

Impurity Profiling of Antidiabetic Drugs: Analytical Challenges and Regulatory Perspectives

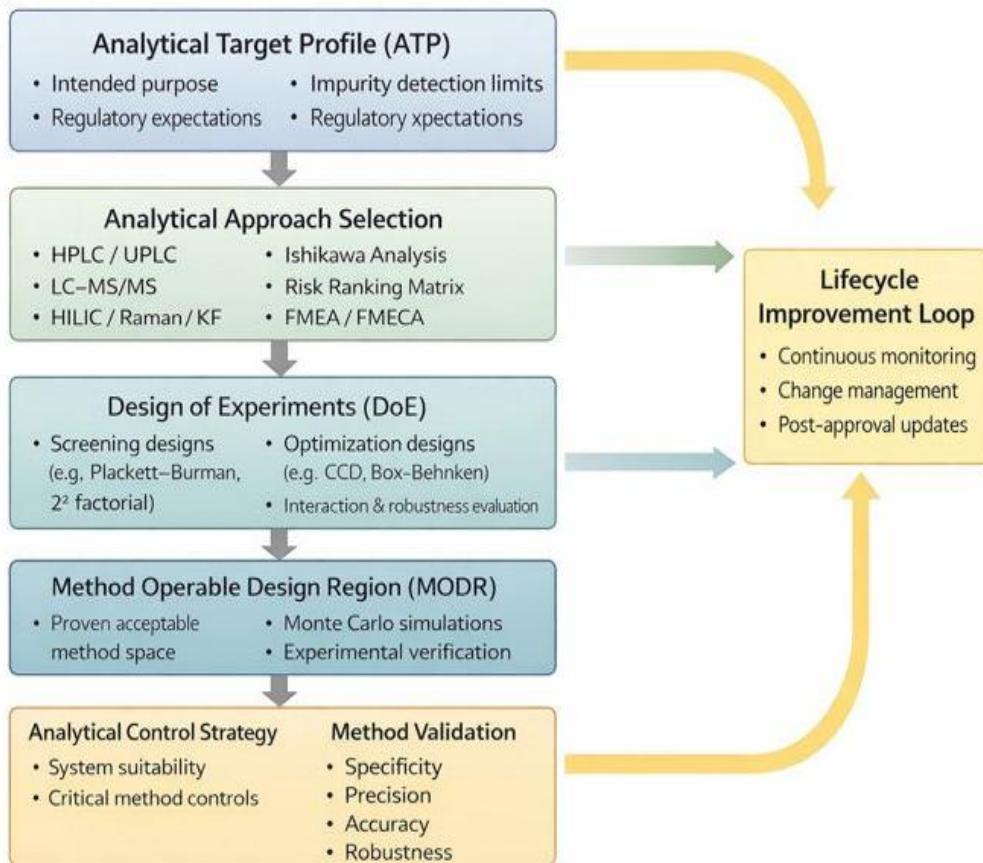
Paul Richards M^{1*}, Sunil Kumar Reddy A², Chowdary G V³

^{1*} Research Scholar, JNTUH, Telangana, Andhra Pradesh, India, richie2626@gmail.com
² Research scientist, Aurobindo Pharma Ltd., Hyderabad, Telangana, India, asunilkumarreddy@gmail.com
³ Principal, Horizon College of Pharmacy, Hyderabad, Telangana, India, gvcchowdary08@gmail.com

