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Abstract: A crucial task in many different fields is classification. The use of conventional classification 

algorithms has been limited by issues like class imbalance, overlaps, and noise. When mismatched class 

distributions are found among the instances of class of classification datasets, an imbalance problem occurs. When 

datasets are unbalanced and contain noisy and borderline data, classification becomes significantly more difficult. 

Noisy data are comparable to minority samples, and any method for resolving the class imbalance may focus 

excessively on the noise, impairing performance. The study suggests using the SPIDER2-IPF Models to handle 

noisy and borderline situations. An experiment employing the Saturation, PANDA, Classification, ANR, and 

SPIDER2-IPF filter methods shows the impact of borderline and noisy data from the rare class on the performance 

of the classifier. To handle noisy and borderline samples, the SPIDER2-IPF model is built using SPIDER2 

resampling techniques. In imbalanced datasets, an Iterative-Partitioning Filter (IPF) can reduce noise from both 

majority and minority classes and address issues brought on by noisy and borderline samples. The results of the 

SPIDER2-IPF model are 99.51%, 67.78%, 81.39%, 99.36%, 99.63%, and 99.48% for sensitivity, specificity, G-

Mean, precision, recall, and F-Measure. According to the results of the experiments, the suggested methods can 

effectively address the issue of class imbalance with noisy and borderline challenges. The Wilcoxon test results 

show that the suggested method worked effectively with unbalanced data. Finally, the suggested solutions can 

successfully address this class of issues. 

 

Keywords: Classification, Imbalance Data, Borderline & Noisy Examples, Ensemble Method, SPIDER2-IPF 

Model, Filter Methods, Boosting Method, Performance Metrics, Wilcoxon Test 

 

1. Introduction 

       The evaluation of input and target 

variables is the aim of classification. The 

effectiveness of the classification 

algorithms can be hampered by unbalanced, 

borderline, and noisy data. Unbalanced 

issues depict a situation in which there are 

much more examples of the majority class 

than the minority class [1] [2]. Unbalanced 

categorization is a carefully researched area 

in data mining. Fraud detection, fault 

classification in manufacturing, text 

classification, disease diagnosis, event 

classification, oil spill detection, intrusion 
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detection, and others are some of the real-

world issues [3] – [9]. Data imbalance 

issues can be solved using ensemble 

approaches [10]. Several classifiers are 

combined into one classifier using the 

ensemble technique to get more accurate 

results [11] [12]. The phrase "boosting 

ensemble approach" describes a collection 

of methods that can improve weak learners. 

A powerful learner is very close to fine 

performance, whereas a weak learner is 

only marginally finer than a random 

utterance on the surface. A sequential 

ensemble technique called boosting is used 

to lower bias error and build effective 

prediction models. A group of algorithms 

collectively known as "boosting" support in 

the development of a weak learner into a 

strong one.  The topics of discussion are 

noisy, borderline, and safe instances, with 

the “borderline and noisy” examples being 

the source of learning algorithm issues. The 

area near class boundaries, where the 

majority and minority classes overlap, is 

where borderline occurrences can be 

identified. Safe examples are placed in 

locations that are reasonably homogeneous 

and have the same class label. Finally, noisy 

examples can be found in the other class's 

safe zones [13]. As the performance metrics 

accuracy and its complement, 

misclassification rate is not worked well on 

imbalanced data, so other metrics should 

take into consideration like G-mean [14]. 

Due to the effectiveness of the Selective 

pre-processing of Imbalanced Data 2 

(SPIDER2) approach, the SPIDER2-IPF 

model is proposed to control noisy and 

borderline examples [15] [16]. SPIDER2 is 

the improved version of selective pre-

processing and the iterative-partitioning 

filter (IPF) is a good noise filtering 

approach.   

       The imbalanced categorization 

problem presents a number of challenges 

from a scientific and empirical perspective. 

Data imbalance's nature is frequently 

unclear or changes from case to case. On 

the one hand, categories in the existing data 

set may be inherently biased as a result of 

the problem's direct genesis. However, the 

data gathering procedure could be to blame 

for the disparity. An interesting topic's 

initial data distribution may be balanced, 

but practical issues like time, storage, or 

cost cause the obtained data set to be 

uneven. The "intrinsic" and "extrinsic" 

imbalances require various learning 

techniques in order to provide acceptable 

classifiers for future events. Minority-class 

learning can be hampered by a variety of 

data-complexity requirements, such as 

inequality between classes or between 

several sub clusters within a single class. 

Learning inner concepts for generic 

classifiers is more challenging when there 

is internal imbalance. If the concepts 

produced within or between classes are 

mixed, the generalisation potential of an 

algorithm will be severely constrained. 

Learning a distinct separation border is 

challenging because the knowledge 

represented in the majority and minority 

classes may overlap, which may have 

overlapped instances in the final data. Even 

if a precisely adjusted border can be 

constructed between them, such classifiers 

will be over fitted and their potential to 

generalise on [17] [18] future data would be 

impaired. 

       Numerous data characteristics may 

create difficult learning obstacles. 

Developing effective learning methods is 

already challenging for data sets with 

multiple characteristics and small sizes; 

adding the imbalance feature makes it even 

more challenging. Only a few examples of 
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the minority class, which are insufficient to 

reflect the minority notion, may occur due 

to insufficient or highly skewed relevant 

data. As a result, the classifiers' taught ideas 

might not be accurate. Unbalanced learning 

is significantly harmed by data noise and 

missing values, especially for minority 

classes. Actual knowledge is more 

challenging to extract from those unusual 

circumstances. It has never been possible to 

evaluate the performance of imbalance 

learning classifiers using any widely 

accepted consistent datasets or assessment 

metrics. Finally, the attention should be on 

how to create new unbalanced data 

techniques, [19] as well as how to create 

uniform performance measures and 

standardise extensive datasets. 

