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Abstract 

This study applies ImanAdomian Decomposition Method (IADM) to solve the Logistic Differential Model 

(LDM) of different forms and coefficients. Illustrative examples are considered, and the obtained results 

are in good agreement compared to those already in the literature. This study, therefore, recommends the 

proposed method (IADM) for application in other aspects of applied mathematics for real-life problems.  
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method.  

1. Introduction 

A logistic differential equation is a 

conventional mathematical expression whose 

solution is a logistic function. Exponential 

functions fail to consider limitations that 

prevent infinite resources, whereas logistic 

functions do [1-3]. Many other areas, such as 

machine learning, chess ratings, cancer 

therapies (such as the modeling of tumor 

development), economics, and language 

adoption studies, rely on these types of models 

[4, 5]. This model is unrealistic since the 

environment constrains population expansion. 

𝑑𝑝

𝑑𝑡
= 𝑟𝑝 (1 −

𝑝

𝑘
) , 𝑝 = 𝑝(𝑥, 𝑡) (1.1) 

𝑝0 = 𝑝(𝑥, 0) 
where p=p(x,t)is the population size of the 

species at time  t, r   , denotes the rate of growth 

in the absence of limited resources, and 

kdenotes the carrying capacity or the maximum 
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population that the ecosystem can support 

indefinitely. 

The goal of this study is to apply the AADM to 

find a solution for the Logistic Differential 

Model (LDM) [6-10]. The aim is to present a 

simple and practical method for obtaining a 

better approximation to find the exact solution 

to the LDM. Thus, the objectives are to: apply 

AADM to the logistic differential equation and 

compare the results obtained via applying the 

AADM and exact solutions of the Logistic 

differential model. Although, numerical 

approaches have been arbitrated more efficient 

and reliable in solving the dynamical models 

(equations) and other differential models in this 

regard [11-20]. 

Different solution experts have recently 

discussed numerous methods for finding an 

exact or numerical solution to ordinary or 

partial differential models [21-26]. In this 

work, a novel approach termed Successive 

Approximation Method (SAM) is applied to 

some non-linear evolution models. 

2. Note on ImanAdomian Decomposition 

Method (IADM) 

The AADM will be discussed here in relation 

to the Logistic Differential Equation. 

2.1 Adomian Decomposition Method (ADM) 

Let us examine the differential equation of the 

following form: 

𝐷𝑤 + 𝑅𝑤 + 𝑁𝑤 = 𝑔(𝑥, 𝑡), 𝑤

= 𝑤(𝑥, 𝑡)               (2,1) 

where the linear operator (differential) is D , the 

differential operator has a remaining part R and 

a nonlinear, while 𝑔 = 𝑔(𝑥, 𝑡)is a source term. 

Generally, we choose 𝐷 =
𝑑𝑛

𝑑𝑥𝑛
(. ) , to be the 

nth-order differential operator, has its 

inverse𝐷−1 follows as the nth-order integration 

operator. Therefore, the inverse linear 𝐷−1used 

on (2.1), we have 

𝐷−1[𝐷𝑤 + 𝑅𝑤 + 𝑁𝑤] = 𝐷−1 𝑔(𝑥, 𝑡)     (2,2) 

Where, 

𝐷−1 𝐷𝑤 = 𝑦 − 𝛼                    (2,3) 

And α signifies the initial value. α 

Thus, (2.3) becomes: 

𝑦 − 𝛼 + 𝐷−1[𝑅𝑤 + 𝑁𝑤] = 𝐷−1𝑔         (2,4) 

𝑦 = 𝐷−1𝑔 + 𝛼 − 𝐷−1[𝑅𝑤 + 𝑁𝑤]       (2,5) 

𝑦 = 𝛽(𝑦) − 𝐷−1[𝑅𝑤 + 𝑁𝑤]           (2,6) 

Where 

𝛽(𝑦) = 𝐷−1𝑔 + 𝛼           (2,7) 

which signifies a function obtained by 

integrating the source term with respect to the 

initial condition(s). The ADM expresses the 

solutiony(t) in the series form: 