Abstract

Impurity profiling has emerged as a critical component of pharmaceutical quality assurance, particularly for antidiabetic drugs that are intended for long-term and often lifelong therapy. The presence of impurities—originating from raw materials, manufacturing processes, degradation pathways, or drug–excipient interactions—can significantly impact the safety, efficacy, and stability of antidiabetic formulations. With the increasing complexity of modern antidiabetic agents, including biguanides, sulfonylureas, thiazolidinediones, DPP-4 inhibitors, SGLT-2 inhibitors, and combination therapies, comprehensive impurity profiling has become both analytically challenging and regulatory-driven. This review provides an in-depth discussion on the sources and classification of impurities in antidiabetic drugs, analytical strategies employed for their identification, quantification, and characterization, and the evolving regulatory expectations governing impurity control. Emphasis is placed on stability-indicating methods, forced degradation studies, and hyphenated analytical techniques such as LC–MS/MS and NMR for structural elucidation. Current challenges, including trace-level impurity detection, genotoxic impurity assessment, and impurity profiling in fixed-dose combinations, are critically evaluated. The review aims to offer a comprehensive perspective to researchers and industry professionals engaged in the development, validation, and regulatory submission of antidiabetic drug products.

Keywords: Impurity profiling, antidiabetic drugs, stability-indicating methods, analytical challenges, regulatory guidelines, LC–MS/MS


1. Introduction

Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The global prevalence of diabetes has risen dramatically over the past few decades, making antidiabetic drugs one of the most widely prescribed therapeutic classes worldwide. Given their prolonged use and critical role in glycemic control, the quality, safety, and stability of antidiabetic medications are of paramount importance.

Impurity profiling refers to the systematic identification, characterization, and quantification of impurities present in drug substances and drug products. Even trace-level impurities may pose serious toxicological risks, particularly in drugs administered chronically, such as antidiabetic agents. Regulatory authorities worldwide now consider impurity profiling an essential element of drug development and lifecycle management, rather than a mere quality control requirement¹⁻³. Antidiabetic drugs present unique challenges in impurity profiling due to their diverse chemical structures, susceptibility to degradation under various environmental conditions, and frequent formulation as fixed-dose combinations. Drugs such as metformin are highly hygroscopic and prone to degradation, while newer classes such as DPP-4 and SGLT-2 inhibitors possess complex molecular frameworks that can generate structurally related impurities during synthesis or storage. Furthermore, the increasing trend toward combination therapy amplifies the risk of cross-degradation and excipient-mediated impurity formation⁴.

In recent years, heightened regulatory scrutiny—particularly following reports of unacceptable impurities in widely used drugs—has underscored the need for robust analytical methodologies capable of detecting impurities at very low levels. This has led to the widespread adoption of advanced chromatographic and spectrometric techniques, along with quality-by-design (QbD) approaches for method development⁵.

This review aims to comprehensively examine impurity profiling in antidiabetic drugs, focusing on impurity sources, classification, analytical challenges, and regulatory perspectives. By integrating scientific, analytical, and regulatory viewpoints, the article seeks to provide a holistic understanding of impurity management strategies applicable to both conventional and novel antidiabetic therapies.

Fig-1: Analytical Quality by Design Framework for Impurity Profiling

2. Classification and Sources of Impurities in Antidiabetic Drugs

Impurities present in antidiabetic drugs can be broadly classified based on their origin, chemical nature, and regulatory significance. Understanding these classifications is essential for designing effective analytical strategies and ensuring compliance with regulatory standards.

2.1 Organic Impurities

Organic impurities are the most commonly encountered class in antidiabetic drug substances and formulations. These include:

- **Process-related impurities**, arising from starting materials, intermediates, reagents, catalysts, or by-products formed during synthesis.
- **Degradation products**, formed due to chemical instability under conditions such as heat, light, moisture, oxidative stress, or pH variations.
- **Drug-excipient interaction products**, particularly relevant in solid oral dosage forms and fixed-dose combinations. Many antidiabetic drugs are susceptible to hydrolytic and oxidative degradation, necessitating thorough stress testing to understand impurity formation pathways^{6,7}.

2.2 Inorganic Impurities

Inorganic impurities include residual catalysts, heavy metals, and inorganic salts introduced during synthesis or formulation. Although generally present at low levels, inorganic impurities must be controlled due to their potential toxicity and accumulation upon chronic exposure^{8,9}.