       To get better insight into dealing with 

borderline and noisy datasets issues, few 

literatures have been studied and discussed. 

There are two existing approaches such as; 

data level approach and algorithm level 

approach to handle these types of datasets. 

In the data level approach, noisy or 

irrelevant examples are eliminated from the 

training data. In the algorithm level, the 

learning mechanism of the algorithm is 

improved to make it less sensitive to deal 

with these types of datasets. In [20], the 

authors have represented an experimental 

investigation of noisy and imbalanced data 

using random under sampling and 

classification methods. The authors [21] 

have used the noise tolerance GDES-AD 

method to minimize the bias in 

classification error. The researchers [22] 

have explained the challenges of class noise 

with imbalance factor on eleven different 

algorithms with seven types of data 

sampling techniques to identify most robust 

method. In [23], the authors have analysed 

the behaviour of noisy data using MCSs for 

the experimental study. In [24], an 

extension of SMOTE [25] with Iterative-

Partitioning Filter is proposed to overcome 

the problems faced by borderline and noisy 

instances in imbalanced data and finally, it 

has performed well than existing SMOTE. 

In this [26] work, a combined technique 

Soft-Hybrid is proposed to handle 

overlapping, non-overlapping and 

borderline data. The researchers [10] have 

explored the connection between ensemble 

diversity [27] and noisy data by learning 

different types of diversity measures. In 

[28], noisy instances are either filtered or 

managed by fixing the labels for classes. 

Finally, using the cleansed training data, a 

new ensemble is created. Extensive studies 

in a variety of classification tasks show that 

this technique is efficient in constructing 

correct ensembles even when there is a lot 

of class-label noise. Some modifications 

[29] of fuzzy rule-based and algorithmic are 

used to improve the performance and the 

experiment is done for highly unbalanced 

and borderline datasets which is passed 

through a test (statistical). In [30], first 

fuzzy rough prototype selection algorithm 

discards noisy examples from the 

unbalanced data, then clears the data 

produced by SMOTE method. The graph 

stream model is useful because of less 

expensive to handle imbalance noisy data 

[31]. The OSM classifier have proposed 

[32] to get better performance than existing 

methods for overlapping with imbalance 

situations. In the work of [13], the re-

sampling methods, NCR, and SPIDER2 are 

used to do experiments on datasets to 

analyse the impact of noisy instances from 

the uncommon class with borderline 

performance on [33] classifiers.      

1.1 Motivations 
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       There are numerous reasons for 

selecting this topic for this study, some of 

which are listed below. 

a) Many algorithms in data mining 

suffer with unbalanced datasets. The 

crucial aspect is appropriately 

predicting minority class cases. In 

cancer data, for example, precisely 

classifying a cancerous patient is 

significantly more critical than 

accurately classifying a non-

cancerous patient. While ensemble 

approaches aim to create a group of 

learners and combine them, 

traditional learning systems aim to 

create one learner from training data.  

b) Dealing with unbalanced data in the 

context of noisy and borderline 

examples is extremely difficult. 

c) Boosting is the process of putting 

together a group of weak learners in 

a sequential order. The boosting 

strategy focuses on training things 

the preceding model did incorrect. 

The idea of rectifying prediction 

errors is an important feature of 

boosting ensembles. The models are 

fitted and given to the ensemble one 

at a time, with the second model 

correcting the first model, the third 

model correcting the second model, 

and so on. Boosting algorithms only 

select features that have a significant 

impact on the objective, potentially 

reducing dimensionality while also 

increasing computational efficiency. 

d) Selective pre-processing of 

unbalanced data is used to combine 

local over-sampling of the minority 

class with filtering difficult 

situations from the majority classes.  

e) IPF uses noise filtering techniques to 

improve software quality prediction. 

In numerous repetitions, this 

approach removes noisy instances 

until a stopping requirement is met. 

1.2 Original Contributions 

 

       In this study, the ways to dealing with 

unbalanced data, as well as noisy and 

borderline situations, are suggested. It 

contains the following contributions: 

a) Input to the classifiers will be a variety 

of imbalanced datasets from the 

“KEEL” [34] dataset source. 

b) The SPIDER2-IPF model is built 

using SPIDER2 as the resampling 

method and IPF [24] as the noise filter 

to deal with noisy and borderline 

datasets. By reducing noisy data from 

training datasets, the IPF noise 

removal method enhances its quality. 

Only one base learner is used by the 

Iterative-Partitioning Filter, although 

iterations are performed [13] 

numerous times. 

c) The results of these models are 

recorded and displayed in a tabular 

format.  

d) The performance metrics (specificity, 

specificity, G-mean, precision, recall, 

F1-measure) [35] are used to evaluate 

the model. 

e) The important findings in terms of 

experimentation have been thoroughly 

examined.  

1.3 Paper Organization 

 

The remainder of the document is 

structured as follows. 

--Section-2 focuses on a concise 

discussion of methodology adoption. 

--Section-3 contains a broad overview of 

the proposed model. 

--Section-4 discusses about the research 

metrics and empirics, system 

configuration, datasets   

   preparation, and performance metrics. 
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--Section-5 proposes the framework for 

noisy & borderline examples and presents 

experimental   

   results. 

--Section-6 briefly discuss the key points 

of the entire work. 

--Section-7 concludes this paper and 

recommendations for future work. 

