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Abstract 

Genomic diagnostics provide an essential tool for clinical decision-making since diseases can occur due to alterations at 

specific locations in the genome, especially when uncommon in prevalence. Genomic data are inherently complex and 

large, increasing the general need for sophisticated decision-support systems. Advancements in the further digitization of 

data and genomes, combined with efforts for closing the data collection gap, are generating enormous multidimensional 

datasets in this area. In general, potentially if volunteered by patients, the majority of the data is health-related. Novel and 

neglected but rapidly evolving technologies, including generative artificial intelligence, are currently enabling 

unprecedented opportunities in terms of automating complex and lengthy explorative data analyses. Actionable, health-

related insights, which can be generated and interpreted by patients with increasing confidence from cherished or trusted 

digital hobbies outside the medical field, have the potential to more realistically change health behaviors. The ever-

increasing data availability, as well as the increasing amounts of metabolomics, proteomics, epigenomics, and other 

‘omics’ disciplines, biotechnology, and artificial intelligence innovation, especially in the fields of computational biology 

and bioinformatics, will pave the way toward a truly personalized medicine in genomic diagnostics. Integrating large data 

via comprehensive, personable systems into personalized health decisions could fundamentally change health behaviors, 

enabling precision health on all levels of health care: prevention, detection, treatment and follow-up. Anticipating that 

truly patient-centered genomic diagnostics will be available in the near future, individual people will have to address how 

aware they wish to become about body and health. 
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1. Introduction 

The advent of accurate and faster genomic diagnostics has ushered in a new era in personalized health care, providing 

crucial information for predicting the risk of disease; identifying the need for immediate treatment or preventive measures; 

and selecting the optimal course of action in therapeutic decision-making. Genomic diagnostics comprise not only an 

individual’s entire saliva or blood sequence data revealing germline variations, but also RNA expression, immune 

repertoire, or microbiome analyses that provide additional disease-associated clues. Expecting to have a sequence read 

length of more than 1 million bp, long-read nanopore sequencing technology, which has recently become available at an 

affordable cost, is expected to be a breakthrough technology that fully reveals structural variants in an individual's genome. 

However, due to the resource allocations required for high-throughput sequencing, combined multi-omics profiling, and 

clinical bioinformatics analysis of data, genomic diagnostics are only feasible for a small number of patients in need of 

clinical testing. Further, the formulation of sound personalized health care decisions based on genomic diagnostics is 

extremely complex. When making health care decisions, one must incorporate not only genomic  diagnostic data, but also 

other patient information—including transcriptome, microbiome, and immune repertoire statuses—and clinical evidence 

linking such data to patient outcomes. In addition, specific health care pathways should be selected based on the 

individual's genetic background, ethnicities, comorbid conditions, and social environments. Moreover, the urgent need for 

a sound personalized health care decision should be considered. If genomic diagnostics are employed to address the five 

Ws—who, what, when, where, and why—then personalized health care decisions would be simple, sensible, and practical. 
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Fig 1 : Generative AI in Healthcare 

 

The advent of molecular genetics and the completion of next-generation sequencing technology have all contributed to 

the rapid development and wide application of genomic diagnostics in modern medicine. Genomic diagnostics have 

demonstrated their advantages over traditional diagnostics in many fields, including infectious diseases, cancers, 

regulatory diseases, and pharmacogenomics, and have affirmatively reshaped the paradigms of clinical precision 

medicine. Based on current experience, genomic diagnostics are anticipated to have an even greater impact in precision 

health care in the future using a variety of approaches. For diagnostics at the prevention stage such as newborn screening 

and prenatal testing, genomic diagnostics are more accurate than other conventional strategies. They can directly check 

disease-causing gene mutations or even large genomic alterations which conventional technologies may miss, and with 

the rapid reduction in costs, genomic diagnostics for these applications are being widely utilized. 

The effect of genomic diagnostics is also very important in the prediction stage, where down-syndrome prenatal diagnosis 

is the trail-blazing application because of the exact genetics of such a monogenic disease. For most of the hereditary 

diseases, however, it is not accurate enough, as a single mutation detection underdiagnosed up to 30% of the positive cases 

who have a known mutation in the non-tested regions. Due to the high accuracy and the comprehensive nature, NGS-

based genomic sequencing have very promising potentials to be the first-line tools in down-syndrome prenatal diagnosis. 

For somatic pan-genomic disorders like cancers, genomic diagnostic-clinical integration has facilitated the establishment 

of the concept of "liquid biopsy" which is both non-invasive and repeatable. By utilizing multiple techniques to detect 

different levels of circulating tumor DNA, mRNA, or non-coding RNA, especially long non-coding RNA, malignant 

tumor development and evolution can be followed and reflected very well. 

 

2. Understanding Genomic Diagnostics 

It has long been a dream of humankind to identify the true cause of disease and tailor treatments accordingly, at least in 

most fields of medicine. Genomic testing paves the way for such precision medicine. Genomic testing is an umbrella term 

that refers to any test that analyzes DNA, RNA, chromosomes, epigenomes, or proteins. Genomic diagnostics are defined 

as genetic tests that look for variations in genes, including single nucleotide variations, small insertions, small deletions, 

larger repeat expansions, and structural variations, including large insertions, large deletions, and copy number variations, 

detectable by sequencing or genotyping platforms at high throughput or high coverage. Note that we define genomic 

diagnostics as a combination of single gene tests, multigene panel tests, exome tests, genome tests, single nucleotide 

polymorphism array technology, and cytogenomics with known pathogenic, likely pathogenic, and uncertain variant 

interpretation classification. Genomic diagnostics utilize variation detection technology, including sequencing or 

genotyping at high throughput or high coverage, along with crafted interpretation algorithms to seek known variant 

interpretation applied for use in molecular pathology laboratories for clinical diagnosis of disease. Genomic variant 

interpretation is informed by the claim of pathogenicity, interpretable analytic sensitivity, or analytic specificity. Genomic 

diagnostics pathway addresses known diagnostic biomarkers for genomic variants in disease-associated genes that provide 

a probabilistic basis for the use of the diagnostic biomarker analysis for clinical testing. 

 

2.1. Overview of Genomics 

Genomics is the study of the genes and their functions and related techniques, also the study of the genomes that are the 

complete set of genetic information of an organism. The field includes the sequencing and comparison of genomes either 

within or across species and the sequencing of the genomes of rare species that include microbes, plants, animals, and 

humans. Relying on the developments in technology, genome sequencing has become much faster and more accurate and 

less expensive leading to the use of genomics in every field of biology-related sciences and medicine. The various 

scientific sequencing technologies include microarray-based methods and short-read DNA sequencing technologies and 

third-generation methods. The giant amount of data generated by these technologies necessitated the need for developing 
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new tools and techniques for storing and analyzing these data. Genomic data analysis also includes the interpretation of 

the sequencing data to extract useful new biological information. 