2.3 Residual Solvents

Residual solvents used during synthesis or purification represent another important impurity category. The presence of such solvents must be strictly monitored and controlled, particularly in antidiabetic drugs administered daily over extended periods^{10,11}.

2.4 Genotoxic and Mutagenic Impurities

Genotoxic impurities have gained significant regulatory attention due to their potential to cause DNA damage even at extremely low concentrations. Certain synthetic pathways used in antidiabetic drug manufacturing may generate alkylating or reactive species, making risk assessment and control of genotoxic impurities a critical requirement^{12,13}.

Table 1. Classification of Impurities in Antidiabetic Drugs

Type of Impurity	Source	Examples / Description	Regulatory Significance
Process-related impurities	Synthetic route, intermediates, reagents, catalysts	Unreacted starting materials, reaction by-products	Must be identified and controlled as per ICH Q3A
Degradation products	Hydrolysis, oxidation, photolysis, thermal stress	Acid/base degradation products of metformin, oxidative impurities	Critical for stability-indicating methods
Drug-excipient interaction products	Formulation incompatibilities	Maillard-type reactions, oxidative interactions	Important in solid oral dosage forms
Residual solvents	Manufacturing and purification processes	Methanol, acetone, dichloromethane	Controlled as per ICH Q3C
Inorganic impurities	Catalysts, salts, metal residues	Palladium, nickel, heavy metals	Regulated under elemental impurity guidelines
Genotoxic impurities	Reactive intermediates or degradation	Alkylating agents, nitrosamine-like impurities	Strictly controlled under ICH M7

3. Analytical Challenges in Impurity Profiling of Antidiabetic Drugs

Impurity profiling of antidiabetic drugs poses significant analytical challenges due to the structural diversity of active pharmaceutical ingredients (APIs), low impurity thresholds mandated by regulatory agencies, and the increasing prevalence of fixed-dose combination products. These challenges necessitate the development of highly sensitive, selective, and stability-indicating analytical methods.

3.1 Structural and Chemical Complexity of Antidiabetic Agents

Antidiabetic drugs encompass a wide range of chemical classes, from small and highly polar molecules such as metformin to structurally complex heterocyclic compounds such as DPP-4 and SGLT-2 inhibitors. This diversity complicates method development, as a single analytical technique may not be universally applicable across drug classes. Highly polar compounds often exhibit poor chromatographic retention, whereas lipophilic molecules may require complex mobile phase optimization to achieve adequate resolution of impurities¹².

3.2 Low-Level Detection and Quantification Requirements

Regulatory guidelines demand impurity detection at very low levels, often as low as 0.05–0.1%, depending on the maximum daily dose of the drug. Detecting such trace-level impurities is analytically demanding, particularly when impurities possess similar physicochemical properties to the parent drug. Co-elution, signal suppression, and baseline noise further complicate accurate quantification¹³.

3.3 Stability-Related Impurity Formation

Antidiabetic drugs are frequently exposed to environmental stress conditions such as moisture, heat, light, and oxidative environments during manufacturing, storage, and distribution. These conditions may lead to the formation of multiple degradation products with closely related structures. Differentiating between process-related and degradation-related impurities requires carefully designed stress studies and robust chromatographic separation¹⁴.

3.4 Impurity Profiling in Fixed-Dose Combinations

The widespread use of combination therapies—such as metformin with DPP-4 inhibitors or SGLT-2 inhibitors—adds another layer of complexity. Drug–drug and drug–excipient interactions can generate unique degradation products not observed in single-drug formulations. Analytical methods must therefore be capable of resolving impurities arising from multiple APIs simultaneously, without mutual interference¹⁵.

3.5 Genotoxic Impurity Risk Assessment

The presence of potentially genotoxic impurities (PGIs) has become a major concern in pharmaceutical analysis. Even trace amounts may pose serious long-term safety risks, especially in chronic therapies like antidiabetic treatment. Analytical challenges include the need for ultra-sensitive detection methods and scientifically justified risk assessments to establish acceptable limits¹⁶.