 

2. Preliminaries/ Methodologies 

Adopted 

The various methods such as Saturation 

filter, PANDA Filter, Classification Filter, 

ANR filter, SPIDER2-IPF and Boosting 

methods are used for the experimentation. 

Ensemble approaches make use of a large 

number of learners to improve the 

performance of any one of them. These 

techniques combine a bunch of weak 

learners to generate a powerful model. 

 

3. Broad Overview of the Proposed 

Model 

Figure 1 depicts the overall framework of the 

work, whereas figure 1 describes the 

planning flow for noisy and borderline 

samples. The noisy and borderline datasets 

are trained in by applying Saturation filter, 

PANDA Filter, Classification Filter, ANR 

filter, SPIDER2-IPF, and Boosting methods, 

and the results are given using a confusion 

matrix. The Description of different methods 

are given below. 

 

Figure 1.  Diagrammatical representations of the proposed method for noisy & borderline 

examples  

        Saturation Filter Method: Since it is 

theoretically based on the saturation 

property of the training set, the entire 

process for noise identification and 

elimination [36] is known as the saturation 

filter. The minimal-covering algorithm is a 

heuristic included in this algorithm. 

        PANDA Filter Method (Pairwise 

Attribute Noise Detection Algorithm 

Filter): “Pairwise Attribute Noise 

Detection Algorithm”, often known as 

PANDA [37]. Considering the values of a 

couple of characteristics, PANDA aims to 

discover occurrences with a large deviation 

from the [38] norm. 

       ANR Filter Method (Automatic 

Noise Reduction): In order to find and 

eliminate noisy data items with incorrectly 

identified classes, ANR is utilised as a 

filtering strategy. The multi-layer artificial 

neural network framework [39] provides a 

basis for the ANR's underlying process.  

Noisy and Bordeline Datasets

1. Saturation Filter 

2. PANDA Filter 

3. Classification Filter 

4. ANR Filter 

5. SPIDER2 Resampling 

Method with IPF Noise Filter 

Method

Boosting Classifier Algorithm Final Result
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        SPIDER2 Resampling Method: The 

studies of Stefanowski and Wilk on the 

SPIDER (Selective Preprocessing of 

Imbalanced Data) approach to selective 

preprocessing. This approach uses the " 

Edited Nearest Neighbor Rule (ENNR) " to 

pinpoint the local characteristics of samples 

before combining the removal of majority 

class objects that might lead to the 

misclassification of minority class objects 

with local oversampling of those minority 

class objects that are "overwhelmed" by 

nearby majority class objects. Two steps of 

SPIDER2 make up the pre-processing of 

cmin and cmaj, respectively. The relabel 

option either eliminates or relabels noisy 

instances from cmaj after identifying the 

features of the examples from that key in 

the first phase (i.e., modifications their 

classification to cmin). The characteristics of 

instances from cmin are identified in the 

second phase while taking into account the 

[40] previous phase's alterations. Then, 

using the ampl option, noisy instances from 

cmin are replicated and amplified.  

Algorithm: 

Input: Data set (DS), minority class 

(CMin), number of closest neighbours 

(k), option to relabel (yes/no), and option 

to amplify (ampl) (“no, weak, strong“) 

Output: Preprocessing DS 

  An artificial class uniting all classes 

except cmin := cmaj 

 foreach x ∈ (belongs to) class (DS, 

cmaj) do 

      if right (DS, x, k) then flag x as 

safe 

      else flag x as not-safe 

 RS := flagged(DS, cmaj , not-safe) 

 if relabel then 

       foreach y ∈ (belongs to) RS do 

          transformation classification of 

“y to cmin“ 

          SR := SR \ {y} 

 else DS := DS \ RS 

 foreach x ∈ (belongs to) class (DS, 

cmin) do 

        if correct (DS, x, k) then flag x as 

safe 

        else flag x as not-safe 

 if ampl = weak then 

        foreach x ∈ (belongs to) flagged 

(DS, cmin, not-safe) do amplify (DS, x, k) 

 else if ampl = strong then 

       foreach x ∈ (belongs to) flagged 

(DS, cmin, not-safe) do 

              if accurate (DS, x, k + 2) after 

that amplify (DS, x, k) 

              else amplify (DS, x, k + 2) 

       IPF Noise Filter Method: The 

advantage of these filters is that noisy cases 

are eliminated iteratively with the 

understanding that doing so will not affect 

the noise detection in later [41] iterations. 

The partitioning filter's specialised form is 

known as an iterative partitioning filter. A 

model is then constructed on each of the n 

subsets that were initially created from the 

practise data. An instance is labelled as 

noise when this filter method employs the 

majority strategy and more than 50% of the 

models misclassify it. If the estimation of 

all n models differs from the actual class 

label of the instance, the consensus iterative 

partitioning filter removes the instance. 

Additionally, an instance must be 

misclassified at least by the model that is 

induced on the subset that contains it in 

order to be classified as noisy. Up until the 

halting requirement is met, noisy 

occurrences are deleted iteratively.  The 

needed number of filtering rounds can be 

changed to alter how conservative the filter 

should be [42]. 
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       A pre-processing method modelled on 

the Partitioning Filter is called the Iterative-

Partitioning Filter (IPF). In huge data sets, 

it is used to locate and get rid of instances 

that were incorrectly categorised. Most 

noise filters make the supposition that data 

sets are small and can be learned with just 

one learning attempt. However, partitioning 

methods can be necessary because this isn't 

always the case.  Until a stopping 

requirement is met, IPF removes noisy 

instances iteratively. If, for a sequence of s 

iterations, the number of recognised noisy 

instances in each of those iterations is less 

than a percentage p of the size of the initial 

training data set, the iterative procedure 

comes to an end. At first, a set of useful data 

(DG = ∅) and a set of noisy examples (DN 

= ∅) are used. Each iteration's fundamental 

steps are: 

a. Divide the trained data set DT into Γ 

subsets of same size. 

b. According to the authors' advice, C4.5 

is trained on each of these Γ parts. 

