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Abstract 

Single server batch arrival retry queue with varying modes of breakdowns and two stages of restoration is 

considered under a fuzzy situation. Assuming the arrival, working, retry, breakdown, and repair rates are fuzzy; 

a mathematical programming method is proposed to construct the membership function for the average system 

size of the prescribed model. To convert a fuzzy repairable retrial queue into a family of crisp queues, the 

alpha-cut technique and Zadeh's extension concept are utilised. Trapezoidal fuzzy numbers are used to 

illustrate the strength of the proposed approach. Ranking fuzzy numbers play a huge role in decision-making 

under fuzzy conditions. This ranking method is the most reliable, simple to apply, and used to find the 

defuzzification of the syatem measures. A particular application in packet-switching network is given for a 

better understanding of the model. 

 

Key words: Fuzzy queue, Server Breakdown, packet switching network, Zadeh’s extension principle, alpha  
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1 Introduction and Relevant Literature 

The remarkable extension of queues to the 

fuzzy world has practical consequences for 

decision analysis, operations research, 

computer technology, and abstract theory. 

Because of its practical applicability in real 

life, the fuzzy retrial queuing model has 

recently gained much interest. Fuzzy retrial 

queues have a variety of real-world 

applications, including communication 

networks, production models, financial 

sectors, tollbooths, and service stations, 

among others. 

 

When the characteristics of the queuing 

system, such as the arrival rate and working 

rate, are identified precisely, effective methods 

for examining has been devised. However, 

these parameters may not be given accurately 

in some situations due to uncontrolled 

circumstances. In various practical 

applications, statistical data can be acquired 

individually; for example, the arrival rate and 

working rate are better expressed by language 

phrases such as rapid, modest, or sluggish than 

by a probability distribution based on 

statistical theory. This type of indefinite 

evidence will correctly identify the structure 

performance measurement.  

 

Zadeh (1965, 1973, 1978) established the idea 

of fuzziness to deal with imperfect 

information. The notion of fuzzy set theory is 

well-known for modeling imprecision or 

uncertainty from mental processes. Yager 

(1986) discussed the extension concept and the 

ranging approach for defuzzification. 

Unfortunately, their method only supplied 

simple remedies. In other words, the 

performance measures' membership functions 

are not fully explained. Li and Lee (1989) 

suggested an all-encompassing method for 
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queuing systems in a fuzzy environment. 

Analytical data for the M/F/1 and FM/FM/1 

systems are offered to demonstrate the 

methodology. Fuzzy queues are far more 

realistic than the often utilised crisp queues in 

many real-world scenarios. Kao et al. (1999) 

employed computational programming to 

construct the membership functions of four 

fundamental fuzzy queues with one or two 

fuzzy variables: M/F/1, F/M/1, F/F/1, and 

FM/FM/1, where F represents fuzzy time and 

FM signifies fuzzified exponential time. 

Zimmermann (2001) highlighted various real-

world applications of fuzzy set theory. 

 

In a recent study on fuzzy queueing theory 

based on possibility theory, Buckley et al . 

(2001) explore the fundamental findings. 

Then, he use this to solve two application 

problems: the first is a machine servicing issue 

to finding the ideal amount of repair teams, 

and the second is a queueing decision issue to 

finding the ideal number of servers).  

 

Chen (2005) demonstrated how to build 

membership functions for performance 

indicators in bulk service queuing systems 

with fuzzy arrival and working rates. Two 

fuzzy queues that are frequently seen in 

transportation management are used as 

examples to show the viability of the 

suggested technique. Machine interference is a 

prevalent problem in manufacturing and 

production activities. Because of 

uncontrollable reasons, the parameters of the 

machine interference problem may be 

ambiguous. Chen (2006) suggested a 

mathematical programming technique for 

constructing the membership function of the 

machine interference system's measure, with 

the machine breakdown rate and working rate 

being fuzzy numbers. 

