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Abstract: Wireless experts worldwide have become interested in using Autoencoders (AEs) for modelling 

communication systems as an end-to-end reconstruction task. This approach optimizes both the transmitter and 

receiver components simultaneously, offering flexibility and convenience for representing complex channel 

models. Traditional communication systems rely on conventional models and assumptions that limit their 

utilization of limited frequency resources and hinder their ability to adapt to new wireless applications. 

However, with the rise of Artificial Intelligence, new wireless systems are capable of learning from wireless 

spectrum data and optimizing their performance. In this paper, the use of deep learning with autoencoders is 

explored to create an end-to-end communication system that replaces traditional transmitter and receiver 

activities. The autoencoder architecture effectively addresses channel impairments and enhances overall 

performance. Simulation results indicate that autoencoders surpass conventional communication systems in 

terms of Block Error Rate performance, even when facing impairments in the autoencoder's channel layer and 

using different neural network optimization algorithms. 

Index Terms—Deep learning, autoencoders, wireless systems, physical layer, channel estimation. 

 

1. Introduction 

The transformational impact of 

wireless communication and related 

services on modern digital society cannot 

be overstated. However, emerging 

technologies such as smart cities, 

autonomous vehicles, and remote medical 

diagnosis pose challenges to traditional 

communication methods in terms of 

reliability, flexibility, energy efficiency, 

latency, and connection density. To meet 

these challenges, novel architectures, 

approaches, and algorithms are necessary 

at all layers of the communication system. 

In the past decade, machine learning, 

particularly deep learning, has been widely 

applied in various fields, including 

wireless communication [1, 2]. 

Researchers have investigated the 

applications of ML algorithms in channel 

coding, decoding, MIMO detection, and 

communication systems [3-9]. The 

communication field has a wealth of expert 

knowledge in information theory, 

probability, statistics, and mathematical 

modelling, with many approaches 

demonstrated for the physical layer, 

channel modelling [10], and optimal 

signalling [11]. The main purpose of a 

communication system is to send a 

message, like a stream of bits, accurately 

from the source to the destination through 

a channel, using a transmitter and receiver. 

For optimal performance, the transmitter 
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and receiver are divided into multiple 

independent blocks, each responsible for a 

specific task like channel coding, 

modulation, demodulation, or channel 

estimation [11]. While this block-based 

approach allows for individual 

optimization and control of each block, it 

may not always lead to optimal 

performance. According to [12], the block-

based approach is sub-optimal in certain 

cases. However, a communication system 

based on deep learning optimizes the 

transmitter and receiver, without the need 

for separate blocks, following the 

traditional design of the communication 

system [12][13]. 

In this paper a novel approach to 

communication systems that utilizes deep 

learning has been introduced. Instead of 

employing separate encoding and decoding 

modules, this approach utilizes an 

autoencoder, which is a deep neural 

network comprising of an encoder and a 

decoder. The encoder learns a latent 

representation of the data, which is 

subsequently used by the decoder to 

reconstruct the input data. The authors 

suggest using an autoencoder to jointly 

optimize the communication between the 

transmitter and receiver, rather than 

optimizing their individual modules. The 

proposed design uses a convolutional 

encoder-decoder that considers channel 

impairments and optimizes the transmitter 

and receiver operations jointly for a single-

antenna system. We evaluated how well 

our end-to-end AE performs in terms of 

block error rate (BLER) on an additive 

white Gaussian noise (AWGN) channel. 

The simulation results indicate that the 

AE-based model proposed has a Block 

Error Rate (BLER) that is similar to the 

conventional models that use modulation 

methods like BPSK and 16PSK. 

Furthermore, the study demonstrates that 

the proposed model has a better BLER 

compared to previous studies (references 

12, 14, and 15). These findings 

demonstrate the possibility of using AE-

based end-to-end communication systems 

as a substitute for standard block-based 

wireless communication systems. 

The paper is structured as follows: 

Section 2 examines relevant literature. 

Section 3 offers a concise introduction to 

the AE-based communication system and 

examines regularization. Section 4 outlines 

the proposed model, while Section 5 

details the simulations and performance 

evaluation of the implemented AE system. 

Lastly, Section 6 concludes the paper. 

