
Journal of Survey in Fisheries Sciences 10(3) 897 - 905 2023

897

An Overview of Data Integrity Approaches for Managing Outsourced Data on

Insecure Cloud Platforms

Maral Vikas Balaso1*, Dr. Rakesh kumar Giri2

1*Research Scholar, Department of Computer Science & Engineering, Sunrise University, Alwar, Rajasthan
2Associate Professor, Department of Computer Science & Engineering, Sunrise University, Alwar, Rajasthan

*Corresponding Author: Maral Vikas Balaso

*Research Scholar, Department of Computer Science & Engineering, Sunrise University, Alwar, Rajasthan

Abstract

Cloud computing has become an expansive and rapidly expanding domain that significantly influences the advancement

of various emerging technologies and applications, including but not limited to the internet of things, sensors, artificial

intelligence, social networks, and business applications. The exponential growth of technology and applications has led

to a substantial increase in data production, which is dynamically updated. The aforementioned dynamic data is stored

on third-party service provider-provided cloud storage. The reliability of third-party cloud storage is questionable, and

the user lacks authority regarding the data's possession or integrity. The primary concern is the integrity of the data,

which is not being purged, altered, or obliterated on purpose or by accident. The researchers have introduced a number

of protocols, including Provable Data Possession (PDP) techniques, which offer a probabilistic approach to verifying the

integrity of data at the block level. In conjunction with PDP, the researchers have implemented various data structures to

accommodate the dynamic nature of the data. For metadata generation and node rebalancing of the data structures,

integrity verification schemes impose substantial computational and communicational burdens due to the dynamic

character of the immense amounts of data.

Keywords: Provable data possession, cloud computing, data dynamics.

Introduction

In the era of information technology in the twenty-first century, data is expanding exponentially daily. The phenomenon

of data expanding at an exponential rate is referred to as "big data," which specifically denotes large, intricate,

structured, and unstructured datasets generated in the course of routine business operations. This escalating volume of

big data is an integral component of daily operations, generated by technologically advanced applications such as the

internet, social networking sites, healthcare applications, and sensor networks, among others. Moreover, it is expanding

at a rapid rate. In order to store and process this ever-evolving volume of big data, which requires immense processing

and storage capacities, the nascent technology known as "Cloud Computing" is implemented. Cloud computing is an

emergent technology that is having far-reaching implications in the fields of information technology, business, health

care, software engineering, and data storage. The daily generation of vast quantities of data by enterprises,

organizations, and individual users presents a formidable challenge for companies tasked with storing, processing, and

ensuring the security of that data on local storage. Such endeavors necessitate substantial financial investments in the

infrastructure required to store and process the data. Cloud computing primarily offers its customers three service

delivery models: Infrastructure as a service (IaaS), Software as a Service (SaaS), and Platform as a service (PaaS). The

National Institute of Standards and Technology (NIST) classifies four deployment models: private, public, hybrid, and

community cloud. Cloud computing leverages the virtualization technique in order to furnish end users with resources in

an efficient manner. Cloud computing is distinguished by its provision of on-demand services, resource aggregation,

high scalability, flexibility, and cost-effective computational capabilities for storage, applications, and platforms. The

primary functions of cloud services are data storage, data sharing, and application provisioning. The majority of

enterprise organizations are cloud computing-driven, and as a result, they are migrating their application development

and data storage (financial, personnel, healthcare) to the cloud.

Cloud Computing

The computational and networking industries have been significantly transformed by the advent of the World Wide Web

(Internet), which enables users worldwide to share resources. The advent of cloud computing has significantly

transformed the traditional computing paradigm by granting universal access to resources such as vast repositories of

data storage, computational capabilities, applications, and services via the internet. Cloud computing can be defined as a

vast repository of computational resources and storage that is accessible to the public via the internet; payment for these

services is contingent upon their utilization. It provides unique advantages including enhanced network accessibility,

scalability, adaptability, resource sharing, and efficiency in usage. As a consequence, there is a significant surge in the

adoption of the cloud computing paradigm across diverse sectors, including scientific adoptions, health care

An Overview of Data Integrity Approaches for Managing Outsourced Data on Insecure Cloud Platforms

898

applications, and social networking.