In genomics, the various phases of acquiring the useful genomic information regarding a biological system is normally 

referred to as, genomic data acquisition, data storage, data analysis, variant calling, annotation, and interpretation. As the 

tools and techniques for genomic data analysis and clinical interpretation are still under development, the move towards 

personalized medicine, precision medicine or translational medicine that aims is to translate the research of genomics to 

the clinic has a long way to go. An understanding of the next-generation sequencing methods and data is essential for the 

translating sequencing data to clinical practice. This chapter discusses the current state of genomic data generation and 

analysis and provides examples from the field of human health. 

 

Equation 1 : Patient-Specific Genomic Signature Vector (GSV):

 
 

2.2. Importance of Genomic Diagnostics 

Genomic information is important for achieving accurate diagnosis, prognosis, risk assessment, and treatment selection 

for many diseases. Although mostly used in rare diseases and infectious diseases, genomic diagnostics offer great value 

in oncology, pharmacogenomics, and other disease areas. In oncology, the potential for precision therapy by targeting 

genomic alterations in cancer has created a demand for genomic testing. The proliferation of genetic technologies has 

resulted in rapid reduction of the cost of testing while increasing quality and accuracy. The advent of technologies such 

as whole exome and whole genome sequencing now enables genomic testing to be used as first-line testing even for the 

most challenging clinical situations. These capabilities have made the routine use of genomic testing an expectation rather 

than an exception in many areas of medicine. Despite the rapid advances in genomic testing capabilities, the vast majority 

of physicians do not have the knowledge, training, or bandwidth to interpret and analyze sequencing data. In addition, the 

number and complexity of the potential number of observed variants and the interpretation problem necessitate the 

development of tools to help physicians arrive at a concise list of prioritized variants with associated information that can 

be used to make genomic-informed decisions. This need is especially acute in areas that can benefit from genomic testing 

capabilities, but where the clinical adoption has lagged despite existing guidelines due to ambiguity in the rules that govern 

the decision-making process. Genomic diagnostics enables increased understanding and better treatment selection for a 

beautiful bouquet of diseases that have previously never had a suitable therapeutic solution. Therefore, the coupling of 

ever-growing massive genomic data with state-of-the-art machine learning and generative artificial intelligence tools can 

accelerate the process of increasing clinical adoption. 

 

3. The Role of Big Data in Health Care 

1. Defining Big Data in Health Care 

In the last two decades, rapid advances in technology to collect, analyze and utilize information have made possible the 

generation of large amounts of complex data, referred to as big data. Systems that handle big data, characterized by high 

volume, high velocity, and/or high variety, require specialized hardware and software and advanced statistical and 

computational capabilities. Various industries are taking advantage of big data analytics; however, businesses in the health 

care industry are lagging behind, in great part because of the highly complex, fragmented, and unorganized structure of 

the health care system. Nevertheless, in recent years, the increasing digitization of the health care industry is leading to 

gradients of success implementing big data solutions. Optimization of big data resources in health care is needed to realize 

the dream of personalized, precision medicine that takes into account unique patient characteristics and leverages the 

advances in biotechnology, such as genomic pathology and radiology, and drug design and development. 

 

2. Sources of Big Data in Genomics 

Genomic diagnostics is one of the major fields in health care that stands to benefit from the implementation of big data 

solutions. Genomic big data is in part generated from the decline in sequencing costs just 20 years after the publication of 

the first draft of the human genome with approximately 3 billion base pairs. The cost of sequencing a human genome has 

dropped to the point that today, tens of millions of genomes are estimated to have been successfully sequenced, creating 

a rich database of genomic information. Besides first-hand genomic data, an extensive amount of medical data related to 

patient diseases and phenotypic characteristics attributed to genomic variations is being generated. These data have been 

integrated into especially centralized large biobanks. Lastly, advances in artificial intelligence are now enabling novel 

technologies to predict the burden and types of diseases for patients based on their genomic variations, creating additional 

resources of big data. 
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Fig 2 : Big Data Applications in Healthcare 

 

3.1. Defining Big Data in Health Care 

The concept of Big Data has been applied in diverse environments, with the most widespread use in business, technology, 

and governance. The emergence of Big Data in health care has proven life changing by allowing access to unprecedented 

knowledge from populations and by unlocking powerful new methods for population management, insight generation, 

and health care delivery. These new capabilities are transforming health care from a reactive model that treats disease 

after it occurs to a proactive model that focuses on disease prevention and population risk management. Their use is 

efficient, scalable, and flexible, minimizing both the cost of investment in the required platforms, and the risk of multiple 

adaptations to the particular needs of a specific health care application. 

Nevertheless, as data sources are more readily available to a wider audience, misunderstanding arises concerning what 

Big Data is, and represents, in the health care space. Potential uses can range from simple correlation studies using 

traditional methods applied to large datasets, to the enormous computational and financial investment required for a cloud-

based artificial intelligence solution capable of massive predictive analytics. These ambiguous definitions limit the 

capacity for investment in useful Big Data analytics infrastructures that accelerate research in health care innovation. 

Accordingly, we present here a definition of Big Data in health care that imposes both size and solution requirements. 

Both the Big and the Data aspects of our definition must be fulfilled for data and its analysis to be considered actually Big 

Data. 

Herein, we define Big Data in health care as any health care data ecosystem that is large enough to require a specialized 

Big Data analytical solution. Substantial investments are the most obvious requirement. Computational infrastructure that 

allows organizations to house large datasets and apply specialized cloud-based services for storage, processing, and 

advanced analytics expands the capacity for investment in innovation for Big Data infrastructures and analytical solutions. 

 

3.2. Sources of Big Data in Genomics 

The genomic research is generating very large amounts of often shared or otherwise publicly available data. Since the 

advent of next-generation sequencing technologies, there has been an exponential increase in the amount of genomic data 

produced. Next-generation sequencing has enabled cost-effective high-throughput sequencing and a diverse set of 

applications in genomic medicine, such as genome sequencing, transcriptome sequencing, epigenome sequencing, exome 

sequencing, genome-wide association studies, and other functional genomic studies. However, challenging limitations are 

associated with the use of WGA of small biological material and the comparative disadvantages of some NGS 

technologies. 

The rapid generation of genomic data from a variety of sources has also created a new concern. There are diminishing 

returns on spending money but not time on new NGS technologies. While most of the latest sequencing devices have now 

implemented protocols for generating smaller data files and data processing pipelines, they still trail in comparison to 

older NGS-specific data types for speed and economy. These include exome capture array kits from a variety of 

commercial vendors that are also optimized for and focus on large-scale population genomic studies. Other types of data 

in very large volumes are the publicly available reference genomes, as well as the large-scale tumor-normal DNA RNA 

long-read databases and image feature data from cancer studies, especially in pediatric tumors and other diseases. 