 

Ke and Lin (2006) defined the membership 

functions of the key variables of a queuing 

model with an unstable server, in which the 

customer arrival rate and operation rate, as 

well as the server failure rate and restoration 

rate, are all vague values. An efficient 

approach is offered to locate the best answers 

at each level of possibility. More information 

is available for management to utilise as a 

result of the system attributes being stated and 

managed by the membership functions. By 

extending the fuzzy environment, the 

proposed approach may more accurately 

represent fuzzy queues with an unstable 

server, and the analytical findings associated 

with this queuing model will be informative 

and relevant for system developers and users. 

 

The system features of a queueing model with 

fuzzy customer arrival, retry, and operative 

rates were built by Ke et al. (2007).  In this 

case, a fuzzy retrial queue is converted using 

the -cut technique into a family of traditional 

crisp retrial queues. A collection of parametric 

non-linear programmes has been built to 

characterise the family of crisp retrial queues 

using the membership functions of the system 

characteristics. More data is offered for 

management's usage since the membership 

functions express and regulate the system 

features. The fuzzy retrial-queue is more 

correctly represented by extending this model 

to the fuzzy nature, and analytical findings are 

improved. 

 

In order to handle fuzzy threshold-based space 

priority buffers, Wang et al. (2009) created a 

discrete-time queueing model and tested its 

effectiveness in real-world scenarios. The 

analysis of the pertinent performance metrics, 

such as the packet loss probability of high-

priority traffic and of low-priority traffic, is 

done using a matrix-analytic technique. 

According to intuition, the fuzzy threshold 

produces a reduced packet loss probability for 

low-priority packets by adapting effectively to 

various input traffic flow conditions and the 

packet loss rate criteria of high-priority 

packets. Kalyanaraman et al.  (2010) 

investigated a retry queueing system with 

interruptions in a fuzzy environment. 

 

Viswanathan et al. (2015) developed the non-

linear parametric programs to give a 

description about crisp retrial family queues 

with Coxian 2 vacation. Comparative analysis 

of both crisp and fuzzy retrial two phase 

queueing model with Bernoulli vacation and 

restricted admission was given by Ebenesar 

Anna Bagyam and Udaya Chandrika (2019).  

 

Fuzzy Markovian queues, in which all of the 

system constraints are fuzzy numbers, were 
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studied by Chen et al. (2020) for the optimum 

and equilibrium techniques. Using approaches 

from fuzzy logic and queuing theory, this work 

investigates the membership functions of the 

optimal and equilibrium procedures in both 

tangible and intangible circumstances. In order 

to characterise the family of crisp techniques, 

we build two parametric nonlinear 

programmes using Zadeh's extension concept 

and the alpha - cut methodology. Then, in 

single and multi-server models, the 

membership functions of the tactics are 

determined. To estimate the stability approach 

in the fuzzy intelligence, the grated mean 

integration approach is also used. 

 

Kannadasan and Padmavathi (2021) discussed 

about the fuzzy techniques with use of 

hexagonal fuzzy numbers and the authors have 

acquired the fuzzy environment with the 

presence of numerical results. Revathi and 

Selvakumari (2021) given the priority 

disciplines of fuzzy retrial models. Fuzzy 

retrial queue model is applied to most of the 

telecommunication systems. In this paper, we 

can find the suitable application of the 

prescribed model in a packet-switching 

network. As a result, a single server batch 

arrival retry queue with varying modes of 

breakdowns and two stages of restoration 

would be appropriate for the above-stated 

problem. The major goal of this article is to 

analyze the mean system size under fuzzy 

conditions.     

        

The remaining part of the paper is organised as 

follows:: The construction of a fuzzy 

repairable queue is given in Section 2. By 

considering arrival, service, and repair rates as 

a trapezoidal fuzzy numbers, numerical results 

are given in Section 4. Section 5 presents 

results and discussion based on the numerical 

illustration. Finally, in the last section, the 

conclusion has been drawn by highlighting the 

novelty of the investigation. 

 

2 Construction of Fuzzy Repairable Retrial 

Queue 

2.1 Overview of the Model  

Single server batch arrival queue with M 

modes of breakdown and two stages of repair 

with retrial is considered under a fuzzy 

environment. Although the server is running, 

it is susceptible to one of the M modes of 

breakdowns. The failing server requires 

necessary repair based on the kind of 

breakdown and optional common repair. 