The only requirement for a client to utilize cloud computing services is a computing device with a stable internet

connection. Beyond its user-friendly interface, cloud computing offers numerous advantages to its clients, including

worldwide accessibility, a standardized platform, substantial scalability, dynamic infrastructure, administrative

capabilities, and most significantly, economical usage expenses. The cloud's seamless and practical connectivity has

accelerated the expansion of numerous organizations. The progression of cloud computing services significantly

influences the ability of organizations and individuals to accomplish their respective goals and objectives. The

implementation of cloud computing has significantly propelled organizations forward in terms of revenue, cost,

globalization, flexibility, and scalability.

Service Models of Cloud Computing

The functionality of the cloud computing infrastructure that is made available to the consumer on demand is the

definition of a service model. Infrastructure as a service (IaaS), software as a service (SaaS), and platform as a service

(PaaS) are the primary models of cloud services. The following are the specifics of the service models:

The core offering of cloud provider firms is IaaS. IaaS provides its customers with access to the hardware resources of

the data center (network, storage, virtual server, processor, and memory). The cloud service provider (CSP) oversees the

aforementioned resources, which the client can access via the internet. This is all accomplished through the use of

virtualization, and clients only pay for the resources they utilize.

PaaS is a middleware paradigm that provides customers with services to execute applications, including frameworks,

platforms, and virtual containers, so that they may construct their own applications. It reduces the expense of

administering and marinating additional hardware and software necessary for application development by a significant

margin. Platform as a Service (PaaS) offers clients pre-configured disk images and software stacks, which enable them

to utilize the cloud's foundational resources including runtime components, libraries, and database engines. Google App

Engine, AWS Elastic Beanstalk, and Adrenda are real-time examples of PaaS providers that offer software development

kits (SDKs) for Python, Java, and.NET, respectively, as ready features. SaaS is the cloud computing application layer.

SaaS satisfies the need of its clientele to access the hosted application via the internet and charges for utilization in

accordance with resource consumption. Software as a Service (SaaS) is the most advantageous model for customers, as

it enables them to achieve increased operational efficiency and decreased costs associated with self-managing the

application [6]. As a result of decreased application costs and maintenance responsibilities, the SaaS layer is gaining

significant traction among IT enterprises as a cloud business model.

Deployment Model of Cloud Computing

Deployment models represent the on-premises or off-premises physical presence of cloud service infrastructure.

Community cloud, private, public, hybrid, and public clouds, as classified by the National Institute of Standards and

Technology (NIST), comprise the majority of deployment models. The public cloud refers to cloud infrastructure that is

accessible to organizations or consumers on a pay-per-use basis. The public cloud is capable of delivering any service,

including PaaS, SaaS, IaaS, and more. OneDrive and Windows Azure HP Utilizable on demand, Hellion is a third-party

cloud service provider on the market.

Private clouds are on-premises clouds that are utilized by the organization or enterprises and are managed and

maintained by the organization. A team is devoted to the management and maintenance of their datacenters, which are

utilized to supply cloud services to their enterprise applications. Prefersibly, they exhibit greater security with regard to

the reliability of the secure service.

Hybrid cloud in which both cloud services are utilized an organization that operates both private and public databases is

said to have a hybrid cloud structure. Thus, within such organizations, data is categorized according to various security

measures. The most critical data that has the potential to cause significant harm to the organization is stored on-premises

(private cloud), whereas less critical data is stored off-premises (public cloud), relieving the organization of the

responsibility of managing less critical data.