Different trees are produced as a 

result. 

c. By comparing the training label with 

the label supplied by the classifier, 

these 𝛤 resulting classifiers are then 

adopted to categorise each instance in 

the training set DT as either correct or 

mislabelled. 

d. By employing majority voting, add 

the noisy instances found in DT to DN 

while considering the accuracy of the 

labels the built-in 𝛤 classifier 

produced in the previous stage. 

e. Take the training set and delete the 

good and noisy examples: DT ← DT ∖ 

{DN ∪ DG}. 

The remaining DT instances [31] and the 

good DG data are combined to 

generate the filtered data at the 

end 

of the iterative procedure, resulting in DT ∪ 

DG.  

       A decision tree-generating algorithm is 

C4.5. Many recent analyses of unbalanced 

data have employed it. From a set of 

provided examples, it generates [43] 

classification rules in the form of decision 

trees. The normalised information gain 

(difference in entropy) that results from 

selecting an attribute to split the data is used 

to build the decision tree top-down. The 

attribute utilised to make the decision has 

the highest normalised information gain.  

Confidence level: c = 0.25 

Minimal instances per leaf: i=2 

Prune after the tree building 

Algorithm for Boosting: 

 

1. Set up the dataset and give each data 

point the same amount of weight 

2. Give this as model input and find the 

data points that were incorrectly 

classed 

3. Increase the weight of the data 

points that were incorrectly 

categorised 

4. if (got necessary results) 

Goto step five 

else 

Goto the second step 

5. End 

       “Boosting is an ensemble modelling 

strategy that aims to create a strong 

classifier out of a large number of weak 

ones. It is accomplished by constructing a 

model from a sequence of weak models. To 

begin, a model is created using the training 

data. The second model is then created, 

which attempts to correct the faults in the 

first model. This approach is repeated until 

either the entire training data set is properly 
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predicted or the maximum number of 

models has been added”. 

4. Research Metrics and Empirical 

Observation 

       The system setup, numerous datasets, 

applied settings, and experiment-wide 

performance measures are covered in this 

section. Boosting ensemble method [44] is 

taken to solve the imbalanced problems for 

its popularity.  

4.1 System Configuration 

       The entire experiment was carried out 

on a single-language version of Windows 

10 with an Intel® Core(TM) i5-7300HQ 

processor running at 2.50GHz. The 

operating system is 64-bit, with an x64-

based processor and 8.00 GB of installed 

memory (RAM).  

4.2 Datasets Preparation and Parameters  

       In the first part of the experiment, there 

are three types imbalanced datasets are 

used. Table 1 has shown the information of 

Imbalanced datasets. In the second part of 

the experiment, noisy and borderline 

examples are taken. There are three shapes 

of datasets are used (clover, subclus, and 

paw). Figure 2 shows clover data set 

having five petals and it is very difficult to 

solve where the rare class appears like a 

flower. Figure 3 shows subclus dataset 

where the minority class instances are 

positioned inside rectangle [45]. Finally, 

Figure 4 shows paw datasets where the rare 

class is transferred into 3-elliptic sub-

regions having different cardinalities, 

where 2 parts are closed to one another, and 

the smaller remaining part is kept separate. 

Safe with borderline, and noisy examples 

are diagrammatically shown in Figure 5 

[46] [47]. All the datasets are freely 

available in Keel dataset repository site 

[35]. 

 

 
Figure. 2. Clover dataset 
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Figure. 3. Subclus dataset 

 
Figure. 4. Paw dataset 

 

         Table 1 is used to describe the 

information about the borderline and noisy 

datasets. There are nine types of datasets 

taken for the experiment. The number of 

borderline cases from rare class sub-regions 

is increasing as the disturbance ratio, which 

is where borders of sub-regions in rare 

classes are disturbed. In the both the 

experiment, 5-fold cross-validation method 

is used where the dataset is split into five 

folds and each fold has 80% training data 

and 20% testing data [35]. 

 

 



Neelam Rout.et.al., Behaviour of Imbalanced Data in Presence of Borderline and Noisy Examples 

using Hybrid SPIDER2-IPF Boosting Ensemble Method 

1694 

 

    
Figure 5. Safe examples (s), borderline examples (b) and noisy examples (n) are shown 

diagrammatically 

          and the continuous line is used for the decision boundary to separate the two classes 

 

Table 1  

Information of borderline and noisy datasets 

Datasets Names Instances Features Classes Imbalance 

Ratio (IR) 

Disturbance 

Ratio (%) 