 

3.3. Challenges in Managing Big Data 

With the increasing complexity and diversity of data in genomic medicine, the challenge of big data is transforming 

genomic data from being merely abundant into more qualitative and valuable information. The collection, generation, and 

curation of meaningful data is bound to have a clinical impact only when these processes can act in synergy with the 

optimized computational pipelines that convert big data into actionable, clinically-relevant knowledge. On the contrary, 

if data generation is disordered and computational pipelines remain unsupervised and poorly optimized, big data will 
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likely remain a powerful tool with little or no clinical value. A sufficient degree of data generation, processing, and 

curation will, therefore, be fundamental to boost the establishment of robust and standardized bioinformatics pipelines 

able to accomplish the systematic translation of big data into knowledge and clinical actionability. Explosive technological 

advancement in data science and management techniques is not sufficient to guarantee the implementation of genomic 

medicine in the everyday clinical practice. Currently available algorithms and optimization techniques are seldom 

validated for their performance on elaborate patient data paved with uncertainty and errors and, where assessments have 

been made, the success rates have generally been poor with high variability across different groups. Moreover, much of 

the available methodologies have not yet been rigorously validated in the context of assessing health risks or predicting 

disease nor, when applicable, built into systematic clinical decision support systems. Therefore, the management of big 

data in the context of health care will pose challenges for both researchers and clinicians and, especially in the former 

capacity, fail to provide the expected level of reliability and actionability if not accurately conceived and implemented. 

 

4. Generative Artificial Intelligence in Health Care 

Generative AI has emerged as one of the most impactful computational techniques, incorporating advanced systems for 

generating high-dimensional data as contributions to an exponentially increasing body of AI models that are transforming 

numerous disciplines. Health care and biomedical informatics are seeing enhanced detection, annotation, and prediction 

tools applicable to a wide variety of data, including text, images, and clinical decision-making. These models, many with 

billions of parameters, sometimes referred to as foundation models, are having a transformative impact on therapeutics, 

pharmacovigilance, genomic modeling, and electronic health information. These foundation models are especially 

impactful along with domain-specific tuning, transfer learning, and few-shot transfer as applied to particular biomedical 

datasets. Recently developed models are a leading example of a foundation model for health care. 

Foundational large language models and AI-enhanced multimodal models with transfer techniques or using domain-

specific additional training are transforming multiple data types in biomedical fields, particularly in genomics. A variety 

of tools are beginning to appear for laboratory exploration and bioresearch supported by multimodal embedding for visual, 

genomic, and clinical information. Generative AI enhances biomedical exploration and, ultimately, models of health and 

disease, therapeutics, integrative functional genomics, electronic health records, or associations supported by multimodal 

data of multiple types. There are numerous possible areas of applications, including the data pathways of genome-to-

phenome with the potential of pharmacogenomics along with health equity, building the predictive platforms. These 

transformative techniques and rapidly evolving capabilities of Generative AI raise numerous ethical issues around 

unintended biases, potentially harmful errors in prediction, generation, and embedding, privacy, and trust. 

 

4.1. Introduction to Generative AI 

Generative artificial intelligence (GAI) refers to the use of computer algorithms and systems to create entirely new outputs 

that mimic the intricate aspects of the material world. Recently introduced hardware and software improvements, including 

large-scale data utilization, powerful computing systems, and advanced algorithmic advancement, have made GAI 

extremely popular. Recent models have captured widespread attention for the apparent artistic abilities of the generated 

results. These models can generate high-resolution images, ultra-realistic digital art, websites, computer codes, text stories, 

news articles, poems, and blogs. As GAI-enabled tools become available, both creative professionals and amateur artists 

have expressed profound fatigue, discomfort, and even have concerns about potential job displacement due to the 

proliferation of AI-generated art. Nonetheless, with the explosive development of large and sophisticated GAI language 

models, the tremendous potential of GAI in producing stimulating art and creative works cannot be neglected. More 

importantly, despite these concerns, the potential applications of GAI go far beyond merely copying creative expressions 

from the realm of art, dramatically impacting many practical aspects of our daily routines. 

Generative AI can be utilized in nearly all domains of artificial intelligence. Instead of only recognizing and segmenting 

existing objects, GAI models can create entirely new outputs and mimic material world contemplations. With foundations 

in computer science, informatics, mathematics, neuroscience, and robotics, GAI is a branch of AI that creates analogues 

of objects, images, sounds, text, and other content by simulating deep, latent structures in data; through creative 

imbuement, these models can expand our understanding of generative processes and co-create instruments for art and 

design in ways that were not previously possible. With the rapid technological advancements of AI, the GAI-enabled tools 

and models are rapidly transforming these domains as well. 

 

4.2. Applications of Generative AI in Genomics 

Generative AI-based approaches have, until now, been less frequent in genomics than in areas such as language and vision, 

a situation that may change rapidly. The use of large language models to assist in tasks such as genome interpretation 

annotation or increased accuracy in gene identification is becoming more common. Data-efficient approaches such as 

prompt tuning have been shown to be effective in bioinformatics tasks, including sequence labeling. Autoencoding models 

trained on contrastive objectives to replace masked RNA and DNA sequences are also boosting performance in gene 

identification tasks such as minimal RNA sequence saturation, homology model generation, and detection of variant 

effects on RNA. 

Generative AI approaches based on diffusion generative models and GANs have been more common in genomics for de 

novo genome assembly, epigenomic data modeling, and RNA and DNA sequence generation. Innovations relative to 

diffusion models, designed for visual domains, include a multi-channel multimodal conditional diffusion framework for 
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learning epigenomic signals, and generative adversarial networks for generating high-resolution 3D genome structures 

from 2D data. Other GAN and diffusion-based methods include those that create chromatin accessibility maps, and those 

that generate DNA and RNA sequences. 

Practical suggestions for scientists interested in employing GANs for biomedical data include starting with simple GAN 

configurations, achieving acceptable results, and then gradually increasing the model’s refinement and efficiency. 

Guidance on the basics of diffusion models for RNA and DNA sequence generation is also available. Accessible tools for 

RNA and DNA sequence generation are best suited for scientists specializing in experimental wet bench work, but easy-

to-use packages for analyzing bulk RNA sequencing data are emerging, driven by academic researchers, for those without 

programming skills. 