 

2. Related works 

T. O'Shea et al. introduced the idea of 

employing autoencoders (AEs) in 

communication systems, as stated in their 

works [12] and [13]. In [12], the authors 

view the communication system as an AE 

and propose an approach to design a 

communication system as an end-to-end 

reconstruction task, which involves 

optimizing both the transmitter and 

receiver components simultaneously in a 

single process. They utilize a feedforward 

neural network to replace the functions of 

the transmitter and receiver. In [13], the 

primary approach for developing end-to-

end radio communication systems is 

through the utilization of the AE channel. 

The authors tackle the task of learning as 

an unsupervised machine learning problem 

and concentrate on enhancing the 

reconstruction loss by introducing 

synthetic impairment layers. They include 

various regularizing layers that simulate 

the typical impairments encountered in 

wireless channels. Additionally, [17] 

examines an optical wireless 
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communication system that serves a single 

user, utilizing AEs. In conditions where 

the channel response is unknown or not 

easily modelled, the authors in [19] 

proposed an extended channel AE model 

for end-to-end learning. An adversarial 

approach was used to approximate the 

channel response and encode information, 

allowing both tasks to be learned 

simultaneously over a wide range of 

channel conditions. The authors 

demonstrated the effectiveness of this 

model in an over-the-air system through 

training and validation. Another study in 

[20] investigated the impact of optimizers 

on AE convergence speed for high-

mobility and short-coherence channel 

applications. End-to-end learning has also 

been applied in molecular and optical 

communications with promising 

performance, indicating the potential of 

deep learning in complex communication 

scenarios [21, 22]. 

Furthermore, we assess various channel 

uses and modulation techniques in our 

design and the constellations produced by 

the autoencoder. The findings highlight the 

effectiveness of optimizing with deep 

learning techniques in creating innovative 

methods for wireless communication 

design. 

 

3. Channel autoencoder in wireless 

communications 

3.1. Conventional wireless 

Communication system 

A wireless communication system 

typically includes three components: a 

transmitter, channel, and receiver. The 

transmitter sends a message s, selected 

from a set of M possible messages s ∈ M = 

{1, ..., M}, to the receiver through n uses 

of the channel. The message s is subjected 

to digital modulation f: M ↦ Rn, resulting 

in a vector x = f(s) ∈ Rn that is transmitted. 

This modulation maps the input symbols 

from a discrete alphabet to complex 

numbers that indicate points on the 

constellation diagram. The transmitter 

imposes power constraints on x, such as an 

energy constraint ‖𝑥‖2
2  ≤  n or an average 

power constraint E[|xi|
2] ≤ 1 for all i. Each 

message s can be represented using k = 

log2(M) bits, so the system operates at a 

communication rate of R = k/n, measured 

in bits/channel use. The channel introduces 

distortions to the transmitted symbols. 

Upon reception, the receiver produces an 

estimate ŝ of the originally transmitted 

message s. The Block Error Rate (BLER) 

Pe can be defined as the probability that ŝ 

does not match s as given below (1). 

𝑃𝑒 =
1

𝑀
∑ 𝑃𝑟(𝑠̂ ≠ 𝑠/𝑠)𝑠   (1) 

As shown in Fig. 1, the conventional 

communication system consists of 

multiple independent blocks. The source 

encoder compresses the input data and 

eliminates redundancy, while the channel 

encoder adds controlled redundancy to the 

output of the source encoder. Channel 

coding, also known as forward error 

correction, is typically used in wireless 

communication systems to ensure that the 

received data is the same as the transmitted 

data, as wireless links are prone to fading 

and interference, which can lead to errors. 

To overcome this, the transmitter adds 

extra information to the data before 

sending it, a process called coding. This 

helps to mitigate the adverse effects of the 

communication medium. An uncoded 

communication system, on the other hand, 

does not include additional information to 

mask the data being sent. The modulator 

block changes the characteristics of the 

signal based on the selected data rate and 

the signal level received at the receiver, 



K.Srinivasa Rao.et.al., Performance Analysis of Autoencoders in Wireless Communication Systems 

with Deep Learning Techniques 

1570 
 

provided that the modulation method used 

at the transmitter is adaptable. The channel 

distorts and weakens the transmitted signal 

before additional noise is added due to 

hardware impairments when the signal 

reaches the receiver. Each communication 

block at the transmitter prepares the signal 

to withstand the effects of the 

communication medium and receiver noise 

while maximizing system efficiency. The 

receiver performs similar operations in 

reverse order to reconstruct the transmitted 

information. 