Table 2. Analytical Challenges in Impurity Profiling of Antidiabetic Drugs

Challenge	Underlying Reason	Impact on Analysis
Structural diversity of APIs	Wide range of chemical classes	Difficult method standardization
Low impurity thresholds	Chronic administration of drugs	Requires high sensitivity methods
Co-elution of impurities	Structural similarity with API	Poor resolution and quantification
Stability-related degradation	Moisture, heat, oxidation sensitivity	Multiple degradation products
Fixed-dose combinations	Drug–drug interactions	Complex impurity profiles
Genotoxic impurity detection	Extremely low acceptable limits	Need for ultra-sensitive techniques

4. Stability-Indicating Methods and Forced Degradation Studies

Stability-indicating analytical methods form the cornerstone of impurity profiling, enabling the detection and quantification of impurities formed during storage and handling. Forced degradation studies play a critical role in method development by elucidating degradation pathways and demonstrating method specificity.

4.1 Purpose of Forced Degradation Studies

Forced degradation studies are conducted to intentionally degrade the drug substance under controlled stress conditions to:

- Identify potential degradation products
- Establish degradation pathways
- Demonstrate the stability-indicating capability of the analytical method
- Support shelf-life determination and formulation optimization

For antidiabetic drugs, these studies are particularly important due to long-term exposure and chronic dosing^{17,18}.

4.2 Common Stress Conditions Applied

Forced degradation typically involves exposure of the drug substance or product to:

- **Hydrolytic conditions** (acidic, alkaline, and neutral)
- **Oxidative conditions** (e.g., hydrogen peroxide)
- **Thermal stress**
- **Photolytic stress**
- **Humidity stress**

Each condition may generate distinct degradation products, requiring careful optimization to avoid over-degradation while ensuring meaningful impurity formation^{19,20}.

4.3 Development of Stability-Indicating Chromatographic Methods

A stability-indicating method must be capable of separating the active drug from all degradation products and impurities with adequate resolution. Reverse-phase high-performance liquid chromatography (RP-HPLC) remains the most widely employed technique due to its versatility, reproducibility, and compatibility with various detectors. Method development typically involves optimization of mobile phase composition, pH, column chemistry, and detection wavelength to achieve optimal separation²¹⁻²³.

4.4 Method Validation and Regulatory Expectations

Once developed, stability-indicating methods must be validated in accordance with international regulatory standards for parameters such as specificity, linearity, accuracy, precision, limit of detection, and limit of quantification. Regulatory authorities, including International Council for Harmonisation, emphasize the importance of scientifically justified impurity limits and robust validation data to support regulatory submissions²⁴⁻²⁶.

5. Advanced Analytical Techniques for Impurity Identification and Characterization

The identification and structural characterization of impurities in antidiabetic drugs require advanced analytical tools capable of providing both qualitative and quantitative information at trace levels. Conventional chromatographic techniques, although effective for routine impurity monitoring, are often insufficient for definitive structural elucidation. Consequently, hyphenated and spectroscopic techniques have become indispensable in modern impurity profiling.

5.1 Liquid Chromatography–Mass Spectrometry (LC–MS/MS)

LC–MS/MS is the most widely employed technique for impurity identification due to its high sensitivity, selectivity, and structural information content. It enables the detection of impurities at parts-per-million (ppm) levels and provides molecular weight and fragmentation patterns essential for structural elucidation.

In impurity profiling of antidiabetic drugs, LC–MS/MS is particularly useful for:

- Identifying degradation products formed during forced degradation studies
- Characterizing process-related impurities
- Confirming the presence of unknown impurities detected during stability studies
- Supporting genotoxic impurity assessment

Tandem mass spectrometry further enhances specificity by enabling product ion analysis, which is critical for differentiating structurally similar impurities²⁷.