 

 
Fig 3 : AI in Genomics is Transforming Healthcare 

 

4.3. Ethical Considerations of AI in Healthcare 

Artificial intelligence combined with big data scoring have expedited the generation and subsequent exploitation of health-

related prediction models and personal risk scores. Akin to being 'equally intelligent' as the user of a wizard, and 'cheaply 

clever' in regard to placement of tasks, these wizard tools are 'both a blessing and an insightful pondering'. Within the 

healthcare domain, there are several tasks wherein people might prefer to enlist AI-based tools owned and operated by the 

interests of a healthcare institution or commercial entity. All organizations that manage healthcare data or use predictive 

tools are charged with the responsibility of care, beneficence, justice, and non-maleficence towards those whose data they 

possess or who are potentially affected by their predictive tools. Generative tools can exacerbate things, as these tools are 

now considering those values as inputs and trying to optimize them as outputs for the audience of the intended user agent. 

The biggest debate revolves around the ability to utilize AI-generated content while listening to the social elements of the 

bias-variance tradeoff of the user. Because of the legacy of the algorithmic communities irresponsibly ignoring bias and 

considering variance the enemy, it is ethical to require AI alignment and consideration of fairness be core tenants of any 

organization operating advanced wizard-like tools that interface with the general populace. 

 

5. Integrating Big Data and AI in Genomic Diagnostics 

Big Data has increasingly become an empowering component in a wide range of genomic research fields and activities, 

driving the successful growth of a variety of application sectors heavily relying on genomic data, such as precision health. 

Genomic diagnostics as an active integration of genomics and diagnosis enables accurate discovery of health conditions 

in development or lifestyle-related diseases. Genomic data obtained through high-throughput sequencing renders 

diagnostic capability more efficient and effective by allowing more comprehensive examination of somatic variants and 

germline polymorphisms associated with disease development or progression. Artificial Intelligence, particularly, 

Generative Artificial Intelligence, significantly expands the applications and capabilities of Big Data. As the latest major 

trend in Big Data, AI will connect disparate data pieces together to make datasets smarter, to generate data-driven 

knowledge, and to draw further conclusions from data rather than just providing raw data support. Hence, a strategic 

integration of Big Data and AI in genomic diagnostics would synergistically optimize the advantages of both Big Data 

and AI. 

Enabled by Big Data and AI, genomic diagnostics can utilize and analyze multidisciplinary data beyond genomic data 

alone, to better characterize the health conditions from multiple angles, and to provide more personalized, accurate, and 

efficient genomic diagnostic services to patients. Various efforts have been made to achieve this promising optimization 

by connecting Big Data, AI, and genomic diagnostics together, covering the application domains, technical components, 

and model configurations, and showing the performance improvement on genomic diagnostic tasks. Moreover, with the 

recent boom of large language models in the AI field, this integration will be much more convenient and powerful. In the 

following subsections, we will walk you through the concepts and successful case studies of applying AI-enhanced Big 

Data into genomic diagnostics, in depth, from the perspective of Big Data. 
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Equation 2 : Diagnostic Prediction  

 

5.1. Synergistic Effects of Big Data and AI 

Although the values of big data and artificial intelligence (AI) have been separately described, application as a holistic 

decision-making framework is less commonly described. A sufficient volume of data is the essence of AI and its applied 

machine learning (ML) self-correction process. Big data, particularly in omic solutions, is generated from measuring a 

large number and diversity of relevant elements for a particular sample type. However, an adequate number of metrics of 

meaningful importance for obtaining an actionable result is key. In the case of using AI for omic working solutions—

predicting outcome probabilities or actions without needing to understand the complex relationship with input data—

interpreting the algorithms may not be necessary. In the case of needing to explain the information from the model, global 

or local explanations can be obtained. 

Synergy in focusing on bias presented in big data for AI—removing bad data or using methods to identify the conditions 

for data to be valid—can improve AI performance. Smaller, cleaner datasets can improve AIs applicability in ascertaining 

accuracy metrics from comparative methods. Even if there are no improvements from ML adaptation or application, 

improved global and local interpretability can provide important insights and validations that could stingily adapt. Big 

data at times is vast with differing features that cause bias. Employing techniques for grouping similar data to match with 

AI feature layout should increase validity. Removing or personalizing controlling types of data can usually apply for 

greater volume with a smaller number of features. 

 

 
Fig 4 : Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis 

 

5.2. Case Studies of Successful Integration 

How can the underlying data science, methodology, and technological concepts behind using big data and AI together in 

genomic healthcare be applied in practice? Are there real-life industry case examples that show the potential of this 

integration? To help answer these questions, we have identified case studies from our experience in applying big data 

analytics and generative AI systems using cloud computing in real life. These case studies show how new generations of 

big data analytics and generative AI designed for genomic medicine can enable personalized, fast, efficient, and accurate 

genomic diagnostics, targeted and stratified prevention plans, as well as individualized, enhanced treatment 

recommendations and therapeutic measures. The lessons learned from both case study implementations can provide the 

genomic healthcare community with useful knowledge on the essential core processes and the data science and 

technological infrastructure needed to use together big data analytics and generative AI successfully to their full potential. 

The first proof-of-concept case example is the personalized genomic diagnostics for somatic mutation-driven clinical 

cancer subtypes. On the big data analytics side, the actual somatic mutation for the targeted oncogenic pathways and the 

functional annotation of the somatic mutation found in the whole genome-based integrated cancer somatic mutation data 

are compared against an established curated database of somatic mutation functional assessment methods. On the 

generative AI side, the DNA repair model is designed using the generalized Schrodinger heterogeneous mean-field model. 

The DNA repair pathway is implemented into the coupled general second order model to compare against.[1] 

 

6. Personalized Health Care Decisions 

1. Defining Personalized Health Care 

The term personalized health care refers to tailored treatments and care models uniquely developed for patients based on 

various factors, such as a person's underlying biological, clinical, environmental, social characteristics or preferences. 

Personalized health care aims to provide unique and customized treatment strategies to individual patients while promoting 
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healthy behavior and disease prevention. While directed toward patients, personalized health care also considers the 

patient's context, family history, and societal and psychological implications of the disease and its treatment. Providing 

care precisely and wisely is not only beneficial to individual patients, but also helps develop appropriate care systems, 

willfully utilizing available resources for the improvement of public health; reducing the total cost of care, reducing the 

number of hospital visits, and alleviating the ineffective use of resources; and preventing and managing chronic diseases. 

 

2. Benefits of Personalization in Treatment 

Overall, personalized health care solutions can revolutionize a patient's health management and directly improve patient 

adherence and thereby outcomes. Personalized health care allows identification of high risk patients to apply intensively 

managed behavioral and pharmacotherapeutic interventions; selection of preventive strategies using the latest technology 

to identify patients at risk who could benefit from prevention; maximum disease prevention; the possibility to 

revolutionize disease treatment to convert the focus from waiting for disease symptoms until providing maintenance 

therapy, dysfunction management, disability support, and costly surgery and rehabilitation to active monitoring and 

disease prevention; avoid the trial-and-fail treadmill for medicines, to maximize benefits and minimize adverse 

consequences; interactive engagement, virtual support, timely monitoring; effective feedback using remote monitoring 

devices; leveraging artificial intelligence algorithms to help sort through large volumes of data; and integrating and 

coordinating care. 