 
Fig. 1. A conventional wireless 

communication system model illustrating 

channel coding and modulation blocks. 

 

3.2. An End-to-end Optimization Process 

with Autoencoder 

An autoencoder (AE) is a type of 

Feed-forward Neural Network (FNN) 

where the input and output are equivalent. 

The original AE is an unsupervised deep 

learning algorithm that compresses the 

inputs to learn a reduced representation, 

which can be used to reconstruct the 

original inputs at the output layer [23]. The 

AE has a hidden layer that represents the 

input code. The network typically consists 

of two parts: an encoder function y = f(s) 

that converts the input s into a compressed 

form y, and a decoder function r = g(y) 

that produces a reconstruction r from y. 

The simplest form of an AE consists of 

one hidden layer and is defined by two 

weight matrices W and two bias vectors b. 

 

𝑦 = 𝑓(𝑥) = 𝑠1(𝑊(1)𝑥 + 𝑏(1)), 

     (2) 

𝑟 = 𝑔(𝑦) = 𝑠2(𝑊(2)𝑦 + 𝑏(2)), 

     (3) 

where 𝑠1  and  𝑠2  represents the activation 

functions, which are generally nonlinear. 

Thus, it is possible to view the 

communication system as an Autoencoder 

(AE) that aims to reconstruct the 

transmitted messages at the receiver with 

minimal error. The encoder and decoder 

can be seen as performing the functions of 

the transmitter and receiver, respectively. 

A typical AE structure that can be utilized 

for end-to-end learning of a 

communication system is illustrated in Fig. 

2, as proposed by [12]. In this system, the 

transmitter is represented as a Feedforward 

Neural Network (FNN) with dense layers 

and a normalization layer that is set to 

meet the physical constraints of the 

transmit vector x. 

 

 
Fig. 2. Structure of a wireless 

communication system represented as an 

autoencoder. 
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As previously discussed, a 

conventional communication system is 

comprised of different blocks for channel 

coding/decoding and 

modulation/demodulation functions. In 

contrast, the AE-based system does not 

have explicit blocks but aims to optimize 

the system in an end-to-end process, which 

aligns with the system parameters such as 

the input message size, the number of 

channels uses per message, and transmit 

signal power constraints. These parameters 

are utilized to implement the autoencoder 

models, which are similar to the standard 

communication channel coded and 

uncoded communication systems, and their 

performance is compared over an AWGN 

channel. The input, encoder layer, channel, 

and decoder layer are represented as s, 

enc(s), cha(s), and dec(s), respectively. 

The AE is trained using Adam (Adaptive 

moment estimation) optimizer to produce 

an output 𝑑𝑒(𝑐ℎ𝑎(𝑒𝑛𝑐(𝑠))) that minimizes 

an arbitrary loss function L (𝑠, 

𝑑𝑒𝑐(𝑐ℎ𝑎(𝑒𝑛𝑐(𝑠)))) [24]. 

The constellation diagrams produced by a 

single-antenna autoencoder system are not 

predetermined, but are instead learned 

based on the desired performance metric to 

be minimized at the receiver, such as 

symbol error rate, coherence time, 

distance, and propagation loss. The 

transmitter's hardware imposes specific 

limitations as outlined in reference [25]. 

The transmitter enforces the constraints 

mentioned below. 

(a) An energy constraint   ‖𝑥‖2
2  ≤ n, 

(b) An amplitude constraint |xi| ≤ 1 ∀i, 

(c) An average power constraint E [|xi|
2] ≤ 

1 ∀i on x. 