The configuration of a community cloud is controlled and shared by multiple organizations that typically have a

common objective or interest. The cloud may be deployed either on or off-site from the physical location of the

organization. The management of the cloud is delegated to either the controlling organization or a third-party entity. It

reduces the cost and security risk associated with private clouds and grants participating organizations unrestricted

access to cloud-based data.

Data Integrity

Ensuring the confidentiality, integrity, and availability (CIA) of organizational information stored in cloud computing is

a fundamental security feature. Data integrity is the principal concern of this research endeavor. Data integrity is the

conviction that information remains consistent and accurate for the duration of its life cycle. Additional data integrity

measures guarantee that the data remains unaltered, unintentionally or inadvertently destroyed, or lost. Decades of

research have been devoted to examining the integrity of data, and integrity verification can be categorized into two

primary approaches:

Deterministic approach in which the integrity of the entire file is examined. It ensures complete data ownership and is

effective for verifying small-sized data.

Journal of Survey in Fisheries Sciences 10(3) 897 - 905 2023

899

A probabilistic approach is utilized to verify the integrity of the file, with only a limited number of essential blocks

being examined. While it cannot provide absolute integrity assurance, it is effective for data files.

The straightforward approach to ensure the integrity of a file is to compute its message authentication code (MAC),

which is the first traditional method. Prior to delegating the file to a remote cloud storage provider, the data proprietor

performs a MAC computation on the entire file. The MAC of the file is retained in the local storage of the data

proprietor when the file is deleted. Verification of data integrity necessitates the verifier to initiate a retrieval request

from cloud storage for the file in question. The verifier then recalculates the outsourced file's MAC. Verifying the

integrity of data, it compares the locally stored MAC to the recalculated MAC that is outsourced.

The data proprietor divides the file into n blocks before calculating the MAC of each block using a secret key; this is the

second straightforward method. The proprietor transfers both the file and the MAC to the cloud server before erasing the

MAC and the file from local storage. The proprietor of the data stores only the secret key. The verifier requests the file

block and its corresponding MAC from the remote server in order to conduct verification.

Using the secret key, the verifier computes the MAC and compares it to the corresponding MAC received from the

server. The aforementioned conventional methods may function admirably when the data is small in size and does not

undergo frequent modifications after being stored on the server. But with regard to the data, both methods are

impractical and riddled with severe defects.

The initial method incurs significant communication expenses; for instance, if a 10GB or 100GB file is outsourced, the

data proprietor would be required to obtain the file from the cloud storage each time the integrity is verified. This is

impracticable due to limitations in bandwidth and data consumption. The second approach is limited in its ability to

account for the transient nature of data updates. In summary, the aforementioned approaches have significant drawbacks

stemming from data, including substantial communication and computational expenses, as well as an inability to

accommodate the dynamic nature of data.

Data Integrity Schemes

Research on data integrity verification schemes commenced with static data and subsequently expanded to include

dynamic data, which encompasses operations such as creation, update, and deletion. Additional support was provided

for public and private verifiability, with or without the inference of third-party auditing. Due to the fact that the

introduction of a TPA introduced privacy vulnerability, protocols for maintaining data integrity and privacy were

developed.

In data integrity verification, scholars have employed various techniques to generate metadata, including homomorphic

tags, bilinear pairing algebraic signatures foundation codes, erasure codes RS codes based on cauchy metrics, and

others. The researchers have implemented the ITable, skip list divide and conquer table Merkle hash tree in order to

facilitate dynamic data revisions. Typically, integrity schemes consist of the subsequent stages:

Preprocessing Phase

To generate metadata, the original data is preprocessed using a predefined algorithm. The original file and metadata (for

verification purposes) are both uploaded to the cloud service provider.

Verification Phase

The challenge request is transmitted by the auditor (TPA or proprietor) to the CSP, which generates the proof of

possession utilizing the original data and metadata. The auditor is presented with the challenge proof in order to verify

the integrity of the data stored in the cloud.