04clover5z_600-5_50_BI 600 2 2 5 50 

04clover5z_600_5-60-BI 600 2 2 5 60 

04clover5z_600_5_70_BI 600 2 2 5 70 

03subcl5_600_5_50_BI 600 2 2 5 50 

03subcl5_600_5_60_BI 600 2 2 5 60 

03subcl5_600_5_70_BI 600 2 2 5 70 

paw02a_600_5_50_BI 600 2 2 5 50 

paw02a_600_5_60_BI 600 2 2 5 60 

paw02a_600_5_70_BI 600 2 2 5 70 

04clover5z_800_7_30-BI 800 2 2 7 30 

04clover5z_800_7_50_BI 800 2 2 7 50 

04clover5z_800_7_60_BI 800 2 2 7 60 

04clover5z_800_7_70_BI 800 2 2 7 70 

03subcl5_800_7_30_BI 800 2 2 7 30 

03subcl5_800_7_50_BI 800 2 2 7 50 

03subcl5_800_7_60_BI 800 2 2 7 60 

03subcl5_800_7_70_BI 800 2 2 7 70 

paw02a_800_7_30_BI 800 2 2 7 30 

paw02a_800_7_50_BI 800 2 2 7 50 

paw02a_800_7_60_BI 800 2 2 7 60 
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paw02a_800_7_70_BI 800 2 2 7 70 

4.3 Performance Metrics 

         The confusion matrix [48] has shown 

in the Table 2 and many metrics are based 

on this for effectiveness evaluation on 

classification problem. The matrix overall 

accuracy doesn’t work on imbalanced 

datasets. Different metrics are given below. 

Sensitivity (Eq. 1) is known as true positive 

rate and Specificity (Eq. 2) is known as true 

negative rate, G – Mean (Eq. 3) is the 

geometric mean of sensitivity and 

specificity. F - measure (Eq. 6) is used to 

integrate precision (Eq. 4) and recall (Eq. 5) 

into a single metric for the support of the 

modelling and 𝛽 is a coefficient to manage 

the relative importance of precision vs. 

recall [49] [50]. 

 

Table 2 Confusion matrix 

 Actual_P

ositive 

Actual_Ne

gative 

Predicted_P

ositive 

TP (True 

Positive) 

FP (False 

Positive)  

Predicted_N

egative 

FN (False 

Negative) 

TN (True 

Negative) 

    

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                           

     (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                           

     (2) 

 

𝐺 − 𝑀𝑒𝑎𝑛 =

 √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                         

     (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                              

     (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    

     (5) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1+ 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 , 

Where, 𝛽 = 1    

 (6) 

 

5. Proposed Model for Imbalanced 

Dataset 

       The flow chart of the proposed method 

is shown in Figure 6 to handle imbalanced 

datasets. There are three types of 

imbalanced datasets (Table 1) that are used 

as input to the model, then a Ten-fold cross-

validation technique is chosen for 

examining the models [50] and getting 

target results from the models. The new 

balanced training set is found from the 

original imbalanced training set using the 

SMOTE method. After that, an extended 

binomial GLM and boosting method are 

combined to construct the model [51]. 

Finally, the results are analysed using the 

performance metrics. 

 

5.1 Proposed Model for the Imbalanced 

Dataset in the Existence of Noisy and 

Borderline Examples 

       Figure 6 illustrates the framework for 

the SPIDER2-IPF model. Table 1 shows 

the nine benchmark datasets used to test the 

model. As re-sampling, the SPIDER2 [13] 

[52] oversampling approach was applied. 

The IPF method [17] [53] is used in 

SPIDER 2 as a noise filter to reduce noise 
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before training base classifiers (boosting 

classifiers). 

 

       
   Figure. 6. Framework of SPIDER2-IPF model 

 

          Prior research on selective pre-

processing by Stefanowski and Wilk using 

their method for selective pre-processing of 

unbalanced data [54] [55]. This 

methodology uses the “Edited Nearest 

Neighbor Rule (ENNR)” to define the local 

characteristic of instances, and then 

combines removing majority class objects 

that may result in misclassifying minority 

class objects with local over-sampling of 

minority class objects that are overwhelmed 

by surrounding majority class objects [56]. 

SPIDER2 is divided into two phases, one 

for majority classes and the other for 

minority classes. It determines the features 

of instances from the majority in the first 

phase, and then either removes or re-label 

the noisy examples from the majority, 

depending on the re-label option (i.e., 

reclassifies themselves as a minority). The 

second phase determines the characteristics 

of minority cases while taking into account 

the improvements made in the first phase. 

Then, depending to the amplification 

choice, noisy examples from the minority 

are amplified (by replicating them) [54] 

[57].  IPF is used as a noise filter to remove 

sounds before training base classifiers 

(boosting classifiers). With the IPF noise 

filtering approach, noisy samples are 

eliminated repeatedly until a termination 

condition is reached [58]. The main idea is 

to use the votes of numerous classifiers to 

filter out noisy samples [59] [60]. IPF is 

used to ensure that the examples removed 

in one iteration have no impact on detection 

in following iterations, as a result, noise 

filtering is more precise. Furthermore, IPF's 

ensemble nature allows it to collect 

predictions from multiple classifiers, which 

may result in a more accurate estimation of 

difficult noisy cases than collecting data 

from a single classifier. IPF also allows for 

the production of more diverse classifiers – 

for example, utilising random partitions – 

compared to other ensemble-based filters 

since it allows for greater flexibility when 

building the partitions from which these 

classifiers are constructed. When using 

ensembles of classifiers, creating variety 

among the classifiers built is crucial. IPF is 

easier since it just requires one 

classification method [53] [61]. Boosting 

attracts a large number of learners. Because 

the data samples are weighted, some of 

them may appear more frequently in new 

sets. The mis-predicted data points are 

discovered and their weights are increased 

in each iteration so that the following 

learner pays additional attention to get them 

Noisy and 
Bordeline Datasets

1. Saturation Filter 

2.PANDA Filter 

3.Classification  Filter 

4. ANR Filter 

5. SPIDER2 Resampling 

Method with IPF Noise 

Filter Method

Boosting Ensemble

Classifier Algorithm

Final Result

using 

Confusion Matrix



Journal of Survey in Fisheries Sciences  10(4S) 1685-1711  2023 

 

1697 

 

correctly [62] [63]. The stop criterion is set 

to 𝑘 =  3 iterations, and the proportion of 

deleted examples is set to 𝑝 =  1% in IPF's 

standard parameters.  