5.2 High-Resolution Mass Spectrometry (HRMS)

High-resolution mass spectrometry offers accurate mass measurements with high resolving power, enabling precise determination of elemental composition. HRMS is especially valuable for identifying unknown impurities whose reference standards are unavailable. Accurate mass data combined with isotope pattern analysis allows researchers to propose plausible chemical structures with high confidence^{28,29}.

5.3 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy serves as a complementary technique to mass spectrometry, providing definitive structural confirmation of impurities. Although less sensitive than MS-based techniques, NMR is invaluable when impurities are isolated in sufficient quantities. One-dimensional (^1H , ^{13}C) and two-dimensional (COSY, HSQC, HMBC) NMR experiments facilitate detailed structural elucidation, including stereochemistry and functional group connectivity³⁰.

5.4 Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy is commonly used for functional group identification and comparison of impurity spectra with that of the parent drug. While it lacks sensitivity for trace-level impurities, FTIR remains useful for confirming chemical changes associated with degradation, particularly in solid-state studies³¹.

5.5 Hyphenated and Multidimensional Techniques

The integration of chromatographic separation with spectroscopic detection has significantly improved impurity profiling capabilities. Techniques such as LC–NMR and LC–HRMS enable real-time impurity identification without prior isolation, thereby reducing analysis time and improving efficiency. These approaches are increasingly being adopted in research and regulatory laboratories for complex impurity investigations³¹.

6. Impurity Profiling in Fixed-Dose Combination Antidiabetic Products

Fixed-dose combinations (FDCs) have become a cornerstone of modern diabetes management due to their ability to improve patient compliance and achieve synergistic therapeutic effects. However, impurity profiling in FDCs is considerably more complex than in single-drug formulations.

6.1 Complexity of Multicomponent Systems

FDC antidiabetic formulations typically contain two or more APIs with differing physicochemical properties, stability profiles, and degradation pathways. The coexistence of multiple APIs increases the likelihood of:

- Drug–drug interactions
- Cross-degradation products
- Altered impurity profiles compared to individual drugs

Analytical methods must therefore be capable of resolving all APIs and their associated impurities simultaneously without interference³¹.

6.2 Drug–Excipient and Drug–Drug Interactions

Excipients used in combination formulations may interact differently with each API, leading to unique impurity formation pathways. Moisture-sensitive drugs may degrade more rapidly in the presence of hygroscopic excipients, while oxidative degradation may be enhanced by trace metal contaminants. Additionally, one API may catalyze the degradation of another, resulting in impurity profiles not observed in mono-component formulations³².

6.3 Analytical Method Development Challenges

Developing stability-indicating methods for FDCs requires extensive optimization of chromatographic conditions to ensure adequate separation of closely eluting components. The use of gradient elution, pH-controlled mobile phases, and advanced stationary phases is often necessary to achieve satisfactory resolution³³.

6.4 Regulatory Expectations for Combination Products

Regulatory authorities require comprehensive impurity profiling data for each API as well as the combination product. Guidelines issued by agencies such as United States Food and Drug Administration and European Medicines Agency emphasize the need to assess impurity formation during long-term stability studies and under accelerated conditions. Any new impurity arising specifically from the combination must be identified, qualified, and controlled within acceptable limits³³.

Table 3. Summary of Case Studies on Impurity Profiling of Antidiabetic Drugs

Drug / Product	Major Impurity Issues	Analytical Techniques Used	Regulatory Focus
Metformin HCl	Hydrolytic degradation, high polarity	HPLC, HILIC, LC–MS/MS	Low impurity thresholds
Sitagliptin	Process & oxidative impurities	RP-HPLC, LC–MS/MS, HRMS	Combination-specific impurities
SGLT-2 inhibitors	Structural & genotoxic impurities	UPLC, HRMS, chiral HPLC	ICH M7 compliance
Metformin + DPP-4 FDC	Cross-degradation products	Gradient RP-HPLC, LC–MS/MS	Dual-API impurity control

7. Regulatory Perspectives and Global Guidelines on Impurity Profiling

Regulatory oversight of impurity profiling has evolved significantly over the past two decades, driven by increased understanding of impurity-related safety risks and advances in analytical science. For antidiabetic drugs—intended for

chronic administration—regulatory agencies emphasize stringent impurity identification, qualification, and control throughout the product lifecycle.