The data rate of the system is calculated 

using the formula R = k/n [bit/channel 

use]. The parameter k represents the 

number of input bits, and is equal to 

log2(M), where M is the number of 

possible messages that can be sent. The 

parameter n includes both the input bits 

and additional redundant bits used to 

reduce channel effects. The (n, k) notation 

indicates that the system sends one 

message from M possible messages (k bits) 

over n channel uses. Fig. 2 shows a block 

diagram of the channel autoencoder, which 

learns from the distribution of the 

communication channel data to 

compensate for impairments. The 

communication channel is defined by the 

density of the conditional probability 

p(y|x), where y ∈ Rn represents the signal 

at the receiver. The message is detected as 

y at the receiver, and the operation r : Rn 

→M is applied to estimate the value of the 

transmitted message s. The channel 

autoencoder is optimized to map x to y, 

which allows s to be recovered by 

minimizing the probability of error. The 

autoencoder components are summarized 

as follows: - 

a) Input: The symbol s is transformed 

into a one-hot vector, meaning that it 

can only have valid combinations of 

values where one bit is set to '1' and 

all the others are set to '0'. This 

particular encoding enables a state 

machine to operate at a faster clock 

rate compared to other encodings. 

Moreover, determining the state of a 

one-hot vector requires accessing only 

one flip-flop, which has a low and 

consistent cost. 

b) Transmitter: The transmitter consists 

of a feedforward neural network 

which has several dense layers. The 

output of the last dense layer is 

modified to represent two complex 

numbers for every modulated input 

symbol. These numbers represent the 
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real (in-phase, I) and imaginary 

(quadrature, Q) parts. The 

normalization layer is added to 

guarantee that the physical restrictions 

on x are satisfied. 

c) Channel: The channel layer is fixed 

and cannot be trained. It is modelled 

as a layer of Additive White Gaussian 

Noise (AWGN) that is added to the 

signal. The variance of this noise is 

determined by a parameter 𝛽 =

(
2𝑅𝐸𝑏

𝑁0
)−1,which is calculated using the 

ratio 
𝐸𝑏

𝑁0
 of energy per bit (Eb) to noise 

power spectral density (N0). The value 

of β changes for each training 

example, and the noise is only applied 

during the forward pass to simulate 

signal distortion, but it is not 

considered during the backward pass. 

d) Receiver: similar to transmitter, it is 

constructed using a Fully connected 

Neural Network (FNN). Its final layer 

employs the softmax activation 

function to generate a probability 

vector p ∈ (0, 1)M representing all 

potential messages. The value in p 

with the greatest probability is 

designated as 𝑠̂. 

e) Training: The Adaptive Moment 

(Adam) optimizer is used to train the 

autoencoder and modify the weights 

of the FNN, and the performance is 

evaluated. The training batch 

comprises all potential messages s ∈ 

M.  

 

4. Simulation Results and 

Performance Evaluation 

The autoencoder operates by 

utilizing the data created during 

transmission and the identical data at the 

receiving end. As the data used is not 

externally labelled, the autoencoder is 

classified as an unsupervised learning 

system. This approach enables the 

autoencoder to acquire knowledge without 

any prior information. The input message 

is represented as a vector with only one 

element being "1" and the rest being "0." 

This is known as a one-hot vector. The 

channel through which the message passes 

is an Additive White Gaussian Noise 

(AWGN) channel. The AWGN channel 

adds noise to the message in order to 

achieve a specific energy per bit to noise 

power density ratio. In [26], researchers 

presented a (7,4) autoencoder network that 

utilizes energy normalization and has a 

training of 3 dB. To achieve optimal 

results with minimal complexity, both the 

encoder (transmitter) and the decoder 

(receiver) consist of two fully connected 

layers. The input layer (featureInputLayer) 

accepts a one-hot vector of length M. The 

first fully connected layer of the encoder 

has M inputs and M outputs, followed by a 

ReLU layer. The second fully connected 

layer has M inputs and n outputs, followed 

by a normalization layer. After the encoder 

layers, the AWGN channel layer is 

applied. The channel's output is then fed 

into the decoder layers, starting with a 

fully connected layer that has n inputs and 

M outputs, followed by a ReLU layer. The 

second fully connected layer has M inputs 

and M outputs, followed by a softmax 

layer (softmaxLayer), which produces the 

probability of each M symbol. Finally, the 

classification layer determines the most 

likely transmitted symbol from 0 to M-1. 

A (2,2) autoencoder is trained 

using below specific parameters, including 

energy normalization. 

• Adam (adaptive moment 

estimation) optimizer,  

• Initial learning rate of 0.01,  
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• Maximum epochs of 15, 

• Minibatch size of 20*M, 

• Piecewise learning schedule 

with drop period of 10 and drop 

factor of 0.1. 

