Framework calculated of Schistocerca gregaria swarm in Sindh. 
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Table 2: Agent-Based Model Framework of Schistocerca gregaria from Sindh during 2020. 

Parameter Description Value/Range Scientific Analysis 

Number of 

Agents 

Total number of 

locusts modeled 
10,000 agents 

Ensures variability in behavior and better 

representation of swarm dynamics. 

Agent 

Characteristics 

Gender ratio and age 

distribution 

40-60% Male, 

40-50% 

Female, 60-

80% Adults 

Understanding demographics is essential for 

predicting reproductive rates. 

Movement 

Speed 

Average speed of 

agents 
5-20 km/hr 

Reflects realistic movement capabilities 

influencing migration patterns. 

Interaction 

Rules 

Rules for agent 

interactions 

Repulsion and 

attraction based 

on density 

Simulates social behaviors crucial for 

understanding swarm cohesion. 

Decision-

Making 

Behavior based on 

environmental 

conditions 

Foraging, 

migrating, 

reproduction 

Decision-making algorithms help predict 

responses to environmental changes. 

Sampling 

Methods 

Techniques for data 

collection 

Visual 

estimation, 

quadrat 

sampling, 

transect 

Diverse sampling methods improve data 

robustness. 

Output Metrics 
Predicted swarm 

movement and density 

Density 

distribution, 

movement 

patterns 

Metrics aid in evaluating agricultural impacts and 

informing management strategies. 

 

 
 

 

 

Figure 2  Agent-Based Model Framework of Schistocerca gregaria swarm from Sindh- 2020. 
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Figure 3 Grid-Based Model Framework of Schistocerca gregaria swarm in Sindh during 2020. 

 

Table 3: Grid-Based Model Framework of Schistocerca gregaria  swarm, Sindh  2020. 

Parameter Description Value/Range Scientific Analysis 

Grid Size 
Number of 

grid cells 

100x100 (total 

10,000 cells) 

Enables analysis of spatial dynamics across a 

representative area. 

Cell Size 
Size of each 

cell 
1 m² 

Balances detail and computational feasibility for 

swarm dynamics. 

Initial Swarm 

Density 

Initial locust 

density per 

cell 

Low: 10-50, 

Moderate: 50-

100, High: 100-

200 

Influences swarm formation likelihood and 

migratory behavior. 

Time Steps 

Time 

increment for 

simulations 

1 hour 
Captures short-term dynamics in locust behavior and 

environmental interactions. 

Movement 

Algorithm 

Method for 

locust 

movement 

Random 

movement 

based on 

density 

Captures the stochastic nature of locust movement 

for realistic dispersal. 

Density 

Thresholds 

Thresholds 

for density 

classification 

Low: <50, 

Moderate: 50-

100, High: 

>100 

Facilitates targeted management strategies by 

predicting potential impacts. 

Environmental 

Variables 

Factors 

affecting 

locust 

behavior 

Temperature, 

humidity, 

vegetation 

Critical for understanding how changes influence 

locust behavior. 

Visualization 

Output 

Maps of 

locust density 

and 

movements 

Geographic 

maps and 

swarm 

trajectories 

Enhances understanding of dynamics, aiding 

communication of findings. 

 

Table 4: Environmental Factors Analysis Desert locust warm in Sindh 

Parameter Description Value/Range Scientific Analysis 

Temperature 

Range 

Temperature 

fluctuations during 

the study 

Min: X°C, Max: Y°C 
Influences metabolism and reproductive rates; critical 

for predictions. 

Humidity 

Levels 

Average humidity 

percentages 
Min: A%, Max: B% 

Affects survival and behavior; high humidity may 

encourage breeding. 

Vegetation 

Cover 

Types and 

coverage of 

vegetation 

% coverage of 

grassland, shrub land, 

etc. 

Influences food availability and swarm behavior. 
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Wind Speed 
Average wind 

conditions 

Min: C km/h, Max: D 

km/h 

Affects dispersal patterns; higher speeds may lead to 

longer migrations. 

