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Abstract 

Plant–microbe interactions (PMIs) are fundamental to plant health and ecosystem functioning. Plants host complex 

microbial communities across the rhizosphere, endosphere, and phyllo sphere that affect nutrient acquisition, stress 

tolerance, and immunity [1–3]. Recent advances in omics, synthetic community studies, and imaging have accelerated our 

mechanistic understanding and translation into agriculture [4–6]. This review synthesizes current knowledge of PMI 

mechanisms, microbial community assembly, immune responses, and applications in biocontrol, biofertilization, and 

phytoremediation. We highlight key technologies (metagenomics, metabolomics, genome editing) and propose research 

priorities for predictive microbiome engineering [7,8]. 
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1. Introduction 

The plant halobiont concept recognizes plants and their associated microbiota as an integrated unit influencing health and 

productivity [1]. Early research focused on pathogenic and mutualistic symbioses (e.g., rhizobia, mycorrhizae) [9], but 

metagenomic approaches have revealed a diverse microbiome that mediates plant responses to biotic and abiotic stress 

[2,10]. Understanding and managing PMIs can reduce fertilizer and pesticide use, supporting sustainable agriculture [3,5]. 

 

2. Types of plant–microbe interactions 
PMIs encompass mutualism, commensalism, and pathogenicity [11]. Beneficial microbes such as Rhizobium and 

arbuscular mycorrhizal fungi enhance nutrient uptake [12,13], while PGPRs like Pseudomonas fluorescens promote 

growth and immunity [14]. Conversely, pathogens manipulate plant signaling to facilitate colonization [15]. Microbe–

microbe interactions (competition, syntropy, antibiosis) shape community stability and host outcomes [16]. 
 

3. Mechanisms underpinning PMIs 
Plants secrete exudates containing sugars, amino acids, and secondary metabolites that recruit beneficial microbes [17,18]. 

Microbial signals such as lipo-chit oligosaccharides and VOCs reciprocally affect plant development [19,20]. Microbes 

influence hormone homeostasis—producing auxins, cytokinin, and ACC deaminase—to enhance growth under stress 

[21]. 

 

Plant immune receptors detect MAMPs and trigger PTI and ISR responses [22,23]. Beneficial microbes can induce ISR 

through jasmone and ethylene pathways, strengthening defenses against pathogens [24]. 

 

4. Microbiome assembly and stability 
Microbiome assembly is determined by host genotype, soil type, and management practices [25]. Priority effects and 

keystone taxa strongly influence stability and function [26]. Network analyses have identified core and accessory taxa 

essential for resilience [27]. 

 

5. Technological advances 
Omics approaches—metagenomics, met transcriptomics, metabolomics—reveal active metabolic processes during PMIs 

[4,28]. Spatial imaging and single-cell methods localize microbial activity within roots [29]. Synthetic communities 

(SynComs) enable reproducible, mechanistic studies [30]. CRISPR tools and metabolic modeling facilitate microbial 

engineering for targeted benefits [31]. 

 

6. Applications 

Microbial inoculants serve as biofertilizers (N-fixers, phosphate-solubilizers) [32], biocontrol agents [33], and stress 
mitigators under drought or salinity [34]. Microbiome engineering aims to create predictable synthetic consortia adapted 

to host genotype and soil [35].Plant–microbe partnerships are also crucial in phytoremediation, enhancing pollutant 

degradation and metal sequestration [36]. 

 

7. Challenges 

Field reproducibility remains a key limitation due to context dependency [37]. Cultivation bottlenecks and ecological risks 

constrain application [38]. Future efforts should integrate predictive modeling and trait-based microbe selection [39]. 
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8. Future directions 

Emerging priorities include: 

Predictive Phyto biome ecology integrating omics and AI [40] Trait-based microbial discovery emphasizing metabolite 

function over taxonomy [41] Host breeding for beneficial microbiomes [42] Field-scale testing and regulatory 

harmonization [43] 

 

9. Conclusion 
PMIs are central to sustainable crop production. Integrating ecological, molecular, and computational approaches will 

enable rational microbiome design. Future progress depends on linking lab discoveries with real-world agricultural 
systems through predictive, field-validated frameworks. 
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