When a server breaks, it stops serving clients 

and waits for the necessary repair to begin. The 

time spent waiting for the server to be repaired 

is referred to as setup time. As quickly as the 

necessary restoration is accomplished, the 

customer may choose common repair with a 

particular probability p or deny with the 

complimentary probability. Before the service 

provider went down, the client who was now 

receiving service either stayed in the service 

position with probbaility r or left the amenity 

area with complementary probability and kept 

coming back with certain rate. Once repaired, 

the server either waits for the same client or 

resumes serving the client who was stopped. 

This period of waiting is known as reserved 

time. Until the interrupted consumer exits the 

system, the server cannot accept new clients. 

If the server is busy or unavailable, it is 

referred to as blocked. (Ebenesar Anna 

Bagyam and Udayachandrika, 2018) 

 

2.1 Notations Used  

 -  Arrival rate     -  service rate    -   retrial 

rate 

 - failure rate   1, 2  -   necessary and common 

reapir rates 

   -   setup rate m1 and  m2  -  First two moments 

of the batch arrival 

 

2.2 Solution Methodology 

Assume that the arrival rate (), retrial rate (), 

service rate (), setup rate (),  essential repair 

rate (1) and  common repair rate (2) are 

represented by fuzzy numbers 
~

, ~ , ~ ,  , 1

~
  

and 2

~
  respectively. Let ),x(~


 ),y(~

)s(~ , )v( 1~ , )v( 2~
1

  and )v( 3~
2

  denote 

the membership functions of the 

corresponding parameters. Then we have 


~

= {(x, ))x(~


 / x  X} 

~= {(y,  ))y(~ / y  Y} 

~= {(s, ))s(~ / s  S} 

~  = {(v1, ))v( 1~ / v1  V1}  

1

~
  = {(v2, ))v( 2~

1
 / v2  V2}  
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and  2

~
  = {(v3, ))v( 3~

2
 / v3  V3} 

 

where X, Y, S, V1, V2 and V3 are the crisp sets 

of arrival, retry, service, setup, essential repair 

and optional repair rates respectively. Ls(
~

, ~

, ~ ,  , 1

~
 , 2

~
 ) is fuzzy numbers since 

~
, ~ , 

~ ,  , 1

~
  and 2

~
  are  all fuzzy numbers. Based 

on Zadeh’s extension principle (Zadeh, 1978), 

the membership function Ls (
~

, ~ , ~ ,  , 1

~
 , 

2

~
 ) is defined as )z(

)
~
 ,

~
 ,~ ,~ ,~ ,

~
(L 21S 


 

= 

)z(
SL

~ Hence,
 

= )z(
SL

~

),v(),v(),s(),y(),x({min  sup 2~1~~~
1





)}v(),v( 3~2~
21 

  (1) 

where    =  {x  X, y  Y, s  S, v1  V1, v2 

 V2, v3  V3  /  

s

mx 1 [1 + 
=

M

i 1

i T4] + (1 – 
A (x)) m1 < 1}   

(2) 

Ls(x, y, s, v1, v2, v3)  =  
1

2

T

T
 

s

m x 1
 [1 +

=

M

i 1

i

T4]  (3) 

T1 = 1 – 
s

m 1x
 [1 +

=

M

i 1

i T4]  + m1 (1 – 
A

(x))  

T2 = [
s

m 2

1x
(1 +

=

M

i 1

i T4) +
2

2m
] (1 – 

A

(x)) + 
2

3T
 

T3 = x2 2

1m  [ 2

2

s
(1 +

=

M

i 1

i T4)
2 + 

s

2

=

M

i 1

i [



r
(


1
+

1

1

v
+

2

1

v
+

3v

p
) 

+ 
21 

1

vv
+

2

1

1

v
+ 

2

2

1

v
+

2

3v

p
+

31 vv

p
+

32  vv

p
]] + 

s

m 2x
[1 + 

=

M

i 1

i T4]  

T4 = 
1v

1
+

2v

1
+

3v

p
+


r
 

and  
A (x) = 

 x y

y

+  
 

The crisp intervals for the -cuts of 
~

, ~ , ~ , 

~ , 1

~
  and 2

~


 
and upper and lower bound of 

the invervals are tabulated as below: 