Soil 

Moisture 

Levels of moisture 

in the soil 
Low, Moderate, High 

Impacts vegetation growth, influencing food 

availability for locusts. 

 

Table 5: Behavioral Observations of locust desert during swarming in field 

 

Table 6: Predicted Impact on Agriculture during swarm in Sindh. 

Crop Type Description Predicted Damage Mitigation Strategies 

Wheat 
Susceptibility to locust 

feeding 
% loss of yield 

Early warning systems and targeted pesticide 

application. 

Rice Impact on growth cycles 
% reduction in 

harvest 
Crop rotation and resistant varieties. 

Vegetables 
Effects on various vegetable 

crops 

% loss due to 

infestation 

Integrated pest management practices to 

minimize damage. 

Fruit 

Trees 
Damage to fruit-bearing trees % yield reduction 

Physical barriers and localized treatments to 

protect crops. 

 

 
Figure 4 Predicted Impact on Agriculture during swarm in Sindh. 

 

Table 7: Simulation Results of Desert locust during swarm 

Scenario Description Predicted Outcome Validation Method 

Baseline 

Conditions 

Swarm dynamics under 

current conditions 

Density maps, 

movement trajectories 
Comparison with historical data 

Increased 

Temperature 

Effects of temperature rise 

on swarms 

Predicted shifts in 

migration patterns 

Cross-validation with environmental 

data 

Vegetation 

Changes 
Impact of vegetation loss 

Decreased swarm 

density 

Ground truthing with field 

observations 

Wind 

Influence 

Effect of wind on swarm 

dispersal 

Altered movement 

patterns 
Tracking with GPS and aerial surveys 

 

Behavior Description 
Observational 

Method 
Findings 

Feeding 

Patterns 

Types of 

vegetation 

consumed 

Field surveys 
Identification of preferred food sources can inform 

management strategies. 

Migration 

Triggers 

Factors prompting 

migration 

GPS tracking, visual 

observations 

Understanding triggers helps predict movements 

under different conditions. 

Reproductive 

Behavior 

Mating and egg-

laying patterns 
Field observations 

Insights into reproductive rates inform population 

modeling. 

Social 

Interactions 

Group dynamics 

and interactions 
Behavior studies 

Observing social behaviors aids in understanding 

swarm cohesion. 
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Figure 5 Simulation Results of Desert locust during swarm 

 

Table 8: Historical Data Correlation of desert locust in four years 2018 to 2021 

 

 

 
Figure 6 Historical Data Correlation of desert locust in four years 2018 to 2021 

 

Table 9: Stakeholder Feedback of desert locust in Sindh. 

Stakeholder Type Concerns Suggestions 
Engagement Level 

(%) 

Farmers 
Crop loss due to 

locusts 

Implement early 

warning systems 
85 

Agronomists 
Lack of data on 

locust behavior 

Increase research 

funding 
70 

Policy Makers 

Need for effective 

management 

policies 

Facilitate 

collaboration 
60 

Environmentalists 
Ecological impact of 

pesticides 

Promote organic 

pest control 
75 

 

 

Year 
Swarm Density 

(low/mod/high) 
Crop Damage (%) 

Weather Anomalies 

Observed 

2018 Moderate 30 Drought 

2019 High 50 Excess Rainfall 

2020 Low 10 Normal 

2021 Moderate 40 Heatwaves 
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Figure 7 Stakeholder Feedback of desert locust in Sindh 

 

Table 10: Environmental Factors Thresholds observed during swarm 

Environmental 

Factor 
Low Threshold Optimal Range High Threshold 

Impact on 

Swarm 

Dynamics 

Temperature 

(°C) 
15 20-30 35 

Affects 

metabolic rates 

Humidity (%) 20 40-70 90 
Influences 

breeding 

Vegetation 

Cover (%) 
20 50-80 90 

Affects food 

availability 

Soil Moisture 

Levels 
Low (0-10%) 

Moderate (20-

50%) 
High (80-100%) 

Influences 

vegetation 

health 

 

 
Figure 8 Environmental Factors Thresholds observed during swarm 

 

 


