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Abstract 

Image denoising is a basic problem in image processing, with the aim of approximating the original image 

by suppressing noise in the noised image. The major objective of noise reduction is to reduce noise in 

natural images while preserving original characteristics and increasing signal-to-noise ratio (SNR). This 

paper presents a novel approach for Denoising MRI images using a variant of Generative Adversarial 

Network (GAN), which is named as Texture and Structure Sensitive 3D Multi-scale Deep Neural Network 

(TS-3D-MDNN). A revised multi scale 3D CNN model is presented as the Generator of this GAN 

framework in order to preserve more information. The noise is reduced by the use of Generator and a 

Discriminator circuit with the help of structure and texture sensitive loss model. The experimental findings 

reveal that the suggested technique outperforms each method individually in terms of mean square error 

and peak signal-to-noise ratio. The proposed TS-3D-MDNN method achieves up to 46% of PSNR. 

Introduction 

Magnetic Resonance Imaging (MRI)[1], a 

leading medical imaging technology that gives 

the highly comprehensive information about 

the human living organs and tissues including 

pathological and physiological changes 

through imaging. The MRI images provide a                   

two-dimensional segment of the body with 

appropriate tissue location, contrast, and 

orientation. High-resolution MR images with a 

high signal-to-noise ratio (SNR) allow for more 

detailed imaging of anatomical features, 

boosting predictive accuracy and aiding early-

stage diagnose of a variety of central nervous 

system illnesses.[2-4]. Increasing the number 

of image acquisitions (NAQ), altering the 

acquisition bandwidth, and utilising high 

magnetic field intensity, are some of the 

methods for obtaining high-resolution MR 

pictures with high-SNR. At the same time, 

increasing NAQ takes longer acquisition time. 

Images with low SNR will be aesthetically 

corrupted and will have noise added to them. 

The efficiency of MRI decreases when a region 

or specific tissue affects from a low signal to 

noise ratio (SNR).As a result, an efficient MRI 

reconstruction procedure is required, in which 

denoising algorithms are used to noisy images 

to enhance both qualitative and quantitative 

MRI metrics. 

Image Denoising is an essential step for MR 

image pre-processing in several applications 

since it is a basic image processing issue. 

Images become prone to the development of 

certain random noise during picture capture due 

to intrinsic physical restrictions of various 

recording equipment. Noise is a fundamental 

signal distortion that obstructs the observation 

and extraction of information from images. 

Image noise suppression is a fundamental 
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component of image analysis and processing, 

therefore any improvement in the picture 

denoising area aids our comprehension of 

fundamental image statistics and processing. 

Denoising methods can be applied to pictures 

during, or after they have been acquired. After 

post-acquisition denoising, the goal is to lower 

the strength of noise while keeping the original 

image's resolution. 

Several denoising methods exist, like spatial 

filtering [5], sparse representation [6], 

frequency domain filtering [7] and so on. 

Furthermore, several neural network 

architectures have been developed for 

denoising problems including auto-encoder, 

CNN etc.  However, there are several issues 

that require on-going research, such as texture 

restoration, detail preservation and spatial noise 

reduction. This present work utilised a variant 

of Generative Adversarial Network (GAN), 

which utilises an adversarial loss to compel 

generated images to be as similar to real images 

as possible, has shown excellent results in 

image reconstruction tasks. The proposed 

approach has been employed to overcome the 

gaps in denoising MRI images by GAN 

network with incorporate structural loss and 

textural loss. 

2. Related Work 

Traditional MRI denoising approaches are 

usually based on filtering, transformations, or 

statistical methods to increase performance 

while lowering computing time and cost.[8-

10]. Gabinger-Rose [11] et al proposed an 

approach for removing noise using bilateral 

filter and Gaussian scale mixtures from digital 

images. Tomasi and Manduchi[12] proposed a 

non-iterative edge-preserving bilateral filter. It 

utilises a low-pass denoising kernel to adjust to 

the original picture's spatial distribution of 

pixel values when applied to an image. While 

denoising the image, this helps to keep the 

edges intact. Benesty [13] develops a novel 

Wiener filter for noise reduction which is based 

on the variance and pseudo-variance of the 

short time. It improves the signal-to-noise ratio 

(SNR). Mohan et al [14] proposed 

Neutrosophic Wiener Filtering approach for 

removing Rician noise from magnetic 

resonance image.  