𝑦 =∑ 𝑦𝑛                 (2,8)
∞

𝑛=0
 

Also, the non-linear component can be stated 

as: 

𝑁𝑤(𝑥, 𝑡) =  ∑ 𝐴𝑚            (2,9)
∞

𝑛=0
 

 

𝐴𝑚  =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
(𝑓 (𝑡,∑ 𝜆𝑘𝑦𝑘

∞

𝑘=0
))

𝑡=0

  , 𝑛

≥ 0          (2,10) 

∑ 𝑦𝑛   =   𝛽(𝑦)
∞

𝑛=0

− 𝐷−1 [𝑅(∑ 𝑦𝑛
∞

𝑛=0
)

+∑ 𝐴𝑛
∞

𝑛=0
]          (2,11) 

By a recursive equation, we have: 

𝑦0(𝑥) = 𝛽(𝑥)          (2,12) 
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𝑦𝑛+1(𝑥) = −𝐷
−1[𝑅𝑦𝑛 + 𝐴𝑛], 𝑛 ≥ 0     (2,13) 

Thus, the solution is: 

𝑦(𝑥) = lim
𝑛→∞

(∑ 𝑦𝑛
∞

𝑛=0
)      (2,14) 

2.2 Iman Transform Method (ITM) 

The Imantransform method helps in solving 

differential equations (ODE) and partial (PDE) 

in the time domain. It is also used as an 

effective tool in response to initial data analyze 

the fundamental properties of a linear system 

governed by the differential equation. 

2.3. Definition of Iman Transform 

Let C a function such that 

𝐶 = {𝐻(𝑡): |𝐻(𝑡)| < 𝑀𝑒|𝑡|𝑘𝑗 , 𝑓𝑜𝑟 𝑀, 𝑘1, 𝑘2
> 0}      (2,15) 

Thus, the Iman transform of H(t)is defined and 

denoted as: 

𝐼[𝐻(𝑡)] = 𝐻(𝑣) =
1

𝑣2
∫ 𝐻(𝑡)𝑒−𝑡𝑣

2
𝑑𝑡        (2,16)

∞

0

 

2.4 Properties of ImanTransform 

The main properties of Iman Transform are: 

𝑃𝐼1: 𝐼[1] =  
1

𝑣4
 

𝑃𝐼2: 𝐼[𝑡] =  
1

𝑣6
 

𝑃𝐼3: 𝐼[𝑒𝑎𝑡] =
𝟏

𝒗𝟒 − 𝒂𝑣2
 

𝑃𝐼4: 𝐼[𝑡𝑛] =
𝑛!

𝒗𝟐𝒏+𝟒
 

2.5 ImanAdomian Decomposition Method 

(IADM) 

The IADM consists of a mix of both the Iman 

transform method and the Adomian 

decomposition approach. The problem can 

either be linear or non-linear. 

Let us consider the general differential equation 

of the form: 

𝐷𝑤 + 𝑅𝑤 + 𝑁𝑤 = 𝑔(𝑥, 𝑡), 𝑤 = 𝑤(𝑥, 𝑡)      (2,17) 

where D,N,R  and  g are as defined earlier. 

Suppose 

𝑔(𝑥, 0) = 𝑔1, 

𝑤 = 𝑤(𝑥, 𝑡) 

then the Iman transform of (2.17) is as follows: 

𝐼(𝐷𝑤) + 𝐼(𝑅𝑤) + 𝐼(𝑁𝑤) = 𝐼(𝑔) 
𝐼(𝐷𝑤) = 𝐼(𝑔) − 𝐼(𝑅𝑤) − 𝐼(𝑁𝑤) 

𝑣2𝐼(𝑥, 𝑣) −
𝑤

𝑣2
=  𝐼(𝑔) − 𝐼(𝑅𝑤 + 𝑁𝑤) 

𝐼(𝑥, 𝑣) =
𝑤

𝑣4
+ 𝑣2𝐼(𝑔) − 𝑣2𝐼(𝑅𝑤 + 𝑁𝑤) 

𝐼(𝑥, 𝑣) = 𝐺(𝑥, 𝑡) − 𝑣2𝐴(𝑅𝑤 + 𝑁𝑤)        (2,18) 

Where𝐺(𝑥, 𝑡)  is the resulting term from the 

source and initial condition terms when used. 