The Adaptive Moment Estimation (Adam) 

optimizer algorithm can be used to train 

the parameters of the autoencoder to 

minimize the reconstruction error of the 

received signal. The Adam optimizer 

algorithm uses a combination of 

momentum and adaptive learning rate to 

converge to the minimum of the cost 

function efficiently. The cost function in 

the case of an autoencoder is the 

reconstruction error between the input and 

output signal.  

During training, the Adam optimizer 

algorithm updates the parameters of the 

autoencoder using the following steps: 

 

1. Initialize the first and second moment 

estimates: 

initial first moment vector 𝑚0 = 0 and 

initial second moment vector 𝑣0 = 0 

2. Forward pass through the autoencoder 

to obtain the output signal. 

3. Compute the reconstruction error 

between the input and output signal. 

4. Compute the gradient of the cost 

function with respect to the parameters 

𝑔𝑡 = ∇𝜃 𝐽(𝜃𝑡) 

5. Update the first moment estimate 

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 

where 𝛽1 is the exponential decay rate 

for the first moment estimate, typically 

set to 0.9. 

6. Update the second moment estimate: 

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 

where 𝛽2 is the exponential decay rate 

for the second moment estimate, 

typically set to 0.999. 

7. Compute the bias-corrected first 

moment estimate 𝑚̂𝑡 and second 

moment estimate 𝑣𝑡 using the 

following equations: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

where t is the current iteration step, 𝛽1 is 

the exponential decay rate for the first 

moment estimate, and 𝛽2 is the 

exponential decay rate for the second 

moment estimate. 

In addition to the standard 

hyperparameters used in the Adam 

optimizer, such as the learning rate and 

exponential decay rates for the first and 

second moment estimates, there are 

additional hyperparameters that are 

specific to the application of autoencoders 

for wireless communication. These include 

the Signal-to-Noise Ratio (SNR) and the 

batch size. 

In Fig. 3, the training process at a 

noise level of 3dB has been illustrated, and 

it can be observed that the validation 

accuracy quickly surpasses 90%, while the 

validation loss consistently decreases. This 

pattern indicates that the initial training 

value was set low enough to produce some 

errors but not too low to prevent 

convergence. 

 
Fig. 3. The training process plot. 
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Fig.4 displays the layer diagrams of the 

complete autoencoder, including its 

encoder and decoder networks, represented 

by the objects generated from the trained 

network. The encoder network is also 

known as the transmitter, while the 

decoder network is known as the receiver. 

 
Fig. 4. The objects generated by the 

trained network. 

The constellation learned by the 

autoencoder was plotted to send symbols 

through the AWGN channel together with 

the received constellation. For a (2,2) 

configuration, the autoencoder learned a 

QPSK (M = 22 = 4) constellation with a 

phase rotation. The received constellation 

was basically the activation values at the 

output of the channel layer obtained using 

the activation function and treated as 

interleaved complex numbers. 

 
Fig. 5. The constellation diagrams 

produced by Autoencoder. 

 

The Block Error Rate (BLER) 

performance of the (2,2) autoencoder was 

simulated by generating the random 

integers in the [0-1] range to represent 

random information bits. These 

information bits were then encoded into 

complex symbols. The real valued vector 

was mapped into a complex valued vector 

such that the odd and even elements were 

mapped into the in-phase and the 

quadrature component of a complex 

symbol, respectively. The array was 

treated as an interleaved complex array. 

The encoded complex symbols were 

passed through an AWGN channel to 

simulate channel impairment. The channel 

impaired complex symbols were then 

decoded and the simulation was run for 

each point for at least 10 block errors to 

compare the results with that of an 

uncoded QPSK system with block length 

2.  

 
Fig. 6. The BLER plot for QPSK (2,2) and 

AE (2,2). 

It can be inferred from Fig.6, indicating 

well-formed constellation together with the 

BLER results, that training for 15 epochs 

was enough to get a satisfactory 
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convergence. Learned constellations of 

several autoencoders normalized to unit 

energy and unit average power have also 

been generated and the same are shown in 

Fig.7. It is to be noted that Train (2,4) 

autoencoder was normalized to unit 

energy. 