6. Result Analysis and Discussion 

         By using the confusion matrix, Table 

3 has been prepared to show the result of the 

training datasets for the Saturation Filter 

Model. The average values of the 

sensitivity, specificity, G-Mean, precision, 

recall, and F-Measure are 94.43%, 34.79, 

49.29%, 81.94%, 95.25%, and 87.46% 

respectively. Table 4 has prepared to show 

the result of the testing datasets for the 

proposed method. The average values of the 

sensitivity, specificity, G-Mean, precision, 

recall, and F-Measure are 97.34%, 30.19%, 

43.79%, 76.73%, 97.29%, and 84.72% 

respectively.  

 

Table 3  

Results of the training datasets for the saturation filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 90.06 70.09 79.45 95.26 93.06 94.14 

04clover5z_600_5-60-BI 95.24 06.54 24.95 82.23 95.24 88.25 

04clover5z_600_5_70_B

I 

96.31 08.35 28.35 70.42 95.31 80.99 

03subcl5_600_5_50_BI 90.66 05.74 22.81 70.14 95.66 80.93 

03subcl5_600_5_60_BI 92.68 10.87 31.74 80.29 96.68 87.72 

03subcl5_600_5_70_BI 97.44 06.37 24.91 79.03 96.44 86.87 

paw02a_600_5_50_BI 95.90 53.14 71.38 95.58 96.90  96.23 

paw02a_600_5_60_BI 95.16 06.45 24.77 73.45 95.26 82.94 

paw02a_600_5_70_BI 94.17 86.29 90.14 95.16 96.17 95.66 

04clover5z_800_7_30-

BI 

96.40 09.17 29.73 73.10 96.60 83.22 

04clover5z_800_7_50_B

I 

96.01 03.33 17.88 58.19 96.01 72.46 

04clover5z_800_7_60_B

I 

95.45 71.34 82.51 95.38 95.45 95.41 

04clover5z_800_7_70_B

I 

93.40 06.28 24.21 69.52 93.60 79.78 

03subcl5_800_7_30_BI 89.16 03.19 16.86 71.09 95.46 81.49 

03subcl5_800_7_50_BI 94.73 14.02 36.44 85.41 96.46 90.59 

03subcl5_800_7_60_BI 96.07 19.77 43.58 93.13 96.05 94.56 

03subcl5_800_7_70_BI 95.62 92.23 93.90 96.62 96.43 96.52 

paw02a-800_7_30_BI 98.38 83.45 90.60 95.43 94.63 95.02 

paw02a_800_7_50_BI 93.63 06.17 24.03 54.31 97.34 69.72 

paw02a_800_7_60_BI 94.34 84.63 89.35 94.62 92.39 93.49 

paw02a_800_7_70_BI 92.23 83.21 87.60 92.41 89.16 90.75 
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Averages 94.43 34.79 49.29 81.94 95.25 87.46 

 

 

Table 4 

Results of the testing datasets for saturation filter the model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 96.73 94.73 95.72 96.65 97.63 97.13 

04clover5z_600_5-60-BI 97.32 07.03 26.15 78.31 96.35 86.39 

04clover5z_600_5_70_B

I 

96.22 15.36 38.44 72.18 96.33 82.52 

03subcl5_600_5_50_BI 96.40 04.50 20.82 69.10 97.30 80.81 

03subcl5_600_5_60_BI 96.65 06.82 25.67 73.59 95.65   83.18 

03subcl5_600_5_70_BI 96.32 04.62 21.09 73.64 97.32    83.84 

paw02a_600_5_50_BI 94.13 93.32 93.72 98.30 95.15 96.69 

paw02a_600_5_60_BI 97.27 04.75 21.49 72.79 95.14 82.47 

paw02a_600_5_70_BI 97.63 30.12 54.22 97.56 97.64    97.60 

04clover5z_800_7_30-

BI 

97.37 05.23 22.56 72.32 96.37   82.63 

04clover5z_800_7_50_B

I 

98.13 02.37 15.25 53.17 98.11    68.96 

04clover5z_800_7_60_B

I 

98.63 92.77 95.65 98.81 98.63 98.71 

04clover5z_800_7_70_B

I 

97.37 03.31 17.95 74.60 97.38   84.48 

03subcl5_800_7_30_BI 97.71 07.79 27.58 72.18 97.71 83.02 

03subcl5_800_7_50_BI 98.85 89.53 94.07 98.75 98.84 98.79 

03subcl5_800_7_60_BI 98.84 89.00 93.79 98.76 98.85 98.80 

03subcl5_800_7_70_BI 98.71 68.60 82.28 98.43 98.71 98.56 

paw02a-800_7_30_BI 97.71 03.34 18.06 52.06 97.71 67.92 

paw02a_800_7_50_BI 97.12 02.59 15.86 49.16 97.12   65.27 

paw02a_800_7_60_BI 98.08 02.69 16.24 56.01 98.08   71.30 

paw02a_800_7_70_BI 97.07 05.53 23.16 55.02 97.07 70.23 

Averages 97.34 30.19 43.79 76.73 97.29 84.72 

         Table 5 has been prepared to show 

the result of the training datasets for the 

proposed PANDA Filter Model. The 

average values of the sensitivity, 

specificity, G-Mean, precision, recall, and 

F-Measure are 97.75%, 52.96%, 68.60%, 

94.31%, 97.75%, and 95.41% 

respectively. Table 6 has prepared to show 

the result of the testing datasets for the 

proposed method. The average values of the 

sensitivity, specificity, G-Mean, precision, 
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recall, and F-Measure are 97.59%, 

21.89%, 42.54%, 92.58%, 97.19%, and 

94.59% respectively. 