Wavelet transform, Fourier transform, 

Curvelet, Threshold function, and Contourlet, 

are used in transform domain filtering. Soft 

thresholding and Hard thresholding are two 

types of thresholding functions proposed by 

Donoho and Johnstone [15, 16]. Discontinuity 

is the drawback of hard thresholding, whereas 

soft thresholding has the disadvantage of 

causing continual divergence [17]. Based on 

image decomposition using Morphological 

Component Analysis, Zeng et al [18] presented 

a strategy to eliminate Gaussian noise in MR 

brain images (MCA).  

To decrease noise in the texture, cartoon, and 

residual sections, wavelet hard threshold, 

wavelet soft threshold (classical transform 

domain filtering), and the Wiener filter 

(classical spatial domain filtering) are used. 

Naveed et al [19] proposed a new signal 

denoising method that employs the Cramer 

Von Misses (CVM) statistic locally on 

multiscale signal decomposition produced from 

VMD. The acquired CVM values (at several 

scales) are tested whether they conform to noise 

distribution using a nonlinear thresholding 

strategy based on the Goodness of Fit (GoF) 

test. The sections of the signal that are 

consistent with noise are removed, while the 

remainder is kept. The Markov random field 

(MRF) based approaches that work in the 

spatial domain and detect the inter-relationship 

between pixels have been developed by 

[20][21]. It preserves the edges and structures 



Texture and Structure Sensitive 3D Multi-scale Deep Neural Network for MR Images Denoising  

1101 

of an image, which aids in noise regulation and 

smoothing of image signals depending on local 

features. 

Wang et al. [22] developed a fusion image 

denoising filter to take away the additive white 

Gaussian noise. The fusion of total variation 

(TV) and curvelet transform method are used to 

create this filter. When compared to algorithms 

that exclusively use the curvelet transform, the 

hybrid filter provides greater visual excellence.  

3D filtering, and Block-matching sometimes 

known as "BM3D", is at the heart of the new 

denoising process was introduced by [23]. The 

goal of this BM3D algorithm is to increase the 

sparse representation of a transform domain 

[24]. Yahya et al[25] introduced a new BM3D 

image denoising technique based on k-means 

clustering and Adaptive filtering. Initially, an 

adaptive filtering function is used to replace the 

BM3D filter's typical hard thresholding.  

Following that, an adaptive threshold is used to 

apply the proposed adaptive filtering function. 

By utilising k-means clustering, the block 

matching is forced to search inside the region 

of the reference patch, reducing the chance of 

bad matching. 

Recently, Deep learning has found to be a very 

efficient technique in the field of medical 

imaging. CNN-based denoising approaches 

target to learn a mapping function by 

optimising a loss function on a training set of 

degraded-clean picture pairings [26,27].To 

keep the advancement in extremely deep 

architecture, learning algorithm, and 

regularisation approach into image denoising, 

Zhang et al [28] created feed-forward denoising 

convolutional neural networks (DnCNNs).To 

increase the speed of the training process and 

increase the denoising performance, residual 

learning and batch normalisation are used. 

Moreover, zheng et al [29] proposed a fast and 

flexible denoising convolutional neural 

network (FFDNet) with an adjustable noise 

level map as the input.  This new FFDNet 

approach operates on down sampled sub 

images and achieves a good balance of 

denoising performance and inference speed. 