 

Table 1 Crisp Intervals, Upper and Lower Bounds 
Crisp Intervals Upper Bound Lower Bound 

() [
X  

min
x

{x / )x(~


   }, 
X  

max
x

{x / )x(~


   }] max )(1
~ −


= 

Ux   min )(1
~ −

  
=  

Lx
 

() [
Y  y

min


{y / )y(~   }, 
Y  y

max


{y / )y(~   }] max )(1
~ −
 =

Uy  min )(1
~ −


 
= 

Ly  

() [
S  s

min


{s / )s(~   }, 
S  s

max


{s / )s(~   }] max )(1
~ −
 =

Us  min )(1
~ −
 =

Ls  

() [
11 V  v

min


{v1/ )v( 1~ }, 
11 V  v

max


{v1/ )v( 1~   }] max )(1 −
 =

U  
 1v  , min )(1

~ −
 =

L  
 1v   

1() [
22 V  v

min


{v2/ )v( 2~
1

 }, 
22 V  v

max


{v2/ )v( 2~
1

   }] max )(1
~

1
−


=

U   
 2v   min )(1

~
1
−


=

L   
 2v   

2() [
33 V  v

min


{v3/ )v( 3~
2

  },
33 V  v

max


{v3/ )v( 3~
2

  }] max )(1
~

2
−


=

U   
 3v 

 
min )(1

~
2
−


=

L   
 3v   

To build the membership function )z(
sL

~
, 
-

cuts approach is used. 
L

s )L(   
and 

U
s )L(   are 

the lower bound  and the upper bound  of the 

-cuts of )z(
sL

~ respectively. Thus, 
L

s )L(  = 


min  Ls (x, y, s, v1, v2, v3) and 

U
s )L( 

 = 


max  Ls (x, y, s, v1, v2, v3),  subject 

to 
Lx   x  

Ux  , 
Ly   y  

Uy , 
Ls   s  

Us , 

L  
 1v    v1  

U  
 1v  , 

L   
 2v    v2  

U   
 2v   and 

L   
 3v    

v3  
U   

 3v  . The membership function )z(
sL

~  

can be defined as follows:  
L

1s
L

0sL
~ )(L  z  )(Lif),z(L)z(

s
== =

 
U

1s
L

1sL
~ )(L  z  )(Lif,1)z(

s
== =

    and 
U

0s
U

1sL
~ )(L  z  )(Lif),z(R)z(

s
== =
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where L(z)  =  inverse of L
s )L(   = Left shape 

function and R(z) = inverse of 
U

q )L   = Right 

shape function respectively. 

 

2.3  Defuzzification - Ranking Method 

For defuzzify the fuzzy value of mean system 

size into a crisp one Yager ranking index 

method is used.  

The formula for Yager ranking index is 
2

1  

+  d ])(L  )[(L U
s

1

0

L
s

, 

Where [
L

s )L(  ,
U

s )L(  ] is the -cuts of sL
~

. 

 

3 Numerical Illustration  

Assume that arrival rate, retry rate, working 

rate, setup rate, essential repair rate and 

optional repair rates are trapezoidal fuzzy 

number such that 
~

 = [0.5, 1, 1.5, 2], ~  = [25, 

26, 27, 28], ~  = [28, 29, 30, 31], ~  = [5, 6, 7, 

8], 1

~
  = [15, 16, 17, 18] and 2

~
  = [17, 18, 19, 

20] with the fixed values M = 4, i = 2.5, m1 = 

2, m2 = 6, pi = 0.6, ri = 0.5 and  i = 5 (i = 1, 2, 

3, 4). 

