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Abstract  

Background: Various magnetic resonance imaging simulation packages rely on Bloch equations, BlochTorrey equations 

and the Liouville–von Neumann equation is which a dynamical formulation to simulate a voltage bias across a molecular 

system and to model a time-dependent current in terms of classical or quantum treatments of magnetic resonance imaging 

respectively.  

Method: The problems in these equations cannot address spin dynamic such as j-coupling and spatial dynamics such as 

diffusion and flow at the same level. In this study, the Fokker-Planck formalism was used to simulate phantoms that deal 

with diffusion and flow on the spatial dynamics side and j-coupling in the spin dynamic side using the Spinach simulation 

package.  

Result: The numerical simulation of magnetic resonance imaging has two limits in terms of research. First, a complicated 

spin system is associated with simple diffusion and flow, such as in spatially encoded NMR experiments. Second, a simple 

spin system is associated with high dimensional diffusion and flow.  

Conclusion: A unique simulation package that deals with the quantum mechanics treatment of spin dynamics and the 

classical description of diffusion and flow in three dimensions are presented in this work.  
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INTRODUCTION   

However, these packages are unable to handle coupled spin systems such as J-coupling. On A set of equations describ net 

magnetization as the nuclear magnetic resonance side, the a time-dependent NMR. These equations are packages can deal 

with the coupled spin system known as Bloch equations or Bloch-Torrey but are still insufficient to handle the necessary 

equations, which appear to be the basis of all spatial dynamics such as diffusion and flow. simulation packages. During 

the last decay,  NMR-SCOPE[2]  was  the first  quantum various  magnetic  resonance  simulation mechanics package to 

develop a product packages have been implemented very well [1].  

 

operator for a coupled spin system. The C++ language then introduces GAMMA [3] for the same purpose. Many packages, 

such as SIMPSON [4], Bloch-Lib [5], SPINEVOLUTION [6], SIMPLTN [7],  

NMRSIM [8], Spin-Dynamics [9], and Spinach [10]. In this paper, a unique simulation package that deals with spin 

dynamics in quantum mechanics vision and the classical description of diffusion and flow was presented. 1. Magnetic 

resonance imaging  

MRI is a noninvasively technique that is generally used for medical purposes. Disorders in muscles and joints, tumors 

detections, and viewing abnormalities in the brain can be performed very well using MRI. The basic idea of magnetic 

resonance imaging is the interaction between hydrogen atoms (protons), which are a part of the water molecules. The 

latter is considered 70% of the entire body. The protons were quantized according to their magnetic moments parallel to 

the main magnetic field. Subsequently, the radiofrequency pulse was switched on to transfer the magnetization from the 

transverse plane according to the applied magnetic field. The range of frequencies processed via radiofrequency pulses 

relies on the power of the magnetic field is strong. Slice can be selected specifically when an additional gradient magnetic 

field is applied to make the external magnetic field vary from point to point. Each point has will have its own resonant 

frequency [11].  

 

2.  Fokker-Planck equation   

Several theoretical approaches describe the magnetic resonance. The selection of a specific approach relies on the 

application field. The Bloch-Torrey equation [12], can be used for relaxation simulations of an isolated spin 1/2 system. 

An ensemble spin system simulation experiment can be performed using the Liouville-Von Neumann equation [13]. Most 

nuclear magnetic resonance theories depend on the Livioulle-von Neumann equation. The latter is based on the density 

operator formalism, which is described as the dynamics of a quantum system. In general, water molecules with diffusion 
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and flow can be simulated owing to the competition between complicated spatial dynamics and a simple spin system [14]. 

On the other hand, researchers have good knowledge of the simulation of simple diffusion and flow with a complicated 

spin system such as spatially encoded NMR experiments. However, the completion of complicated spatial dynamics such 

as diffusion, flow, and convection in three-dimensional geometry with sophisticated spin systems (Jcoupling, cross-

correlation, etc.), such as a 3dimensional phantom combined with typical metabolism, can contain up to seven coupled 

spin systems.  

 

Methodology  

1.  Simulation platform    

The Fokker-Planck formalism is used to treat an accurate quantum mechanical of spin dynamics such as spin-spin coupling 

and crossrelaxation coexisting with spatial distribution dynamics such as diffusion, flow, and chemical kinetics [15]. The 

Liouville-von Neumann equation is the central importance equation that all nuclear magnetic resonance simulation 

packages rely on in terms of the dynamics of quantum systems description. The Liouvillevon Neumann equation can be 

derived from TDSE:  

 
 

Where ρ(t) is the density operator and H(t) is the spin Hamiltonian commutation super operator [16]. The Hamiltonian 

can be defined as:  

 
 

When relaxation and kinetics superoperators present, equation (1) can be updated to:  

 

 
 

Where H(t) is the Hamiltonian super operator, R is the relaxation superoperator [3], which includes the diffusion term, 

and K is the kinetics superoperator responsible for the chemical processes in the system. If the thermodynamic equilibrium 

is non-trivial, the relaxation target must be added:  

 
Where ρeq  is the density matrix in the thermal equilibrium condition.  

 

Indirect representation of the spatial degrees of freedom is the main issue in current magnetic resonance simulation 

platforms. It is always assumed that spatial dynamics influence the spin Hamiltonian, whereas the latter does not affect 

the spatial dynamics. Bloch-Torrey equations [17], distributed Bloch equations [18], and k-space Bloch equations [19], 

etc. are used in current MRI methods. However, these methods are insufficient in terms of J-coupling interactions and 

some cannot deal with spatial dynamics such as diffusion and flow.   