Several studies [30-31] have been started to 

work with losses. The effect of denoising is 

captured by perceptual loss [32], which finds 

the difference between the reference image and 

the denoised image. However, because the 

evaluation is done in generic ways, perceptual 

loss-based work does not work well when 

applied to conventional images. Different types 

of Generative Adversarial Networks (GAN) 

were employed to overcome this issue. By 

evaluating structural sensitivity of the pictures, 

Chenyuet et al [33] employed a Multi-scale 

Generative Adversarial Network 

(SMGAN).For picture denoising, ZhiPing et al. 

[34] suggested a novel generative adversarial 

network (GAN). To represent the distance 

between the data distribution of clean and 

denoised pictures, the whole network is trained 

using a new textural loss. Several approaches 

have been described for denoising MR Images 

with structured loss and textured loss. Even 

though the denoising methods available in 

literature are accepted, still there is a need to 

reported performance to a satisfactory level. 

The proposed approach has been employed to 

overcome the gaps in denoising MRI images by 

GAN network with incorporate structural loss 

and textural loss. 

3. Proposed Work 

 In this proposed work, Reformed 

Structural Loss based 3D Multi-scale Deep 

Neural Network has been modified with GAN 

network. The proposed network, which is based 

on SMGAN [33], gives structurally-sensitive 

loss that impacts three types of losses: 
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perceptually-favourable structural loss, pixel-

wise L1 loss, and adversarial loss. 

 The main goal of denoising is to remove 

the desired image x from a noisy image y. 

Figure1 illustrate the complete map of the 

proposed architecture. It is composed of four 

components: a generator, Textural Loss (TL) 

functions, Structurally Sensitive Loss (SSl) 

functions and discriminator. The 3D multi-

scale CNN Generator G is used to convert the 

noisy MRI image into a noise-free MRI image. 

The Textural Loss is used to reduce the noise. 

The difference in structural sensitiveness 

between both images is calculated by SSL. The 

Discriminator D is used to distinguish between 

synthetic and actual findings. They compete 

with each other to improve the results based on 

the outcomes of G and D. The functionality of 

Generator, Textural Loss, Structurally sensitive 

loss, and Discriminator are discussed 

elaborately in the following sections. 

Figure 1.  Complete Map of Proposed Architecture 

 

3.1 3D Multi Scale CNN Generator 

 A reformed model of multi scale 3D 

CNN model is offered as the Generator of this 

GAN framework in order to preserve more 

textural and structural information. The 

Generator G is utilised for synthesizing the new 

data from previously accessible data.  It also 

helps to reduce image noises in the feature 

domain. The generator with layers is used in the 

proposed network. Each layer has 32 filters. 

There are five levels in all. The first level which 

contains one convolutional layer, has 3x3x3 

filters with padding of one. The second level 

consists of three convolutional layers, and it has 

5x5x5 filters with padding two. The third level, 

which includes three convolutional layers, has 

7x7x7 filters with padding 3. The fourth 

convolutional layer consists of 5x5x5 filters 

with padding of 2. The final convolutional layer 

has 3x3x3 filters with padding of 1. The 

Rectified Linear Unit (ReLU) operation is 

applied following each convolutional 

operation. 

3.2 Discriminator 

The Discriminator D network used in this work 

does its best to differentiate the denoised 

images from clean images. The discriminator 

network does its best to discriminate between 

denoised and clean images. The discriminator 

produces a probability that represents the 

resemblance between the denoised and clean 
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image. Discriminator network consists of six 

convolutional layers with the filter sizes of 64, 

64, 128, 128, 256, and 256 with a kernel size 

3x3x3. Two fully connected (FC) layers are 

employed after the convolutional layers that 

produce 1024 and 1 feature maps respectively. 

Following each fully connected with ReLU 

layer. 

3.3 Textural Loss 

3.3.1 Texture Extraction 

Any image I is decomposed into a cartoon 

component, c, where just the image contrasting 

shapes appear, and a textural part t with 

oscillating patterns through the cartoon-texture 

algorithm. The decomposition I = c + t is 

equivalent to the low pass and high pass filter 

decomposition used in signal processing.  