 

3. Patient-Centric Approaches 

Various themes emerge from discussing personalized health care within the context of patient-centric attitudes. They 

include patient preparedness and preference assessment, shared decision-making, clinician-patient communication, patient 

engagement, treatment adherence, patient-reported outcomes, patient-centered value-driven outcomes, integrated 

behavioral, functional, emotional, financial, and personalized problems and solutions perspectives, end-of-life 

discussions, palliative care, patient-centered outcomes, and transparency. By explicitly addressing all stakeholders, 

including patients, family members, reimbursement agencies, and payers, guidance can be created on how to optimally 

measure and structure patient-centricity within the personalized health care context. 

 

6.1. Defining Personalized Health Care 

The concept of personalized health care (PHC), also known as precision medicine, was officially defined in a report that 

the administration hoped would spearhead a new, transformative vision usher in a decade of science, technology and 

discovery in diseases ranging from cancer to diabetes to rare diseases. Although personalized medicine uses traditional 

biomedical tools of science and is therefore not new, due to the magnitude of the acceleration of the biomedical discovery 

process and how personalized medicine will be informing and prioritizing selection of how and what technologies and 

industries are shaped. Personalized health care has been broadly defined as an emerging area of science, technology, 

industry and discovery that integrates novel data and technologies to improve diagnosis and outcomes of therapy and 

disease prevention, with an emphasis on helping implement and disseminate complex biomedical discoveries into the 

practical setting of patients, families, and populations facing education, social, emotional, behavioral, environmental, 

access, planning, and treatment decision challenges, and competing life priorities. Personalized medicine employs a new 

biomedical model of both science and practice of using individualized data and innovative decision-making algorithms to 

optimize diagnostic testing, treatment, and education, which are now possible due to advancements in our understanding 

of complex biological determinants, the accelerating power of novel data, tools, and technologies, and the rise of enabling 

industries such as information technology, data science, computation, advanced algorithms, and artificial intelligence. 

The approach taken in the PHC endeavor and discussed here, is the complete integration of patient-centered care with 

high technology in order to optimize decision-making. These tools include whole genome sequencing, advanced 

computational algorithms for variant classification, targeted clinical use of next generation sequencing and other “omics” 

technologies. These advances help solve the “test smarter” dilemma of personalized medicine, and machine learning or 

other advanced algorithms driven by big data, thereby leveraging both internal medical data and data from other diverse 

informational sources or “knowledge curation”, which will help solve the “treat smarter” challenge. Personalized health 

care balances high technology with a patient-centered approach to care.[2] 

 

6.2. Benefits of Personalization in Treatment 

The traditional medicine model is based on treatments that visit the patient regardless of their identity. While the clinical 

practice has undergone a remarkable evolution in terms of different diagnostic tests that support physicians in their 

decisions, technological advances will not change this traditional model until the development of patient-specific drugs is 

possible. During the last years, the use of drugs targeting personalized therapies in certain diseases, such as cancer, have 

demonstrated an improvement in terms of efficacy and a decrease in adverse effects when compared to more traditional 

therapies. This is due to the fact that these therapies are studied and developed with the aim of only helping certain subsets 

of patients. There are also examples where non-specific therapies were effective for some patients, but the majority of 

respondents had considerable side effects; examples of this are certain treatments. In general terms, personalized therapies 

could be defined as those therapies that are supported by evidence-based medicine in their development, or are used in 

patients who are selected based on some specific knowledge regarding the influence of certain pharmacogenetic, 

genomic/proteomic, environmental, and/or lifestyle factors. In this sense, the adoption of pharmacogenetic criteria in the 
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development of certain drugs has increased in the last decade, mainly because the incorporation of these biomarkers in 

clinical trials has improved the design and robustness of the studies in development.[3] 

However, the introduction of new technologies, mainly related to genomic studies that allow a thorough understanding of 

preventive health and disease control, have contributed to the emergence of strategies that not only identify patients who 

are more or less responders to a therapy but also identify the mechanisms by which the drug acts at an individual level, 

defining the dose and the moments for drug administration, coupling drug delivery with immunotherapies, or even 

eliminating the disease altogether, generating a cure. The above makes it possible to have more tailored drugs, but with a 

distinct objective that radically modify the traditional clinical practice, providing a quantum leap in the patient 

management. This radical change in the therapeutic approach in personalized medicine is possible thanks to the 

understanding of the entire interconnection of patient biology with disease and treatment, generating a personalized 

treatment plan in a move towards predictive, preventive, personalized, and participative medicine paradigm. These 

technologies allow the definition of more precise, safer, and more effective therapeutic strategies in terms of patient 

management, improving efficacy response rates and/or reducing adverse effects, as well as monitoring patient evolution 

more exhaustively, leading to a computed personalized support for making treatment decisions.[4] 

 

6.3. Patient-Centric Approaches 

A patient-centric health care approach for presenting and discussing the findings of genomic testing needs to take into 

account many factors, including the patient's precise health condition, demographic factors, and the potential for anxiety 

in communicating with bluntness, particularly if the discussed results are associated with risk of dying or early disability. 

Detailed medical history is needed to assess relevance to clinical presentation, particularly for adult-onset inherited 

conditions, penetrance and to establish proper controls in genotype-phenotype correlation analysis. Such history can be 

susceptible to social or psychological issues. An inclusion of a spouse or other close relatives in the discussion may help 

in more accurately obtaining the family history data. 

The patient's cultural background may shape their perception of genetic testing, the significance of particular gene risk 

variants, and the degree of their involvement in the decision-making process, including preparatory counseling in case of 

testing for carrier status of applicable medically relevant conditions. The availability of targeted therapies, particularly if 

life-saving, may greatly facilitate discussion of even highly penetrant gene variants in severe medically relevant conditions 

discovered in healthy patients or carrier status of highly penetrant dominant-negative variants. When considering testing 

for adult-onset conditions, the advisability of testing and the strategy of how to discuss the findings are more complex. A 

patient may not have a fully informed understanding of what medical genetic testing entails and particular possible 

outcomes, may be opposed to selecting any findings that are associated with medically relevant genes, would prefer the 

testing to be purely for fascination, or would prefer not to pursue genetic testing.[5] 

 

 
Fig 5 : Generative AI in Improving Personalized Patient Care Plans 

 

7. Data-Driven Decision Making 

Patients, their families, public health authorities, payers, pharma, and technology developers all want to make smart 

decisions about health and disease. Thus, it has become vital to adapt data-driven models from other domains and develop 

new models for evidence generation for use by those making health-related decisions. This not only requires experts in 

various health domains, but also statisticians, economists, social scientists, and other methodologists to collaborate to 

enhance the value of the vast amounts of real-life health data now available. The overall framework is relatively 

straightforward, though far from simple to implement. It starts with asking the question of decision relevance. This is 

followed by the identification, assimilation, and curation of relevant real-world health data, including the development of 

new digital data collection mechanisms as required. Advanced methods from AI and machine learning to agent-based 

modeling then analyze the data to make the best possible inference about probabilities of different potential outcomes 

based on different decisions. 