Based on the inverse Iman transform of (2.18), 

we have: 

𝐼−1𝐼(𝑥, 𝑣) = 𝐼−1[𝐺(𝑥, 𝑡)] − 𝐼−1[𝑣2𝐼(𝑅𝑤 +𝑁𝑤)] 
ℎ = 𝐼−1[𝐺(𝑥, 𝑡)] − 𝐼−1[𝑣2𝐴(𝑅𝑤 + 𝑁𝑤)]    (2,19) 
Using ADM, the series solution is defined as 

𝑤 = ∑ 𝑤𝑛         (2,20)
∞

𝑛=0
 

And the non-linear term as: 

{
𝑁𝑤 = ∑ 𝐴𝑛

∞
𝑛=0

𝐴𝑛 , as Adomian polynomials.
  (2,21) 

Hence, (2.21) becomes 

𝒘𝟏 = 𝒈𝟏 ∗

𝒘𝒏+𝟏 = 𝐼
−1[𝑣2𝐼(𝑅(𝒘𝒏) + (𝑨𝒏)]

}       (𝟐, 𝟐𝟐) 

3. Method and Model Discussed 

This part discusses the proposed method and 

the Logistic model, as formulated based on 

some assumptions. Case examples are also 

considered via the IADM. 

CASE I: Consider the following version of the 

LDE: 
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{
𝑑𝑝

𝑑𝑡
=
1

4
𝑝(1 − 𝑝), 𝑝(0) =

1

3 
           (3,1) 

 

whose exact solution is: 

𝑝(𝑡) =
𝑒0.25 𝑡

2 + 𝑒0.25 𝑡
            (3,2) 

 

By the 𝐼𝐴𝐷𝑀, we have 

𝐼[𝑃𝑡] = 𝐼 [
𝑃

4
−
𝑃2

4
]                   (3,3) 

𝑣2𝑙(𝑥, 𝑣) −
𝑃(𝑥, 0)

𝑣2
= 𝐼 [

𝑃

4
−
𝑃2

4
]            (3,4) 

 

𝑙(𝑥, 𝑣) = 𝑣2𝐼 [
𝑃

4
−
𝑃2

4
] +

𝑃(𝑥, 0)

𝑣4
       (3,5) 

 

𝑙(𝑥, 𝑣) = 𝑣2𝐼 [
𝑃

4
−
𝑃2

4
] +

1

3𝑣4
        (3,6) 

Taking theIman inverse of (3.6) gives: 

𝐼−1[𝑙(𝑥, 𝑣)] = 𝐼−1 [𝑣2𝐴 [
𝑃

4
−
𝑃2

4
]]

+ 𝐼−1 [
1

3𝑣4
] 

 

𝑝(𝑥, 𝑡) = 𝐼−1 [𝑣2𝐼 [
𝑃

4
−
𝑃2

4
]] +

1

3
𝐼−1 [

1

𝑣4
] 

𝑝(𝑥, 𝑡) = 𝐼−1 [𝑣2𝐴 [
𝑃

4
−
𝑃2

4
]] +

1

3
            (3,7) 

Next, we apply the Adomian approach to (3.7), 

where 

𝑝(𝑥, 𝑡) =  ∑ 𝑝𝑛
∞

𝑛=0
 

Hence, 

∑ 𝑝𝑛 =
1

3
+
1

4
 𝐼−1[𝑣2𝐼[∑ 𝑝𝑛

∞
𝑛=0 −∞

𝑛=0

∑ 𝐴𝑛
∞
𝑛=0 ]](3,8) 

The recursive relation is: 

𝑃0 =
1

3

𝑃𝑛+1 = 𝐼
−1 [𝑣2𝐼 [

𝑝𝑛
4
−
𝐴𝑛
4
]] , 𝑛 ≥ 0 

}
 

 