7.1 International Council for Harmonisation (ICH) Guidelines

The regulatory framework for impurity profiling is primarily governed by guidelines issued by the **International Council for Harmonisation**. Key guidelines relevant to antidiabetic drugs include:

- **ICH Q3A(R2)**: Addresses impurities in new drug substances, defining reporting, identification, and qualification thresholds based on maximum daily dose.
- **ICH Q3B(R2)**: Focuses on impurities in drug products, emphasizing degradation product profiling during stability studies.
- **ICH Q1A(R2)**: Provides guidance on stability testing protocols under long-term and accelerated conditions, critical for impurity generation studies.
- **ICH Q2(R2) and ICH Q14**: Outline validation and development principles for analytical procedures, reinforcing the need for robust, lifecycle-oriented impurity methods.
- **ICH M7(R2)**: Specifically addresses the assessment and control of DNA-reactive (mutagenic) impurities, introducing concepts such as the Threshold of Toxicological Concern (TTC).

For antidiabetic drugs, compliance with these guidelines ensures systematic impurity risk assessment and scientifically justified control strategies³⁴⁻³⁵.

7.2 Regulatory Expectations from US FDA

The **United States Food and Drug Administration** mandates comprehensive impurity profiling data in New Drug Applications (NDAs) and Abbreviated New Drug Applications (ANDAs). Particular emphasis is placed on:

- Identification of unknown impurities exceeding identification thresholds
- Justification of impurity limits using toxicological data
- Demonstration of stability-indicating analytical methods
- Assessment of genotoxic impurities, even at trace levels

FDA guidance documents increasingly encourage the integration of Quality by Design (QbD) principles into impurity control strategies, promoting enhanced process understanding and risk mitigation³⁶⁻³⁸.

7.3 European Medicines Agency (EMA) and Other Regulatory Authorities

The European Medicines Agency adopts a harmonized approach aligned with ICH guidelines, with additional emphasis on impurity qualification for combination products and post-approval changes. Other regulatory bodies, including national authorities, generally follow ICH-aligned frameworks, underscoring the global convergence of impurity standards³⁹⁻⁴⁰.

8. Emerging Trends and Future Directions in Impurity Profiling

The field of impurity profiling is undergoing rapid transformation, driven by technological advancements and evolving regulatory expectations^{28-36, 11-15}.

8.1 Analytical Quality by Design (AQbD) in Impurity Methods

AQbD has emerged as a powerful paradigm for impurity method development. By defining an Analytical Target Profile (ATP) and identifying Critical Method Attributes (CMAs) and Critical Method Parameters (CMPs), AQbD enables the development of robust, reproducible, and regulatory-compliant impurity methods. This approach is particularly advantageous for antidiabetic drugs, where method robustness is essential for long-term stability monitoring.

8.2 Application of Artificial Intelligence and In Silico Tools

Artificial intelligence (AI) and machine learning tools are increasingly being explored for impurity prediction, degradation pathway modeling, and analytical method optimization. In silico toxicological assessment tools are also gaining acceptance for preliminary evaluation of genotoxic impurity risks, reducing reliance on extensive experimental studies.

8.3 Lifecycle Impurity Management

Regulatory agencies now emphasize impurity control as a continuous lifecycle activity rather than a one-time regulatory requirement. Post-approval changes, process optimizations, and formulation modifications necessitate ongoing impurity monitoring to ensure sustained product quality and patient safety.

9. Conclusions and Future Outlook

Impurity profiling plays a pivotal role in ensuring the safety, efficacy, and quality of antidiabetic drugs, which are often administered chronically over extended periods. The structural diversity of antidiabetic agents, coupled with stringent regulatory thresholds and the growing prevalence of fixed-dose combinations, presents significant analytical and regulatory challenges.