Provable Data Possession Characteristics

The functionality that a data integrity scheme offers to authenticate the ownership of data can be used to classify its

characteristics. Security services, features, performance metrics, data verification coverage, and the state of verifiability

are additional functional categories. It is responsible for ensuring data integrity and may also address availability and

confidentiality.

The attributes that ought to be incorporated are robust integrity and soundness, which ensure that the information

provided is accurate and verify data without the need to obtain the actual files. In relation to the computational cost of

metadata data and data verification, communication expenses of data exchange, storage expenses, and detection

probability, the performance of the protocol must be optimal. Coverage for data verification includes both static and

dynamic data verification. As illustrated in Figure 1, the state of verifiability is contingent upon whether it offers public

or private verifiability.

An Overview of Data Integrity Approaches for Managing Outsourced Data on Insecure Cloud Platforms

900

Figure 1: Provable Data Possession Characteristics (Sookhak et al.,2014)

Provable Data Possession Techniques

Pledgeable data possession (PDP) refers to the methods utilized to guarantee the ownership of data stored in the cloud.

This segment provides an overview of the most recent PDP techniques developed by various researchers to validate the

integrity of outsourced data without requiring the retrieval of the original data from cloud storage. This section will

additionally examine how data integrity verification protocols account for the dynamic character of data through the

utilization of various data structures.

Homomorphic verifiable tag based PDP

The initial model of PDP was introduced, which conducts data verification without requiring the download of the source

data from an untrusted cloud server. PDP was introduced by the author as a solution to integrity checking issues caused

by other protocols' deterministic approach and the server's costly computation of the entire file. Owner incurs local

storage overhead and costly communication complexity by retaining metadata for a subsequent auditing task.

The author classified PDP into the following four polynomial time algorithms KeyGen, TagBlock, GenProof, and Check

Proof according to its definition:

The algorithm KeyGen (1k) → (pk, sk) is executed by the client in order to initialize the scheme. The objective of this

algorithm is to produce the pair of public and private keys (pk, sk) that will be utilized by the scheme to generate and

validate proofs, generate metadata, and generate metadata.

TagBlock (pk, sk, f) → Tm: Tagblock is a client-side function that generates metadata tags in accordance with the input

file and a pair of public and private keys.

GenProof(pk, F, cal, ο) →V: Following the challenge message, GenProof is executed on the cloud server in order to

calculate the proof of the provided challenge. It accepts the public key, f blocks, a challenge, and the metadata elements

associated with the f blocks that are being challenged.

CheckProof (pk, sk, chal,V) → "success", "failure": executes once the client has obtained the proof of challenge. It

accepts as input a pair of public and private keys, the challenge, and evidence of possession transmitted from the cloud

storage.

Dynamic provable data possession (DPDP), an extended variant of the protocol introduced by [14] to accommodate the

constraints of data dynamics, was proposed by [12]. In addition to its foundation on homomorphic verifiable tags, the

protocol also introduces a secondary construction that utilizes an authenticated dictionary and an RSA tree [15]. The

protocol operates on an n-block file F. It permits the deletion of any block in the file, modification of an existing block,

and insertion of a new block at any ith position.

Additionally, a secure and efficient method for possessing provable data was suggested, which relies on homomorphic

verifiable identifiers. The protocol enables public verifiability for data dynamic operations (insert, delete, update, insert),

meaning that an authorized third party can determine whether or not the data is intact. Privacy is of the utmost

importance when the TPA is involved, given that it can retrieve data from data proof. Additionally, the author assures

confidentiality in the protocol's design.

Identity based PDP

The scheme was proposed with the data owner's identity as its foundation. It is suggested that identity-based PDP be

implemented in order to simplify certificate management. The protocol's certificate administration contributes to its

inefficiency. The system under consideration operates under the random Oracle paradigm with large public exponents

and RSA assumptions. It also provides support for variable-sized data blocks and public auditing.