Table 5  

Results of the training datasets for the panda filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 98.35 37.63 60.83 95.26 98.34 96.77 

04clover5z_600_5-60-BI 98.07 40.02 62.64 98.14 98.07 98.10 

04clover5z_600_5_70_B

I 

97.51 90.68 94.03 97.34 97.51 97.42 

03subcl5_600_5_50_BI 98.27 71.63 83.89 98.76 98.36 98.55 

03subcl5_600_5_60_BI 97.18 17.65 41.41 96.85 96.55 96.69 

03subcl5_600_5_70_BI 97.19 17.53 41.27 97.46 97.18 97.31 

paw02a_600_5_50_BI 98.41 50.51 70.50 97.45 98.41 97.92 

paw02a_600_5_60_BI 98.32 53.52 72.54 97.69 98.04 97.86 

paw02a_600_5_70_BI 97.04 97.14 97.09 98.87 98.05 98.45 

04clover5z_800_7_30-

BI 

97.94 67.23 81.14 98.32 97.84 98.07 

04clover5z_800_7_50_B

I 

92.87 06.13 23.85 36.21 92.87 52.10 

04clover5z_800_7_60_B

I 

98.33 63.30 78.89 98.37 98.33 98.35 

04clover5z_800_7_70_B

I 

97.65 48.68 68.94 98.51 97.67 98.08 

03subcl5_800_7_30_BI 97.68 79.66 88.21 98.77 97.68 98.22 

03subcl5_800_7_50_BI 98.76 88.27 93.36 98.75 98.76 98.75 

03subcl5_800_7_60_BI 98.57 52.22 71.74 98.11 98.57 98.33 

03subcl5_800_7_70_BI 98.90 59.97 77.01 98.25 98.89  98.56 

paw02a-800_7_30_BI 98.33 18.02 42.09 96.45 98.33   97.38 

paw02a_800_7_50_BI 97.61 04.54 21.05 84.61 97.61    90.64 

paw02a_800_7_60_BI 98.43 75.00   

85.92 

98.75 98.43    98.58 

paw02a_800_7_70_BI 97.42 73.00   

84.33 

97.74 97.42    97.57 

Averages 97.75 52.96 68.60 94.31 97.75 95.41 
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Table 6 

Results of the testing datasets for the panda filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 98.31 12.11 34.50 94.16 98.31 96.19 

04clover5z_600_5-60-BI 97.96 59.00 76.02 98.76 97.96 98.35 

04clover5z_600_5_70_B

I 

97.31 06.03 24.22 83.29 97.31 89.75 

03subcl5_600_5_50_BI 97.31 02.97 17.00 67.92 97.20 79.96 

03subcl5_600_5_60_BI 96.69 59.00 75.52 98.86 96.69 97.76 

03subcl5_600_5_70_BI 97.22 32.31 56.04 98.51 97.22 97.86 

paw02a_600_5_50_BI 98.49 27.47 52.01 95.14 97.49 96.30 

paw02a_600_5_60_BI 98.16 04.68 21.43 94.18 98.16 96.12 

paw02a_600_5_70_BI 97.83 25.65 50.09 96.69 97.92 97.30 

04clover5z_800_7_30-

BI 

96.97 32.31 55.97 98.66 96.89 97.76 

04clover5z_800_7_50_B

I 

98.28 09.42 30.42 94.87 98.27 96.54 

04clover5z_800_7_60_B

I 

98.15 23.71 48.24 96.92 98.14 97.52 

04clover5z_800_7_70_B

I 

97.42 32.31 56.10 98.85 97.41 98.12 

03subcl5_800_7_30_BI 97.21 05.93 24.00 87.17 97.21 91.91 

03subcl5_800_7_50_BI 97.86 39.00 61.77 98.85 97.77 98.30 

03subcl5_800_7_60_BI 98.65 14.23 37.46 93.30 98.65 95.90 

03subcl5_800_7_70_BI 98.66 22.25 46.85 95.94 98.66 97.28 

paw02a-800_7_30_BI 97.83 24.00 48.45 98.84 97.73 98.28 

paw02a_800_7_50_BI 97.36 02.21 14.66 94.87 97.37 96.10 

paw02a_800_7_60_BI 96.94 02.83 16.56 68.80 96.95 80.48 

paw02a_800_7_70_BI 94.94 22.33 46.04 89.77 87.88 88.81 

Averages 97.59 21.89 42.54 92.58 97.19 94.59 

              Table 7 has been prepared to 

show the result of the training datasets for 

the proposed Classification Filter Model. 