The Fokker-Planck formalism is the only equation that can deal with high spin dynamics including j-coupling interactions 

and spatial dynamics such as diffusion and flow at the same level. In this communication, we illustrate sufficient Fokker-

Plank simulation for some MRI phantoms such as diffusion-weighted images in three dimensions which is required 

simultaneous treatments of spin dynamics and spatial dynamics at the same level.  

 

2. Diffusion MRI   

In the 1-D diffusion formalism for concentration c(x,t), the scalar diffusion coefficient D can rely on the spatial location:  

 
When we move to the 3-D diffusion equation, all six components have coordinate dependence with a symmetric 3×3 

diffusion tensor:  

 
Because of high structure structure in biological tissues, even if the diffusion is isotropic, the diffusion coefficient D will 

vary from the ideal isotopic diffusion and it will not be the same in all directions.   

To understand the formalism of diffusion, we begin with the gradient 𝑠( ), where 0 ≤ ≤ 1. The shape factor 𝜎 represent the 

total effect of the gradient :  
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Two more type gradient parameters are common:  

 

 

 
According to the spin-echo pulse sequence, the coherence can be expressed according to the gradient shape as follows:  

 
 

Where 𝑃(𝑡) is the coherence in terms of time,  𝐺(𝑡) is the gradient variation per unit time,  𝑔 is the strength of the magnetic 

field, 𝑎(𝑡) is the pulse structure, and 𝛿  is the pulse length:  

 

 
Substitute equation (12) in equation (11) 

 

 
 

 

Back to the equation(10), we can find:  

 
 

 The amount of dephasing per unit length can be represented as:  

 
 

Put equation (12) in the equation (14): 
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The Einstein diffusion equation contains the square root. Therefore, it is important to introduce the square of Equation 

(15):  

 
 

To integrate Equations (15) and (16) for all pulse sequences, we must define the shape parameters 𝜆 and 𝜅  

 
 

 
 

The integral over 𝑞(𝑡) is important to show the effects of unidirectional translation 𝐸transl   

 

 
where 

 
 

where  𝑣𝑧 is the speed of the𝐸transl along the z-axis 

 

Assessment diffusion effect required integral 

 

 

 

Where: 
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If the gradient has a rectangular shape. The shapes parameters can be written as:  

 
 

By adding equation (22) to the equation (20), the entire ST equation becomes:  

 
In which 𝐸𝑑𝑖𝑓𝑓is the signal intensity. The resulting attenuation is [20]:  

 
 

here c and c_0 are the signal intensities within and without diffusion respectively; D is the coefficient of diffusion; γ is the 

magnetogyric ratio; G is the strength of the gradient; δ is the duration of the gradient; and Δ is the diffusion timestep. The 

b factor defines the diffusion sensitivity of the sequence, as shown in Figure 1.  

   

Figure 1: DWI imaging, where G is gradient strength, δ is the gradient duration and Δ is the diffusion interval 

 
 

The diffusion-weighted pulse sequence should have two strong gradient fields G separated by time Δ and duration δ. A 

higher 𝑏  value was obtained when diffusion-sensitive gradients were inserted.   

 

RESULTS  

The representations for the numerical solution that includes diffusion and stationary flow simultaneously (Figure 2) are 

essentially comparable to those applicable for diffusion; the software package is practically identical, and only the velocity 

distribution data are now given.  

 

Figure 2: A one-dimensional simulation of the interaction of diffusion and flow in Spinach using the Fokker-

Planck solver. A symmetrical flow velocity field (0.2 m/s) is utilized, and the diffusion rate is 50 mm2/s  
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The boundary conditions are a significant issue that must be addressed with flow simulations. The periodic boundary [92] 

is the only type of border that is not a veritable minefield in terms of the underlying numerical mathematics. At this point 

in the development, I've decided to merely construct the periodic boundary condition, as shown in Figure 3. 

Figure 3: In the case of two- dimensional uniform and isotropic diffusion combined with a linear flow mechanism, the 

sampling distribution function evolves with increasing diffusion times. D = 5x10-5 m 2/s, initial condition displayed in 

the left panel, periodic boundary values. 

 

 

Because Spinach claims to be able to mimic three-dimensional MRI procedures in an acceptable amount of time, an 

instance is necessary (Figure 4).  

 

Figure 4: Images from a three-dimensional diffusion and flow model of three separate elements flowing in a 

circular flow field. On a modern computer, the simulation takes only a few minutes. 

 

Conclusion  

It was impossible to simulate in three dimensional diffusion and flow using numerical simulation.  The numerical 

simulation of magnetic resonance imaging has two limits in terms of research. First, a complicated spin system is 

associated with simple diffusion and flow, such as in spatially encoded NMR experiments. Second, a simple spin system 

is associated with high dimensional diffusion and flow. Both cases are well covered by the existing simulation software, 

and both are well established because the matrix dimension is controllable either directly or by using approximation. In 

our study using Fokker-Planck formalism with stacking filtering helped us improve the simulation outcomes. Furthermore, 

the proposed simulation enabled us to obtain a highdimensional phantom with three-dimensional diffusion and flow [21, 

22] to be closer to the real MRI outcomes.            
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