The protocol comprises the following principal entities: (i) the user, (ii) the cloud server, (iii) the third party auditor

(TPA), and (iv) the private key generator (PKG). The identity-based integrity verification algorithm is implemented

Journal of Survey in Fisheries Sciences 10(3) 897 - 905 2023

901

procedurally as follows:

Configure it to generate a master public key and master secret key. Extract generates the secret key in accordance with

the user's identity. TagGen generates the metadata identifiers for individual file blocks from the provided input of the

file and identity ID.

It is the duty of Challenge to generate a challenge in accordance with the user ID. ProofGen generates the challenge's

proof.

ProofCheck is responsible for validating the server-generated proof [17]. PDP based on Symmetric Key Cryptography

proposed an additional A scalable and efficient PDP that operates exclusively on symmetric key cryptography and

cryptographic hash functions; does not necessitate mass encryption; and supports dynamic data operations such as block

appending, deletion, and modification. In the past, protocols employed asymmetric key cryptography, which required

substantial computation power for large files and failed to account for dynamic data updates.

Data, data owner, server, hash function (e.g., SHA-1, SHA-2), authenticated encryption/decryption scheme that provides

both privacy and authenticity, pseudo-random function that efficiently computes random values, and pseudo-random

permutation indexed under key are the fundamentals outlined in [19] for scalable and efficient PDP. AES, which

generates a random sequence from a specified range, is regarded as an effective PRP.

BLS Signature

PDP was suggested by [7], which permits public auditing and data dynamics. The primary participants in the protocol

are the file-storing client, the data-storing Cloud Storage server (CSS), and the third-party auditor (TPA), which can

verify the integrity of the data by challenging the CSS. The rationale behind utilizing a third party is that the client may

lack the necessary time, resources, or feasibility to monitor their data in the cloud. Therefore, any trusted TPA that

possesses the client's public key can serve as a verifier.

To ensure that the data could be verified by the public, the author implemented a homomorphic authenticator based on

BLS signatures and public key encryption. To process dynamic data, the author implemented a Merkle hash tree (MHT)

[20]. The primary objective of MHT is to guarantee the integrity and security of the collection of elements by preventing

any alterations or damage. The element hashes are stored in the leaves of MHT, which is designed as a binary tree. As

the base node is composed of child nodes, any modification made to a child node will be promptly observed at the root

node.

The primary operation of the protocol is to partition a file F into n sections. Generate the public and private key pair

using the KeyGen() function. SigGen() accepts the private key and file blocks as input and returns a block-specific

signature. The client then generates the origin of the MHT, which is a hash of the offspring nodes that correspond. The

client signs the root with its private key before transmitting to the cloud storage file blocks, signature, and MHT. The

data blocks are challenged by the verifier to the server, which then generates the proof using the data blocks, signature,

and MHT.

Algebraic Signature based PDP

A dynamic PDP based on an algebraic signature was proposed in [3]. An algebraic signature is essentially an algebraic-

property-containing hash function. The primary characteristic utilized in the development of data verification schemes is

that calculating the sum of the signatures of a given number of random blocks yields an equivalent result to calculating

the sum of the signatures of the corresponding block [21].

Additionally, [22] put forth a five-phase algorithmic signature scheme known as Setup, TagBlock, Challenge, ProofGen,

and Proof Verify. While this approach effectively verifies static data, it fails to accommodate the dynamic characteristics

inherent in big data.

Data Dynamics

To address the issue of dynamic data, numerous researchers have implemented various data structures. An explanation

of the state-of-the-art solution is provided below.

Merkle Hash Tree

The process of modifying data in the cloud is as follows: the client initiates a request to the server to modify a specific

portion of file. The initial client computes the modified block's signature before transmitting the updated data block

accompanied by the computed signature. The server modifies the updated data block with the previous one, updates the

corresponding signature and hash, and generates a new root upon request (see Figure 2).