The values of 
L

s )L(   and 
U

s )L(   are obtained 

as 
L

s )L(   = [( + 1) (− 2 8 + 241 7 − 9153 6 

+ 26506 5 + 7631928 4  

− 239135100 3 + 3300827064 2 − 

22186570720   

+ 59110464000)] / [10 ( − 8) ( − 18) ( − 

20) (5 5 – 515 4  

+ 19061 3 – 308961 2 + 2091714  − 

4244640)]        

and  
U

s )L(   = [− ( − 4) (− 2 8 − 193 7 − 4596 

6 + 95723 5 + 7010268 4  

+ 149453025 3 + 1557960000 2 + 

8015423125   

+ 16420016250)] / [10 ( + 5) ( + 15) ( + 

17) (5 5 + 440 4  

+ 13331 3 + 163872 2 + 699000  + 

276000)]                  

 

Because of complexity in finding the closed 

form expression of  devloping we analyze 

)z(
sL

~ numerically. The numerical result of 

the membership function  )z(
sL

~
 
for different 

values of  is shown in Fig. 1. Moreover, 

)z(
sL

~  appears a trapezoidal like structure as 

the arrival rate, retry rate, working rate, setup 

rate and repair rate (essential and optional) are 

trapezoidal fuzzy members. Figure 2 reports 

the -cuts of expected system size (LL- Lower 

bound and LU - Upper bound) for different -

values.  

 

 
Fig. 1 Mean System Size’s Membership 

Function 

 

 
Fig. 2  -cut values of Mean System Size 

 

4 Discussion on the Results 

The range of the system length for possibility 

level alpha = 1 is about [1.4479, 3.9387], 

suggesting that it is certainly feasible that the 

expected number of consumers in the system 

falls between 1.4479, 3.9387, however this is 

uncertain. The range of the system length for 

possibility level alpha = 0 is around [0.4835, 

18.6644] at the other extreme. This range 

suggests that the mean system size will never 

fall below 0.4835 or increase above 18.6644. 

4.6877 is the predicted system size when 

utilising the Yager ranking index approach. 

The information mentioned above will be very 

beneficial when developing a queueing 

system. 

 

5   Practical Application of the model 

Our retrial queue has potential uses in a 

packet-switching network, where messages 

Mean System Size 
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are split into IP packets before being 

transmitted, in addition to its theoretical 

appeal. For instance, packet-switching 

technologies constitute the foundation of the 

majority of contemporary WAN protocols, 

such as TCP/IP, X.25, and Frame Relay. A 

router is a connected device in a packet-

switching network that is used to transfer 

packets from a host server to a remote host. To 

transfer a package from a source host to a 

destination, the base station must first transmit 

the package to the router to which it is linked 

before sending the package to the remote host. 

 

Suppose that packages arrive at the source host 

through a Poisson mechanism. All packages 

received by the host are immediately sent to its 

router. If the router is available, the package is 

accepted and sent right away, with the 

assumption that the transmission time will be 

evenly split. If not, the router rejects the 

package owing to current malfunctions or 

MTU (Maximum Transmission Unit) 

restrictions on the TCP/IP network path. 

According to FCFS, in this scenario, the 

blocked package must be retransmitted at a 

later time and is kept in the source host's buffer 

(referred to as the orbit). Furthermore, the 

router may malfunction whether it is idle or 

when sending packets, due to outside assaults 

or other technical issues. 

 

We assume that until a packet arrives at the 

router, the network administrator in charge of 

fault management always conducts certain 

auxiliary activities while the router is idle and 

is always on service when the router is active. 

If a router fails while transmitting a packet, the 

network administrator can immediately repair 

it, and the router will resume broadcasting the 

paused packet as fast as the repair is 

completed. If the router fails while it is 

inactive, the restoration may not begin until the 

next packet from an outside source comes or 

until the orbit when the network manager 

emerges and immediately begins the router 

repair operation. The delayed period refers to 

the span between the epoch of the passive 

failure and the epoch of the next packet 

arriving. Once the repair for the passive failure 

is complete, the packet that came even during 

delayed interval can sometimes be transmitted 

immediately. 

 

6 Conclusion and Future Work 

The well-established classical retrial queuing 

systems, which are difficult but usually make 

assumptions that are too far from reality. But 

by using fuzzy retrial queue it describe 

realistic scenarios. Fuzzy retrial queues are 

more precise and perfect than conventional 

lineups. The model's output from this study 

may be used to analyze the variables impacting 

packet-switching networks. In the subsequent 

research, we will deal with generalizing 

alternative ways to assist decision-makers in 

deciding the path for modification in 

repairable retrial queues. 
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