Though, the cartoon portion of an image, 

comprises strong edges and hence all 

frequencies, up to and including the highest, but 

a texture can also contain intermediate and high 

frequencies.  

The key characteristic of a textured region of an 

image is its high total variation. Two low pass 

filters are applied to compute the Gradient 

image from the original image, which are 

performed directly by a discrete convolution. 

The simplest centred difference approach is 

used to calculate the gradient. The key steps 

are: 

1. Initially a low pass filter is applied to 

the original image I. 

Convoluting original image I with the low pass 

filter  L_σ=(Id-(Id-G_σ )n)    yields the low 

pass filtered image〖 L〗_σ*I. Where G_σ 

is a Gaussian kernel with standard deviation σ 

and n denoting that the convolution is repeated 

n times and n set to 5.The image is symmetrised 

out of its domain while convolutions are 

generated in space with mirror boundary 

conditions. This low pass filtered image is 

produced iteratively in the current application. 

2. Calculate the Euclidian norm of the image 

gradients of I and  𝐿𝜎 ∗ 𝐼 

A centred two-point technique is used to 

calculate the vertical and horizontal 

derivatives, as well as the modulus of the 

gradient using a Euclidean norm. 

𝑝𝑥(𝑖, 𝑗) = 𝑝(𝑖 + 1, 𝑗) − 𝑝(𝑖 − 1, 𝑗)     (1) 

𝑝𝑦(𝑖, 𝑗) = 𝑝(𝑖, 𝑗 + 1) − 𝑝(𝑖, 𝑗 − 1)     (2) 

|∇𝑝| = √𝑝𝑥(𝑖, 𝑗)2 + 𝑝𝑦(𝑖, 𝑗)2       (3) 

3. Calculate the local total variation of I 

and Lσ ∗ I, by combine these moduli with the 

Gaussian Gσ . Convolutions are calculated 

using mirror boundary conditions in space. 

4. Determine the value of λ(x) at every point in 

the image. 

5. Determine the value of the cartoon image by 

taking the weighted average of I 

and  Lσ ∗ I. 
6. Compute the texture as the difference p − I. 

3.4 Structurally Sensitive Loss 

A structurally sensitive loss (SSL) function is 

used to enhance the accuracy and robustness of 

the algorithm, which measures the 

dissimilarities in patch-wise. In this study, the 

3D SSL function is employed to differentiate 

between 3D output from the multi-scale 

convolutional network and 3D NFMRI images. 

This data is used to update network parameters. 

Structurally-Sensitive Loss (SSL) SSL function 

[32] is used to find the differences in patch-

wise. 3D SSL function is used in this work the 

difference of 3D output and 3D NFMRI image. 

This information is used for updating network 

parameter.   
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The structural loss is calculated by using C1 

and C2 which are constants. µx , µz , 𝜎x , 𝜎z 

and𝜎xzdenote the mean of image x, mean of 

image z, standard deviation of x, standard 

deviation of  z and cross-covariance of the 

images x and z. x is the image and z is the 

corresponding NFMRI image. The structural 

similarity index (SSIM) can be calculated using 

Equation.1  

SSIM(x,y)=
2µxµz+𝐶1

µx
2+µz

2+𝐶1
∗

2𝜎xz+𝐶2

𝜎x
2+𝜎z

2+𝐶2
 = 𝑙(x, z) ∗

cs(x, z).     (4) 

From the SSIM measure, we can calculate 

multi-scale structural similarity index (MS-

SSIM) as MS − SSIM(x, z) =
 ∏ 𝑆𝑆𝐼𝑀(𝑀

𝑖=1 x𝑖 , z𝑖). From these data, SSL can 

be calculated as     𝑠𝑠𝐿 = 1 − 𝑀𝑆 − 𝑆𝑆𝐼𝑀(x, z) 

Let x and y be the noise free MRI (NFMRI)  

image and  noisy MRI image (NMRI) 

respectively with W, H, and D where W is 

width, H is height, and D is number of slices. 