An Overview of Data Integrity Approaches for Managing Outsourced Data on Insecure Cloud Platforms

902

Figure 2: MHT Modification Operation

Data insertion and data modification are analogous in that the client generates the signature and transmits the

corresponding data block. As illustrated in Figure 3, the insertion of the data block and signature occurs at the nth

position.

Figure 3: MHT Block Insertion Operation (Wang et al., 2012)

Any data element that the proprietor requests to be deleted is actually removed. The server deletes the data block and its

corresponding signature following the deletion request. In addition, the server rebalances the tree and removes the

corresponding block's hash in order to preserve the binary tree's property (Fig. 4).

Figure 4: MHT Block Deletion Operation (Wang et al., 2012)

ITable

By utilizing ITable, the dynamic data modifications in [16] are rendered possible. ITable comprises entries including the

version number of the data block, the original number of file block Bi, and the time stamp of the block's insertion or

update. Fig. 5 illustrates the table updates in ITable.

Journal of Survey in Fisheries Sciences 10(3) 897 - 905 2023

903

Figure 5: ITable Data Dynamic Operations

Divide and Conquer Table

Insertion of a new data block occurs subsequent to the identification of the ith block, followed by an update to the file's

metadata in DCT.

Figure 6: Block Insertion in DCT

The data is appended to the conclusion of the file via the data append operation. As shown in Fig. 7, at DCT, the entries

in the final DCT table are also modified with the index of the appended block and the version number of the new block.

When the DCT is at capacity, a new DCT table is generated.

Figure 7: Block Append in DCT

By executing the data delete operation, a specified portion is removed from the original file. The proprietor requests

An Overview of Data Integrity Approaches for Managing Outsourced Data on Insecure Cloud Platforms

904

deletion of the data block index. Before the data fragment is purged from cloud storage, its corresponding signature is

also removed. The entry from DCT is subsequently removed through a search. As illustrated in Figure 8, the remaining

blocks are rebalanced by relocating upward.

Figure 8: Block Deletion in DCT

Comparison

A comparison of various extant works on cloud data integrity verification is presented in Table I. Additionally, the table

details the constraints of each individual task.

Table I. Comparison of Existing Work on Data Integrity

Presented Approach
Dynamic Updates

approach
Weakness

Ateniese et

al.,(2007)
Homomorphic verifiabletas N/A

Causes high computational expenses because

of using RSA numbering.

Erway et

al.,(2009)
Homomorphic verifiable tags

Using Authenticated

rank based skip list

High computational cost and does not provide

block less verification.

Ateniese et

al.,(2008)

Cryptographic hash function and

symmetric key cryptography

Token based list

manipulation

High computational cost because of no

derebalancing after dynamic insertion,

deletion.

Wang et

al.,(2012)

BLS

Homomorphic authenticator
Merkle hash tree

After every updates function needs to

calculate the root which incurs computational

cost.

Yang &

Jia,(2013)
Homomorphic verifiable tags ITable

High computational cost because of nodere

balancing in ITable after dynamic insertion,

deletion.

Presented Approach
Dynamic Updates

approach
Weakness

Yu et

al.,(2016)
RSA based N/A Does not support dynamic data updates.

Chen(2013) Algebraic signature N/A Does not support dynamic data updates.

Sookhak

etal.,(2007)
Algebraic signature

Divide and conquer

table

Searching is not efficient and also creates

bottle neck because of shifting of DC Ten

tries.

Conclusion

Due to the fact that the proprietor of the data has less control over the data, which is accumulating daily in the cloud, the

data is susceptible to a variety of attacks. This article examines the data integrity and organization strategies for

outsourced data on cloud storage.

References

1. P. Jain, M. Gyanchandani, and N. Khare. (2016). Big data Privacy: A Technological Perspective and Review.

2. J. Big Data,3(1), 25.

3. S. Singh, Y. S. Jeong, and J. H. Park. (2016). A Survey on Cloud Computing Security: Issues, Threats, and

Solutions. J. Net w. Comput. Appl.75,200-222.