The final steps require more collaboration among domain experts, methodologists, and those making the decisions about 

what information is required and how best to communicate it back to decision makers. The aim is not just a summary of 
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various results according to who gets the treatment, but rather relevant, tailored analysis based on simulation of diseases 

and of outcomes of choices using the AI-assisted computational agents. In an era of regulation of human health-related 

activities due to huge computing capabilities and computational costs, the time has come to maximize the still unrealized 

potential of the rapidly growing stores of digital information about the enormous amount of real-world information on the 

many choices we humans make related to our health and its outcomes.[6] 

 

7.1. Framework for Data-Driven Decisions 

Data-driven decision making is an interdisciplinary area of focused inquiry that integrates big data, AI augmentation, 

personalization, and behavioral economics to train decision models that accurately reflect actual decision patterns in 

complex environments and modify these decisions decisively to impact performance improvement metrics meaningfully. 

Data-driven personalized healthcare decisions harness the power of the behavioral framework. The right available data in 

the decision realm measures actual healthcare behavioral decision making – economic, clinical, cultural, ethical, financial, 

logistical, psychosocial, and societal. Data-driven personalized healthcare framework combines the science of behavioral 

economics with the technologies of big data and generative AI to shift the focus from care delivery on what clinicians 

recognize on the basis of their prior education and experiential learning, combined with state-of-the-art software tools, to 

what actual patients want and need, plus the triggers that will induce them to engage in these practices and make the right 

decisions. It considers two major enabling components: (i) improving the quality of care with respect to specialty 

recommendation, pre-visit behavior, quality of diagnosis and treatment, and post-visit follow-up and revision; and (ii) 

ensuring a positive experience with regard to diagnosing what the patient wants emotionally, culturally, and ethically, and 

satisfying this need empathetically and expediently. 

Broadly categorized, there are three major types of data on healthcare behavior that comprise the clinical outcome data 

structure: (i) patient-incentivized, -driven, -organized, and -evaluated surrogate outcome metrics, i.e., time to diagnosis, 

time to clinical decision implementation, time to treatment initiation, time to waitlist removal, time to symptom resolution 

and amelioration, and time to cure; (ii) verified, -captured, -recorded, -coupled, -assembled, and -visualized diagnostic 

physical measures that standardize the actual healing effect, i.e., functional status, cure rate, symptom alleviation and 

resolution, complications and from procedure and treatment; and (iii) fully-session rated, -assessed, -collected, -stored, 

and -indexed qualitative psychosocial assessments that address subtle “dependent” and complex private feelings patients 

experience through their healthcare journey and process. We believe that this composite patient data enables healthcare 

decision-enhancing personalization.[7] 

 

7.2. Impact on Clinical Outcomes 

Data-driven decision support will surely have its impact on clinical outcomes. Improvements to diagnostic processes, 

patient stratification, personalized therapeutic approaches, and better assessment of drug efficacy and toxicity will directly 

tie results from DDDM to tangible patient benefits. Improved diagnosis capabilities could result from faster turnaround 

times, more reliable detection of pathogenic alterations, and the ability to measure actual tumor dynamics through 

longitudinal plasma analysis rather than static cross-sectional tissue snapshots. Moreover, DDDM could additionally offer 

a risk-benefit assessment for rare diseases, assessing the possibility of finding an identified genotype for the patient and 

the pros and cons of a successful or unsuccessful therapy response reduction. Indeed, DDDM is very much needed in the 

treatment of cancer, CNS disorders, and rare diseases. The difficulties presented by these diseases can benefit from 

advanced machine-learning models that can crunch large amounts of data across the different existing cohorts, including 

additional datasets that would initially be ignored because of differing ethnic origin, ancestry, and population 

heterogeneity. The increased genomic diversity, understanding of ancestry, and genetic risk factors for certain diseases 

will allow a better stratification in the treatment of complex diseases where all treatment responses are reduced or altered. 

Cancer and other complex diseases are also those fields where generative AI approaches can potentially improve existing 

algorithms with better feature extraction and disentangled representation.[8] 

 

7.3. Real-World Applications 

In practice, personalized health data enables physicians to customize treatment decisions for their patients based on the 

patients' biological profile against group population statistics. Analyzing EHRs data has improved patient care through 

improved decision support, assisting clinicians in adopting evidence-based guidelines in diagnosing or managing their 

patients' conditions. Clinical cohorts in Genomic EHRs provide realized factual information about what genomic variants, 

variant interactions, variant-phenotype relationships, and pathways lead to which medical conditions are likely to affect 

clinical outcomes, and are associated with drug responses or adverse drug reactions. That invariably supports patient-

specific and rational patient-priority manual perusal of genomic and associated phenotype data for developing diagnostic 

or treatment plans for patients with specific conditions, to ultimately improve clinical outcomes. 

We have also developed data-driven clinical databases addressing specific clinical problems leading to impactful results. 

The GIANT portal consists of large-scale diverse genomic and gastrointestinal phenotype data of patients and controls 

that support data-driven inference of GI phenotype-genomic associations for decision support in patients with GI 

conditions, and offer clinical clues for treatment response in patients who receive GI-directed treatment. The human 

immune system is home to unique cellular gene expression programs deciding developmental and functional plasticity of 

major immune cell lineages and state in humans. The IEMDB is a large-scale interactive database containing data-driven 
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CD4, CD8, Treg, B, NK, and monocyte-macrophage cell type-level unique gene expression programs, and program-based 

immune cell network interactions across human organs.[9] 

 

8. Future Trends in Genomic Diagnostics 

As technological advancements continue along the exponential growth path that has defined the past two decades, a 

number of constraints that today limit the scope of genomic diagnostics will be erased. These advancements will serve to 

enable new applications and new service delivery techniques that will transform healthcare into a data-driven and value-

based industry. Miniaturized diagnostics are already being embedded as wearable devices or chips that can be deployed 

in the field. New methods for the automated analysis of sequencing data are rapidly being developed, enabling real-time 

in-field sequencing of biological agents. 

The implications of this type of technology development for genomic diagnostics are vast. AI developmental advances 

will make it possible for genomic diagnostic assessments to be done in real-time, opening up a rich set of novel 

applications in healthcare applications such as surgical planning/guidance, emergency triaging, remote personalized care, 

and primary care addressing physical and mental well-being. These will further free primary care physicians to focus on 

the complex cases requiring their expertise, while maintaining high telehealth utilization rates and personal engagement. 