Advances in hyphenated analytical techniques, coupled with systematic approaches such as AQbD, have greatly enhanced the ability to detect, identify, and control impurities at trace levels. Regulatory frameworks established by international

agencies provide a harmonized foundation for impurity management, while emerging technologies such as AI-assisted impurity prediction hold promise for further improving efficiency and compliance.

In conclusion, effective impurity profiling of antidiabetic drugs requires an integrated approach combining advanced analytical methodologies, robust regulatory understanding, and proactive lifecycle management. Continued innovation and regulatory alignment will be essential to meet future challenges and ensure the delivery of safe, high-quality antidiabetic therapies to patients worldwide.

References:

1. American Diabetes Association. (2023). Classification and diagnosis of diabetes: Standards of medical care in diabetes—2023. *Diabetes Care*, 46(Suppl. 1), S19–S40. <https://doi.org/10.2337/dc23-S002>
2. Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2014). Development of forced degradation and stability-indicating studies of drugs—A review. *Journal of Pharmaceutical Analysis*, 4(3), 159–165. <https://doi.org/10.1016/j.jpha.2013.09.003>
3. Vogt, F. G., & Kord, A. S. (2011). Development of quality-by-design analytical methods. *Journal of Pharmaceutical Sciences*, 100(3), 797–812. <https://doi.org/10.1002/jps.22325>
4. Alsante, K. M., Hatajik, T. D., Lohr, L. L., & Santafianos, D. (2014). Strategies for identifying and controlling pharmaceutical impurities. *Pharmaceutical Technology*, 38(6), 58–66.
5. International Council for Harmonisation. (2006). ICH Q3A(R2): Impurities in new drug substances. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
6. International Council for Harmonisation. (2006). ICH Q3A(R2): Impurities in new drug substances. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
7. International Council for Harmonisation. (2006). ICH Q3B(R2): Impurities in new drug products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
8. International Council for Harmonisation. (2016). ICH Q3C(R8): Impurities: Guideline for residual solvents. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
9. International Council for Harmonisation. (2023). ICH M7(R2): Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
10. Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2014). Development of forced degradation and stability-indicating studies of drugs—A review. *Journal of Pharmaceutical Analysis*, 4(3), 159–165. <https://doi.org/10.1016/j.jpha.2013.09.003>
11. Alsante, K. M., Hatajik, T. D., Lohr, L. L., & Santafianos, D. (2014). Strategies for identifying and controlling pharmaceutical impurities. *Pharmaceutical Technology*, 38(6), 58–66.
12. Vogt, F. G., & Kord, A. S. (2011). Development of quality-by-design analytical methods. *Journal of Pharmaceutical Sciences*, 100(3), 797–812. <https://doi.org/10.1002/jps.22325>
13. Swartz, M. E., & Krull, I. S. (2012). Analytical method development and validation. CRC Press.
14. International Council for Harmonisation. (2006). ICH Q3A(R2): Impurities in new drug substances. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
15. International Council for Harmonisation. (2006). ICH Q3B(R2): Impurities in new drug products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
16. Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2014). Development of forced degradation and stability-indicating studies of drugs—A review. *Journal of Pharmaceutical Analysis*, 4(3), 159–165. <https://doi.org/10.1016/j.jpha.2013.09.003>
17. Vogt, F. G., & Kord, A. S. (2011). Development of quality-by-design analytical methods. *Journal of Pharmaceutical Sciences*, 100(3), 797–812. <https://doi.org/10.1002/jps.22325>
18. International Council for Harmonisation. (2023). ICH M7(R2): Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
19. International Council for Harmonisation. (2003). ICH Q1A(R2): Stability testing of new drug substances and products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
20. International Council for Harmonisation. (2023). ICH Q2(R2): Validation of analytical procedures. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
21. International Council for Harmonisation. (2006). ICH Q3B(R2): Impurities in new drug products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>
22. Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2014). Development of forced degradation and stability-indicating studies of drugs—A review. *Journal of Pharmaceutical Analysis*, 4(3), 159–165. <https://doi.org/10.1016/j.jpha.2013.09.003>
23. Bakshi, M., & Singh, S. (2002). Development of validated stability-indicating assay methods—Critical review. *Journal of Pharmaceutical and Biomedical Analysis*, 28(6), 1011–1040. [https://doi.org/10.1016/S0731-7085\(02\)00047-X](https://doi.org/10.1016/S0731-7085(02)00047-X)