The relationship between these images is 

represented by 5: 

𝑦 = 𝑇(x) + ε   (5) 

Where T is a generic noising process which 

degrades the image. H, W and D are height, 

width and depth respectively. The aim of 

denoising is to extract the desired image x from 

the noisy image y. This can be done by solving 

inverse problem as T^t=T^(-1) which will help 

to retrieve the denoised image. The output will 

be T^t y≃ẍ≃x. Figure 1 gives the proposed 

architecture. It has four parts: a generator, 

Structurally-Sensitive loss (SSL) function, 

Texture Sensitive Loss and discriminator. The 

noisy MRI image is converted into noise free 

MRI image using G. The dissimilarity in 

structural sensitiveness between both is 

calculated by SSL. D is used to differentiate the 

synthetic results from real one. Based on the 

outcome of G and D, they compete each other 

in improving the results. The following part of 

this section describes about the structure and 

functionality of G, SSL and D. 

3.5 Generator Loss 

Generator loss is a balancing technique for 

sustaining natural internal statistics [36]. This 

loss trains a feed-forward CNN to maintain 

natural interior information. Generator loss 

function represents the difference value 

attained from the generated denoised image and 

actual  image as represented in Eq. (6) and Eq. 

(7). 

𝑔𝑒𝑛𝐿 =  ‖𝑢 − �̂�‖1          (6) 

𝑔𝑒𝑛𝐿 =  𝐸𝑢~pu  ‖u − 𝐺(𝑢)‖1  (7) 

Here, u represents actual image and u ̂ 

represents the generated image  

3.6 Discriminator Loss 

 Discriminator loss maximizes the 

average of the log probability for actual image 

and the log of the inverted probabilities of fake 

image. Discriminator loss function represents 

the difference value between the generated 

image obtained from the generator and actual 

image by applying discriminator network. The 

output of the generator is passed to estimate 

actual or fraud using functionf as shown in the 

eq. (8). 

𝑑𝑖𝑠𝐿 =  ‖𝑓(𝑢) − 𝑓(�̂�) ‖2         (8) 

An objective function of this model is 

calculated by combining Generator loss 

(𝑔𝑒𝑛𝐿), Discriminator Loss(𝑑𝑖𝑠𝐿) and Texture 

loss ( 𝑡𝑒𝑥𝑡𝐿 ),Structurally sensitive 

loss( 𝑠𝑠𝐿) .Overall, the loss estimated using 

GAN network is obtained using Eq. (9). 

𝐹𝐼𝑁𝐴𝐿𝐿𝑂𝑆𝑆 =  𝑔𝑒𝑛𝐿𝑔𝑒𝑛𝑊 +

 𝑑𝑖𝑠𝐿𝑑𝑖𝑠𝑊+ 𝑡𝑒𝑥𝑡𝐿𝑡𝑒𝑥𝑡𝑊 + 𝑠𝑠𝐿𝑠𝑠𝑊+     (9) 



Texture and Structure Sensitive 3D Multi-scale Deep Neural Network for MR Images Denoising  

1105 

Where  genW, disW , textW , ssW are the 

weighting values for each loss. Where genW =
0.3, disW  = 0.3, textW = 0.2 and  ssL = 0.2. 

4. Experimental Analysis 

4.1 Dataset 

 The effectiveness of the proposed work 

is evaluated by BraTS’17 dataset. Glioblastoma 

(GBM/HGG) and lower grade glioma (LGG) 

multimodal MRI scans with pathologically 

confirmed diagnosis are used as training, 

validation, and testing data. From the BraTS’17 

dataset, T1cMRI brain DICOM image of 20 

individuals are employed for this study. There 

are 154 slices in each patient group. In this 

study, 70% of the images are chosen at random 

for the training set, while the remaining 30% 

are utilised for the testing set. 

4.2 Performance Metrics 

 Three image quality assessment 

measures such as Peak signal-to-noise ratio 

(PSNR), Structural Similarity Index Measure 

(SSIM) and Normalized Cross-correlation 

(NCC) are utilised to evaluate the performance 

of the proposed method. 