Adoption of robotic implantable nanoscale diagnostic probes will enable ultra-high temporal resolution diagnosis of a 

multitude of pathological conditions in real-time. The deployment of liquid biopsies for the assessment of tumor burden 

through the number of circulating tumor cells or the level of tumor exosome concentration will make it feasible to actively 

monitor responses to treatment, and identify recurrences well in advance of the reappearance of clinical symptoms. 

Residual burden following neoadjuvant approaches will be detectable and enable personalized treatment alteration 

decisions prior to surgical intervention. AI-based personalized risk and outcome predictive models will enable real-time 

clinically actionable deep-dive genomic data assemblies. These will enable the ready use of broadly facilitative health 

predictive models, serving to provide continuously updated predictive risk profiles, cohort membership status, and clinical 

actionable insights of significance to the responding individual and their healthcare providers.[10] 

 

8.1. Emerging Technologies 

Pioneering advancements in technology will bring major changes in our personal lives for caring for our health and the 

health of our family members. The growing popularity of consumer and clinical genetic testing and the availability of 

many peer-to-peer genomics applications is heightened by the wide net adoption of smartphones and mobile clinical 

services in the last decades across the globe. Along with predictive and preventive medicine, these developments will 

open multiple possibilities for the delivery of personalized care. The creation of joined medical genomic databases in the 

cloud wherever personal as well as family genomic information is shared will facilitate large-scale studies exploring 

lifelong health trajectories. The advances in deep learning algorithms for data organization and preparation and the 

emergence of cloud neural network processing will aid in the identification of rare or latent gene interactions with health 

issues. Distribution of handheld next-generation sequencing devices, AI-generated, long synthetic-genome sequence data, 

and digital twins can change the way precision health is tracked and enhance the availability of predictive algorithms to 

recommend early action. 

Translational medicine increasingly depends on the application of advanced technologies for the generation of data in 

nano or low volume. In this chapter, we discuss processes affecting the field of NGS and the identification of genomic 

variants using AI-derived discovery architectures capable of assembling complete genomes and explore AI use cases that 

represent emerging enabling technologies likely to be integrated with NGS in health and wellness tracking. NGS platforms 

will become smaller in size and lower in cost without compromising sensitivity, specificity, and dynamic range of 

performance. Devices will be incorporated into tools for use in mobile detection of variants of interest or in triaging or 

ruling out targeted conditions in patients of genome stratified at risk. Whole genomes will be sequenced.[11] 

 

8.2. Potential Impact of AI Advancements 

Advancements in generative AI and multimodal transformers have the potential to deliver stunning progress in the field 

of genomic diagnostics. The rise of these technologies can be compared to the leap made in computer vision in 2012, 

when a significant increase in image classification accuracy enabled by deep learning was demonstrated. Innovation and 

development of new tasks, such as Zero-Shot Classification, was propelled by the introduction of large image 

classification models and fueled enthusiasm for deploying AI technology in multiple different industries and specific 

applications. Just a few large language models have achieved human-level performance in text-based classification tasks, 

enabling implementation of practical applications that were widely adopted by individuals and companies. Prediction of 

the genomics progress curve is less reliable than prediction of computer vision because of the particularities of the biology 

field, but relatively easy tasks, such as simpler genomic variant detection and effect prediction, represent low-hanging AI 

fruit.[12] 

Utilization of AI technology in genomics field applications, particularly in the area of clinical diagnostics and decision-

making, will become possible when human-level performance is attained for specific healthcare and genomic tasks. 

Accelerating the pace of innovation in diagnostic tasks carried out by AI models in genomic diagnostics most likely will 

require collaboration between model developers and subject matter experts on implementing models in real-world 

applications. Improved accuracy and better interpretability of AI models for decision support in genomic diagnostics 

systems will enable the scaling of clinical genomic applications from genomics-native companies to mass-market adoption 
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by hospitals and diagnostic laboratories. These systems will enhance speed and precision in handling both expert and 

consumer genomics testing options and improve outcomes of cancer prevention and accelerated precision therapy 

selection. The transition from the era of laboratory technologists performing the majority of the genomics tasks to 

bioinformaticians and clinicians leveraging AI for analysis of testing data will happen as soon as the task performance of 

models clearly exceeds that of human experts. 

 

Equation 3 : Treatment Decision 

 

 

 
9. Challenges and Limitations 

Generative AI has shown promise for personalized health care decisions, especially those powered by big data. However, 

there remain challenges before it can be widely deployed, particularly in diagnosing genetic diseases. These challenges 

include those inherent to machine learning (ML)-based systems, such as biased training data that induces biased results, 

issues with interpretation of rich output data, and the quality of generated data, including inaccurate or nonsensical results. 

In addition, there are important regulatory, compliance, and privacy concerns associated with deploying a generative AI 

model in the healthcare space. 

Arguably, the above issues are less about generative AI and more about machine learning in general. For example, many 

of the technical limitations discussed are not unique to generative AI, but common to all ML-based systems. There exist 

toolchains and other strategies to deal with ML issues, including mitigating biases, related explainability of rich outputs, 

and ensuring the quality of results. However, these existing strategies are not completely sufficient to deal with the 

increased difficulty and/or inherent uncertainty of health care applications. Generative AI is simply a more advanced 

computation strategy than traditional ML-based methods. However, the incorporation of generative AI into patient care 

decision-making promises even wider impact than traditional ML methods. While traditional prediction methods have 

had a large influence, personal genomic analysis and support decision-making related to those results will be substantially 

more impactful and beneficial at a personal level than prior ML-assisted tools. At the same time, the challenges associated 

with generative AI in such use cases are greater, related to the critical nature of health care functions that would be 

impacted by these models and tools.[13] 

 

9.1. Technical Limitations 

A number of technical limitations constrain the degree of success of personalized health care decisions powered by big 

data and generative AI. None are presently insurmountable, but they will add to resource requirements and/or limit the 

ability of the resulting analytic to meet desired performance standards. First, the data necessary for the generation and use 

of such clinical decision tools will typically not be homogeneous in its structure, with many different types, each with its 

own model, of data flowing in from different aspects of the patient’s history, clinical workup, and planned treatment. In 

addition, the transcoding of different types of data into a common, model-independent representation may be quite 

complex, with many variables not captured, thereby increasing the risk of bias and amplifying any such bias already 

present in one or more of the data sources. These risks can be ameliorated through much experience in transcoding the 

variables present in both the patient history and various contributions of big data, but there is obviously a limit to the 

experiences accumulated that can help. 