24. Alsante, K. M., Ando, A., Brown, R., Ensing, J., Hatajik, T. D., Kong, W., & Tsuda, Y. (2007). The role of degradant profiling in active pharmaceutical ingredients and drug products. *Advanced Drug Delivery Reviews*, 59(1), 29–37. <https://doi.org/10.1016/j.addr.2006.10.006>

25. Swartz, M. E., & Krull, I. S. (2012). *Analytical method development and validation*. CRC Press.

26. Rao, R. N., Nagaraju, V., & Rao, A. R. M. (2010). Stability-indicating LC methods for pharmaceuticals—An overview. *Journal of Pharmaceutical and Biomedical Analysis*, 51(3), 687–697. <https://doi.org/10.1016/j.jpba.2009.09.013>

27. Reid, G. L., Cheng, G., Fortin, D. T., Harwood, J. W., & Morgado, J. (2010). Liquid chromatography–mass spectrometry in pharmaceutical impurity profiling. *Bioanalysis*, 2(7), 1229–1241. <https://doi.org/10.4155/bio.10.79>

28. Ahuja, S., & Scypinski, S. (2001). *Handbook of modern pharmaceutical analysis*. Academic Press.

29. Niessen, W. M. A. (2006). Liquid chromatography–mass spectrometry: General principles and instrumentation. *Journal of Chromatography A*, 703(1–2), 37–57. [https://doi.org/10.1016/0021-9673\(95\)00948-X](https://doi.org/10.1016/0021-9673(95)00948-X)

30. Claridge, T. D. W. (2016). *High-resolution NMR techniques in organic chemistry* (3rd ed.). Elsevier.

31. Alsante, K. M., Ando, A., Brown, R., Ensing, J., Hatajik, T. D., Kong, W., & Tsuda, Y. (2007). The role of degradant profiling in active pharmaceutical ingredients and drug products. *Advanced Drug Delivery Reviews*, 59(1), 29–37. <https://doi.org/10.1016/j.addr.2006.10.006>

32. Gad, S. C. (2014). *Pharmaceutical manufacturing handbook: Regulations and quality* (2nd ed.). Wiley-Interscience.

33. United States Food and Drug Administration. (2015). Analytical procedures and methods validation for drugs and biologics. FDA Guidance for Industry. <https://www.fda.gov>

34. International Council for Harmonisation. (2006). ICH Q3A(R2): Impurities in new drug substances. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>

35. International Council for Harmonisation. (2006). ICH Q3B(R2): Impurities in new drug products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>

36. International Council for Harmonisation. (2003). ICH Q1A(R2): Stability testing of new drug substances and products. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>

37. International Council for Harmonisation. (2023). ICH Q2(R2): Validation of analytical procedures and ICH Q14: Analytical procedure development. ICH Harmonised Guidelines. <https://www.ich.org/page/quality-guidelines>

38. International Council for Harmonisation. (2023). ICH M7(R2): Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals. ICH Harmonised Guideline. <https://www.ich.org/page/quality-guidelines>

39. United States Food and Drug Administration. (2015). Analytical procedures and methods validation for drugs and biologics. FDA Guidance for Industry. <https://www.fda.gov>

40. European Medicines Agency. (2016). Guideline on setting health-based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities. EMA. <https://www.ema.europa.eu>