      (3,9) 

Thus, for n=  0,1,2,3,4,5,……., the following 

are respectively obtained: 

𝑝(𝑡) = 𝑝0 + 𝑝1 + 𝑝2 +⋯ 

𝑝(𝑡) =
1

3
+

𝑡

18
+

𝑡2

432
−

𝑡3

5184
+⋯      (3,10) 

Exact solution: 

𝑝(𝑡) =
𝑒0.25 𝑡

2 + 𝑒0.25 𝑡
 

CASE II: Consider the following version of the 

LDE 

{
𝑑𝑝

𝑑𝑡
=
1

2
𝑝(1 − 𝑝), 𝑝(0) =

1

2 
      (3,11) 

whose exact solution is: 

𝑝(𝑡) =
𝑒0.25 𝑡

2 + 𝑒0.25 𝑡
          (3,12) 

 

By the IADM, we have 

𝐼[𝑃𝑡] = 𝐼 [
𝑃

2
−
𝑃2

2
]            (3,13) 

𝑣2𝑙(𝑥, 𝑣) −
𝑃(𝑥, 0)

𝑣2
= 𝐼 [

𝑃

2
−
𝑃2

2
]    (3,14) 

𝑙(𝑥, 𝑣) = 𝑣2𝐼 [
𝑃

2
−
𝑃2

2
] +

𝑃(𝑥, 0)

𝑣4
     (3,15) 

𝑙(𝑥, 𝑣) = 𝑣2𝐼 [
𝑃

2
−
𝑃2

2
] +

1

2𝑣4
           (3,16) 

Taking theIman inverse of (3.6) gives: 

𝐼−1[𝑙(𝑥, 𝑣)] = 𝐼−1 [𝑣2𝐼 [
𝑃

2
−
𝑃2

2
]] + 𝐼−1 [

1

2𝑣4
] 

𝑝(𝑥, 𝑡) = 𝐼−1 [𝑣2𝐼 [
𝑃

2
−
𝑃2

2
]] +

1

2
𝐼−1 [

1

𝑣4
] 

𝑝(𝑥, 𝑡) = 𝐼−1 [𝑣2𝐼 [
𝑃

2
−
𝑃2

2
]] +

1

2
     (3,17) 

Next, we apply the Adomian approach to (3.7), 

where 
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𝑝(𝑥, 𝑡) =  ∑ 𝑝𝑛
∞

𝑛=0
 

Hence, 

∑ 𝑝𝑛 =
1

2
+
1

2
 𝐼−1[𝑣2𝐼[∑ 𝑝𝑛

∞
𝑛=0 −∞

𝑛=0

∑ 𝐴𝑛
∞
𝑛=0 ]](3,18) 

The recursive relation is: 

𝑃0 =
1

2

𝑃𝑛+1 = 𝐼
−1 [𝑣2𝐼 [

𝑝𝑛
2
−
𝐴𝑛
2
]] , 𝑛 ≥ 0 

}
 

 

       (3,19) 

Thus, for n=  0,1,2,3,4,5,……., the following 

are respectively obtained: 

𝑝(𝑡) = 𝑝0 + 𝑝1 + 𝑝2 +⋯ 

𝑝(𝑡) =
1

2
+

𝑡

8
+−

𝑡3

384
+⋯      (3,10) 

Exact solution: 

𝑝(𝑡) =
𝑒0.25 𝑡

2 + 𝑒0.25 𝑡
 

4. Conclusions 

In this work, the ImanAdomian Decomposition 

Method (IADM) was applied to the non-linear 

differential equation known as the Logistic 

Differential Model. The IADM has an 

advantage in its applicability, speed of 

convergence, and accuracy, unlike other 

numerical methods. Applying the IADM yields 

a series solution. The IADM is a very effective 

tool in the solution of the Logistic Differential 

Model. It can also be applied to several other 

more complex ordinary differential equations 

(both linear and non-linear). The results have 

shown distinctive characteristics of the method 

in terms of effectiveness and speed of accuracy. 

The IADM does not require linearization and 

initial guess points. 
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