 Peak signal-to-noise ratio (PSNR) 

compares two images. This ratio compares the 

quality of the denoised image to that of the 

original image. 

PSNR can be determined using Equation 10. 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)  (10) 

where MAX indicates the Maximum Intensity 

Value of the image, while the Mean Square 

Error is MSE.  

The Structural Similarity Index Measure 

(SSIM) is a technique for determining the 

perceived difference between two similar 

pictures. SSIM index between the two 

images with same size 𝑁 × 𝑁 can be calculated 

using Equation 11. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥 𝜇𝑦 +𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

1+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 

   (11) 

Normalized Cross-correlation (NCC) metrics is 

often used to assess the degree of similarity (or 

dissimilarity) between two similar images. This 

can be calculated using Equation12. 

NCC(Image1, Image2) =
1

Nσ1σ2
∑ (Image1(x, y) −x,y

Image1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅x(Image2(x, y) − Image2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )     (12) 

Where N is the total number of pixels in the 

image, σ1 and σ2 are standard deviation values. 

Image 1 and Image 2 are NFMRI and NMRI. 

4.3 Result and Analysis 

The following  

Table 4.1 shows the denoised image by the proposed TS-3D-MDNN. 

Input Noise Image De-noised Image PSNR 
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Table.4.2 Performance of TS-3D-MDNN, SMGAN-3D, WGAN, CNN_L1 and RSLM-DNN-

3D based on the PSNR value for the slice of T1 weighted MRI DICOM images. 

PatientID 1 2 3 4 5 6 Mean 

CNN_L1 37.56 38.27 37.94 36.72 37.09 37.61 37.53167 

WGAN 40.78 37.45 39.02 38.69 40.01 40.59 39.42333 

SMGAN-3D 42.82 39.03 41.8 40.47 41.55 41.63 41.21667 

RSLM-DNN-

3D 44.51 44.96 44.55 43.76 43.73 43.96 44.245 

TS-3D-MDNN 46.65 46.98 46.8 44.86 45.83 44.26 45.89667 

Figure4.1: Comparison of PSNR value for the slice of T1 weighted MRI DICOM images of 

proposed work with previous works 
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From these it is clear that the proposed work 

outperforms other previous works. The method 

CNN_L1 has PSNR values 37.53%,WGAN 

Has 39.42%,SMGAN-3D has 41.21%,RSLM-

DNN-3D has 44.24% and TS-3D-MDNN has 

45.89%. Here, the TS-3D-MDNN method 

attained PSNR score better than the remaining 

methods. PSNR value of the TS-3D-MDNN 

method is 1.65% higher than theRSLM-DNN-

3D method. RSLM-DNN-3D is 3.03% higher 

than the method SMGAN-3D. SMGAN-3D is 

1.79%higher than the method WGAN. WGAN 

is 1.89% higher than the method CNN_L1.   

Table4.3 shows that the performance of TS-

3D-MDNN,SMGAN-3D,WGAN,CNN_L1 

and RSLM-DNN-3D based on the SSIM value 

for the slice of T1 weighted MRI DICOM 

images and Figure4.2 gives the diagrammatic 

representation of the same. From these it is 

clear that the proposed work outperforms than 

the previous works. 

Table.4.3 Performance analysis of TS-3D-MDNN, SMGAN-3D, WGAN, CNN_L1 and 

RSLM-DNN-3D based on the SSIM value for the slice of T1 weighted MRI DICOM images. 