Journal of Survey in Fisheries Sciences 10(3) 897 - 905 2023

905

4. M. Sookhak, A. Gani, M. K. Khan, and R. Buyya. (2017). Dynamic Remote Data Auditing for Securing Big Data

Storage in Cloud Computing. Inf. Sci. (Ny), 380,101-116.

5. M. Ali, S. U. Khan, and A. V. Vasilakos. (2015). Security in Cloud Computing: Opportunities and Challenges. Inf.

Sci.(Ny),305, 357-383.

6. D. A. B. Fernandes, L. F. B. Soares, J. V Gomes, M. M.Freire, and P. R. M. Inácio. (2014). Security Issues inCloud

Environments: A Survey. Int. J. Inf. Secu., 13(2),113-170.

7. S. Subashini and V. Kavitha. (2011). A Survey on Security Issues in Service Delivery Models of Cloud Computing.

J. Netw. Comput.Appl.,34(1), 1-11.

8. Q. Wang, S. Member, C. Wang, S. Member, and K. Ren.(2012). Enabling Public Auditability and Data Dynamicin

Cloud Computing. IEEE Trans. Parallel Distrib. Syst.,22(5), 847-859.

9. K. Zeng.(2008). Publicly Verifiable Remote Data Integrity. 419-434.

10. Y. Yu, Y. Zhang, J. Ni, M. H. Au, L. Chen, and H. Liu. (2015). Remote Data Possession Checking with Enhanced

Security for Cloud. Futur. Gener. Comput. Syst., 52,77-85.

11. L. Chen, S. Zhou, X. Huang, and L. Xu. (2013). Data Dynamics for Remote Data Possession Checking in Cloud

Storage. Comput. Electr. Eng., 39(7):2413-2424.

12. F. Zafar et al. (2017). A Survey of Cloud Computing Data Integrity Schemes: Design Challenges, Taxonomy and

Future Trends. Comput. Secur., 65,29-49.

13. C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. (2009). Dynamic Provable Data Possession.

CCS’09Proc. 16th ACM Conf. Comput. Commun. Secur.,213-222.

14. M. Sookhak, H. Talebian, E. Ahmed, A. Gani, and M. K.Khan. (2014). A Review on Remote Data Auditing in

Single Cloud Server: Taxonomy and Open Issues. J. Netw.Comput.Appl.,43,121-141.

15. G. Ateniese et al. (2007). Provable Data Possession at Untrusted Stores. Proc. 14th ACM Conf. Comput. Commun.

Secur.-CCS’07,1,598.

16. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated Hash Tables Categories and Subject

Descriptors. 437-448.

17. K. Yang and X. Jia. (2013). An Efficient and SecureDynamic Auditing Protocol for Data Storage in Cloud

Computing. IEEE Trans. Parallel Distrib. Syst., 24(9),1717-1726.

18. Y. Yu et al. (2016). Cloud Data Integrity Checking withan Identity-based Auditing Mechanism from RSA. Futur.

Gener. Comput. Syst., 62, 85-91.

19. G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik.(2008). Scalable and Efficient Provable Data Possession.

Proc. 4th Int. Conf. Secur. Priv. Commun. Netowrks -Secur.’08, 1.

20. G. Ateniese. (2009). Proofs of Storage from Homomorphic Identification Protocols,1-14.

21. R. C. Merkle. (1979). Ralph C. Merkle ELX Si International, pp. 122-134.

22. S. J. Thomas Schwarz and E. L. Miller. (2006). Store, Forget, and Check: Using Algebraic Signatures to Check

Remotely Administered Storage. Proc.-Int. Conf. Distrib. Comput. Syst.

23. L. Chen. (2013). Using Algebraic Signatures to Check Data Possession in Cloud Storage. Futur. Gener. Comput.

Syst., 29(7),1709-1715.