Second, where data is translated into numbers that serve as the inputs to quantitative methods, no absolute or even well-

defined scale of measure is likely to be found. Many disciplines associate certain types of data with a fuzziness in 

measurement, such as could be found in the similarity of word meanings across documents generated in different contexts, 

or even badly translated from one language to another. While word embedding does provide a framework for numerical 

representation that is generally accepted, several aspects of fuzziness may still compromise performance. For example, 

element-wise distances between words may be too sensitive to very small differences in vocabularies, or each word’s 

embedding may change substantially depending upon the document’s content and word ordering. Such fuzziness may also 

increase the risks of not detecting and correcting for bias. Finally, the large size of the data merged for the purposes of 

personalized health care decisions may slow the speed of building the model and generating predictions.[14] 
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Fig 6 : Generative AI in Healthcare Market Size 

 

9.2. Regulatory and Compliance Issues 

The personalization of health care decisions, powered by generative artificial intelligence and applied to the domain of 

genomic medicine, indicates the need for a framework that assures participants that genetic and health data interchange is 

highly regulated and protected. Establishing a regulatory and compliance structure ensures health data and genetic data, 

the most privacy-sensitive information in existence, is properly authenticated and protected using unique identifiers for 

all parties involved in the data transaction. While health care patient data has been safeguarded using governmental 

regulations for decades, genetic data is now being utilized for several proprietary and commercial purposes, thus requiring 

amendments to established regulations. Organizations involved in the development and launch of GenAI applications 

supporting genomic medicine solutions should familiarize themselves with the requisite regulatory and compliance 

requirements and work closely with governmental regulatory agencies and third-party auditing companies to provide their 

target market with the strong confidence that their genomic data privacy and security is assured throughout the entire life 

cycle of the product development and deployment of the application. Regulations need to address the specific issues 

relating to the models associated with AI in order to ensure compliance, both through regulatory compliance by the 

organization developing AI and through regulatory compliance by the association supplying the data to the organization, 

such as a hospital, for use in generating the AI output.[15] 

The unique issues around genome interpretation can mean additional regulations or amendments to existing regulatory 

bodies on data security and identification. While the main Act for protection of health information remains, there are 

extremely sensitive and nuanced amendments to consider in conjunction with other organizational and legal requirements 

regarding medical devices, laboratory testing, and guidelines for software as a medical device.[16] 

 

9.3. Patient Privacy Concerns 

Emerging technologies along the continuum of care can offer invaluable assistance throughout the four phases of 

personalized health care decision-making, namely, reporting, assessment, analysis, and interpretation. However, patients 

and families are increasingly aware of and sensitive to the unintended consequences of technology on their privacy. For 

decades, there has been an implicit social contract: access to and sharing of an individual’s health information with health 

care providers and in some cases those who offer payment for those services are primarily responsible for making decisions 

about that person’s treatment. Except when those decisions conflict with the decision of the individual, the professionals 

involved in caring for that person have unrestricted access to that individual’s health data. The patient risks compromise 

to their physical well being through their data files in exchange for access to the best possible care. 

Generative AI applications create data by generating information based on prompts from users. In the case of 

conversational models, that interaction is predominantly with human beings with human-to-AI chat systems or social 

media-based chatbots being relatively new entrants into the field. Individuals create the data made available to the 

companies operating these generative apps; however, that data is often monetized by developers to build their platforms, 

which enables them to improve upon the information users of their products provide. Ethics surrounding big data and 

specifically generative artificial intelligence are at the forefront of debate, and questions have been raised regarding how 

health care professionals should utilize such resources to make better decisions for their patients while minimizing the 

risks. This chapter evaluates both the opportunities and the risks.[17] 

 

10. Conclusion 

In this paper, we presented the innovative application of generative artificial intelligence for patient education and clinician 

decision-support in genomic diagnostics decision-making. The emergence of big data and generative artificial intelligence 

technologies has eased important limitations of prior applications of artificial intelligence in genomic research and clinical 

medicine in personalized health care that involved relatively small datasets, lack of deep technology integration such as 

for employing natural language processing and neuro-symbolic methods, and lack of real-time decision-support and 

patient and clinician engagement. Our proposed Genomic Decision-Support and Clinical Guidance Algorithms including 

1) patient education capabilities via patient questions-answering middleware tools, 2) clinician decision-support via 

generative artificial intelligence-assisted clinical workbench for analyzing genomic diagnosis platforms and determining 
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the optimal platform for patients with presumed Mendelian conditions, and 3) patient-centered generative artificial 

intelligence-assisted clinical decision support that jointly considers patients’ preferences and both technical and clinical 

considerations of genomic diagnosis, as well as employing a platform for sharing genomic data to speed the diagnosis and 

discovery stages of precision medicine, are examples of integrating generative artificial intelligence, multimodal big data, 

and existing multi omic, phenomics, and clinicomic data and analyses. These capabilities will contribute to optimizing the 

decision-making around the genomic diagnosis process, thereby enhancing precision medicine by expediting the genomic 

diagnosis process and optimizing the use of genomic technologies. 

There are several future directions for research as our preliminary focus has been primarily on the educational and 

decision-supporting aspects for the genomic diagnostics process. Increasing patient, documentary, imaging, multi omic, 

phenomic, and sociocultural diversity while recognizing the effects of charting disciplines and domains in the Clinicomic 

domain would enhance the multimodal big data input for the generative artificial intelligence models, and possibly 

resulting in better performance of these models across demographic groups and multiple diagnostic use cases. Such data 

may reduce the chances of failures, biases, and health care disparities associated with bad actors perpetrating biased 

artificial intelligence Genomic Ethics violations while enabling the virtuous cycle of enabling and democratizing 

personalized and precision medicine possible through generative artificial intelligence and big data in genomic diagnostics 

in an increasing proportion of patients with presumed Mendelian conditions in a patient-centered manner.[18] 

 

10.1. Final Thoughts and Future Directions 

Advancements in big data, generative artificial intelligence technology, and bioinformatics have paved the way for 

personalized health care decisions powered by big data and generative AI in genomic diagnostics. Personalized decisions 

regarding what genetic variant to report back to patients and their family members are supported by real-world experience 

and populations, deep generative models, and ontology representational learning. This framework minimizes the distance 

between genetic variants and their semantically similar variants in reports. We developed bioinformatics and generative 

AI technology tools to facilitate this novel personalized decision-making framework in genomic diagnostics. 

The present study proposes future directions in advancing the era of precision medicine using the personalized health care 

decision schema for histopathological and genomic traits: Generally accepted that a deep learning consortium can add 

value to the histology diagnosis of cancers. The next step is to combine genomic data with histopathological data using 

generative AI. This project aims to genetically explain the histology of every tumor in the world. A collaborative effort 

could lead to crowdsourcing histopathological data to develop an easily accessible real-world population repository. 

Genomic data from patients with common or rare diseases and their healthy family members from around the world must 

all be deposited into one integrated and anonymized repository. Together with advancing putative function prediction of 

variants of uncertain significance, we believe positive and negative variant associations may allow custom-built risk 

assessment tools to be developed. [19] 
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