PatientID 1 2 3 4 5 6 Mean 

CNN_L1 0.967 0.9601 0.95 0.944 0.94 0.954 0.952517 

WGAN 0.9694 0.967 0.9622 0.9532 0.9452 0.9595 0.959417 

SMGAN-3D 0.9802 0.97865 0.97662 0.964 0.962 0.9765 0.972995 

RSLM-DNN-

3D 

0.99 0.9902 0.9899 0.983 0.984 0.98934 0.98774 

TS-3D-

MDNN 

0.994 0.993 0.992 0.986 0.989 0.995 0.9915 

Figure 4.2: Comparison of SSIM values for the slice of T1 weighted MRI DICOM images of 

various works 

The method CNN_L1 has PSNR values 

0.9525%, WGAN has 0.9594%, SMGAN-3D 

has 0.9729%, RSLM-DNN-3D has 0.9877% 

and TS-3D-MDNN has 0.9915%. Here, the                     

TS-3D-MDNN method attained SSIM score 

better than the remaining methods. SSIM value 

of the TS-3D-MDNN method is  0.0038% 

higher than theRSLM-DNN-3D  method. 

RSLM-DNN-3D is 0.0148% higher than the 

method SMGAN-3D. SMGAN-3D is 0.0135% 

higher than the method WGAN. WGAN is 

0.0069% higher than the method CNN_L1. The 

following  Table.4.3 shows that the 

performance of SMGAN-3D, WGAN, 

CNN_L1 and RSLM-DNN-3D based on the 

NCC value for the slice of T1 weighted MRI 

0.9

0.95

1

1 2 3 4 5 6
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Patient ID
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WGAN

SMGAN-3D

RSLM-DNN-3D
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DICOM images and Figure 4.3 gives the 

diagrammatic representation of the same which 

show the better performance of the proposed 

work when compared to the other previous 

works 

Table.4.4 Performance of TS-3D-MDNN, SMGAN-3D, WGAN, CNN_L1 and RSLM-DNN-

3D based on the NCC value for the slice of T1 weighted MRI DICOM images. 

PatientID 1 2 3 4 5 6 Mean 

CNN_L1 0.961 0.9574 0.9491 0.9545 0.939 0.9536 0.952433 

WGAN 0.963 0.97633 0.9652 0.9633 0.9433 0.9599 0.961838 

SMGAN-3D 0.974 0.98934 0.9734 0.9688 0.9688 0.9733 0.974607 

RSLM-DNN-

3D 

0.988 0.993 0.989 0.9878 0.978 0.982 0.9863 

TS-3D-

MDNN 

0.991 0.995 0.993 0.988 0.982 0.989 0.989667 

Fig. 4.3. Performance comparison of NCC of 

SMGAN-3D, WGAN, CNN_L1 and RSLM-

DNN-3D. 

 

The method CNN_L1 has PSNR values 

0.9524%, WGAN has 0.9618%, SMGAN-3D 

has 0.9746%, RSLM-DNN-3D has 0.9863% 

and TS-3D-MDNN has 0.9896%. Here, the TS-

3D-MDNN method attained PSNR score better 

than the remaining methods. PSNR value of the 

TS-3D-MDNN method is 0.0033% higher than 

the RSLM-DNN-3D method. RSLM-DNN-3D 

is 0.0117% higher than the method SMGAN-

3D. SMGAN-3D is 0.0128% higher than the 

method WGAN.WGAN is 0.0094% higher 

than the method CNN_L1. The structural and 

textural sensitiveness of the images gives better 

information to work on with various losses. 

Hence the proposed approach achieves 

significant improvement in performance 

metrics.  

5. Conclusion 

This paper proposes a Generative Adversarial 

Network (GAN) model for denoising the MRI 

images. TS-3D-MDNN Multi Scale Deep 

Neural Network model is designed with two 

effective loss functions to enhance the 

performance of denoising in medical image 

sequence especially MRI images.  In order to 

preserve the sensitive information a revised 3D 

Multi Scale CNN is designed in this work.  This 

denoising model is aware of texture and 

structure data and preserves those data at that 

time of denoising process. The structural loss is 

estimated with the help of multi scale structural 

similarity index where as textural loss is 

calculated with the help of cartoon 
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decomposition approach. The proposed GAN 

with Texture and Structure Sensitive 3D Multi-

scale Deep Neural Network TS-3D-MDNN 

achieves up to 46% of PSNR. 
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