 
Fig.7. Comparisons of Constellation 

diagrams of several autoencoders. 

The (2,2) autoencoder has been 

trained to reach a convergence point on a 

QPSK constellation, which has a phase 

shift that is optimal for the encountered 

channel conditions. On the other hand, the 

(2,4) autoencoder with energy 

normalization converges on a 16PSK 

constellation with a phase shift. It is 

important to note that energy 

normalization is used to ensure that every 

symbol has the same energy and is placed 

on the unit circle. Under this constraint, 

the best constellation is PSK constellation 

with equal angular distance between 

symbols. Finally, the (2,4) autoencoder 

with average power normalization 

converges to a three-tier constellation 

consisting of 1-6-9 symbols. The BLER 

performance of a (7,4) autoencoder was 

simulated with that of (7,4) Hamming code 

with QPSK modulation for both hard 

decision and maximum likelihood (ML) 

decoding. An uncoded (4,4) QPSK was 

used as a baseline. The (4,4) uncoded 

QPSK was essentially a PSK modulated 

system that sent blocks of 4 bits and 

measured BLER. 

 
Fig. 8. (7, 4) Autoencoder BLER 

performance comparison. 

Subsequently, the BLER performance of 

autoencoders with R=1 was simulated and 

compared with that of uncoded QPSK 

systems. The uncoded (2,2) and (8,8) 

QPSK were used as baselines. The BLER 

performance of these systems was 

compared with that of (2,2), (4,4) and (8,8) 

autoencoders. 

 
Fig. 9. Autoencoder of R = 1 BLER 

performance comparison. 
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The Bit error rate of QPSK was found to 

be the same for both (8,8) and (2,2) 

cases, however, the BLER was observed 

to be dependent on the block length, n, 

and became worse as n increased in 

accordance with relationship 

. As expected, the 

BLER performance of (8,8) QPSK was 

observed to be worse than the (2,2) 

QPSK system. It was also observed that 

the BLER performance of (2,2) 

autoencoder matched the BLER 

performance of (2,2) QPSK. On the other 

hand, (4,4) and (8,8) autoencoders were 

found to optimize the channel coder and 

the constellation jointly in order to obtain 

a coding gain in comparison to the 

corresponding uncoded QPSK systems. 

 
Fig.10. Autoencoder with Hamming code 

performance comparison. 

 

The (7,4) autoencoder was trained with 

energy normalization under different 

values and the BLER performance has 

been compared. The BLER performance 

has also been plotted in Fig. 10, together 

with the theoretical upper bound for hard 

decision decoded Hamming (7,4) code and 

the simulated BLER of Maximum 

Likelihood Decoded (MLD) pertaining to 

Hamming (7,4) code. As the Eb/N0 

decreased from 10 dB to 1 dB, the BLER 

performance of the (7,4) autoencoder was 

observed to get closer to the Hamming 

(7,4) code with MLD, and at that point, it 

almost matched the MLD Hamming (7,4) 

code. This is a quite significant result as it 

establishes the possibility of learning the 

joint coding and modulation schemes by 

autoencoders in an unsupervised manner.  

 

5. Conclusion and Future scope 

In this paper, the use of deep learning 

architectures in optimizing communication 

systems has been brought out. The authors 

propose the implementation of an 

Autoencoder as a transmitter and receiver 

for the physical layer of communication. 

Instead of optimizing individual blocks of 

a conventional communication system, an 

end-to-end optimization approach has been 

suggested to minimize the reconstruction 

loss. The efficacy of this approach has also 

been demonstrated in capturing channel 

impairments in single antenna systems and 

matching modulation techniques using off-

the-shelf DNNs. It has been concluded that 

autoencoders are capable of designing the 

end-to-end communication system in an 

unsupervised manner by learning the 

‘coding and modulation’ as one entity. 

With regards to the future work, multiple 

learning strategies can be explored on the 

autoencoder side, including different 

weight initialization, hyperparameter 

selection, and various emerging 

autoencoder architectures. Further, 

additional autoencoders can be utilized to 

extend this approach to multi-user and 

multiple-antenna systems. This work can 

also be applied to specific domains such as 

satellite communications, backhaul radios, 

dense urban wireless, 5G MIMO, amongst 

others.  
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