The average values of the sensitivity, 

specificity, G-Mean, precision, recall, and 

F-Measure are 96.75%, 21.09%, 

37.30%, 90.12%, 96.39%, and 91.03% 

respectively. Table 8 has prepared to 

show the result of the testing datasets for 

the proposed method. The average values 

of the sensitivity, specificity, G-Mean, 

precision, recall, and F-Measure are 

92.32%, 19.38%, 33.16%, 85.07%, 

93.51%, and 87.15% respectively. 
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Table 7 

Results of the training datasets for the classification filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 95.34 04.34 20.34 95.15 96.34 95.74 

04clover5z_600_5-60-BI 97.48 03.00 17.10 98.11 97.57 97.83 

04clover5z_600_5_70_B

I 

96.68 43.94 65.17 98.67 96.68 97.66 

03subcl5_600_5_50_BI 98.09 39.00 61.85 98.85 98.09 98.46 

03subcl5_600_5_60_BI 96.29 04.44 20.67 96.95 96.29 96.61 

03subcl5_600_5_70_BI 97.03 02.32 15.00 88.59 97.03 92.61 

paw02a_600_5_50_BI 97.87 61.49 77.57 98.85 97.87 98.35 

paw02a_600_5_60_BI 98.35 02.54 15.80 74.94 98.35 85.06 

paw02a_600_5_70_BI 97.03 01.09 10.28 86.22 97.03 91.30 

04clover5z_800_7_30-

BI 

96.58 22.07 46.16 98.33 96.58 97.44 

04clover5z_800_7_50_B

I 

97.95 14.21 37.30 98.32 97.95 98.13 

04clover5z_800_7_60_B

I 

98.56 94.23 96.37 98.94 98.56 98.74 

04clover5z_800_7_70_B

I 

97.31 02.44 15.40 98.51 97.31 97.90 

03subcl5_800_7_30_BI 97.59 25.87 50.24 96.00 97.59 96.78 

03subcl5_800_7_50_BI 97.74 06.39 24.99 98.19 97.74 97.96 

03subcl5_800_7_60_BI 92.74 01.88 13.20 01.39 92.73 02.73 

03subcl5_800_7_70_BI 97.85 65.56 80.09 90.93 88.68 89.79 

paw02a-800_7_30_BI 93.45 03.55 18.21 90.51 91.89 91.19 

paw02a_800_7_50_BI 95.35 04.15 19.89 94.29 96.35 95.30 

paw02a_800_7_60_BI 96.39 03.40 18.10 93.36 95.49 94.41 

paw02a_800_7_70_BI 96.08 37.00 59.62 97.52 98.09 97.80 

Averages 96.75 21.09 37.30 90.12 96.39 91.03 

 

Table 8 

Results of the testing datasets for the classification filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 90.21 02.81 15.92 95.09 96.12 95.60 

04clover5z_600_5-60-BI 92.49 02.21 14.29 80.13 92.49 85.86 
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04clover5z_600_5_70_B

I 

93.52 04.80 21.18 92.39 93.35 92.86 

03subcl5_600_5_50_BI 92.42 91.33 91.87 92.33 93.89 93.10 

03subcl5_600_5_60_BI 95.50 06.31 24.54 90.03 93.51 91.73 

03subcl5_600_5_70_BI 92.67 13.68 35.60 90.40 92.67 91.52 

paw02a_600_5_50_BI 93.70 63.61 77.20 92.92 93.69 93.30 

paw02a_600_5_60_BI 92.08 03.82 18.75 71.72 93.08 81.01 

paw02a_600_5_70_BI 92.49 13.39 35.19 93.20 94.49 93.84 

04clover5z_800_7_30-

BI 

93.48 03.14 17.13 89.03 93.67 91.29 

04clover5z_800_7_50_B

I 

93.84 04.21 19.87 92.88 93.90 93.38 

04clover5z_800_7_60_B

I 

95.47 83.27 89.16 95.79 96.47 96.12 

04clover5z_800_7_70_B

I 

93.28 06.00 23.65 95.08 96.28 95.67 

03subcl5_800_7_30_BI 90.59 83.69 87.07 90.15 91.59 90.86 

03subcl5_800_7_50_BI 90.62 03.11 16.78 90.39 94.48 92.38 

03subcl5_800_7_60_BI 92.46 02.95 16.51 04.84 93.46 09.20 

03subcl5_800_7_70_BI 91.81 03.93 18.99 93.59 95.28 94.42 

paw02a-800_7_30_BI 94.97 03.00 16.87 93.75 94.72 94.23 

paw02a_800_7_50_BI 93.12 03.49 18.02 94.22 93.12 93.66 

paw02a_800_7_60_BI 83.48 05.15 20.73 55.20 83.41 66.43 

paw02a_800_7_70_BI 90.65 03.22 17.08 93.49 94.23 93.85 

Averages 92.32 19.38 33.16 85.07 93.51 87.15 

         Table 9 has been prepared to show 

the result of the training datasets for the 

proposed ANR Filter Model. The average 

values of the sensitivity, specificity, G-

Mean, precision, recall, and F-Measure are 

97.20%, 56.50%, 69.41%, 95.96%, 

97.42%, and 96.65% respectively. Table 

10 has prepared to show the result of the 

testing datasets for the proposed method. 

The average values of the sensitivity, 

specificity, G-Mean, precision, recall, and 

F-Measure are 93.99%, 47.15%, 63.85%, 

95.18%, 93.68%, and 94.30% 

respectively. 

Table 9 

Results of the training datasets for the ANR filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 96.28 40.11 62.14 94.32 95.81 95.05 

04clover5z_600_5-60-BI 97.15 43.42 64.94 93.12 93.24 93.18 
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04clover5z_600_5_70_B

I 

95.90 95.43 95.66 96.95 97.99 97.46 

03subcl5_600_5_50_BI 96.82 97.14 96.97 97.96 97.99 97.97 

03subcl5_600_5_60_BI 97.53 38.88 61.57 96.69 97.57 97.12 

03subcl5_600_5_70_BI 97.14 37.16 60.08 97.17 97.72 97.44 

paw02a_600_5_50_BI 96.91 95.00 95.95 97.14 97.91 97.52 

paw02a_600_5_60_BI 95.91 95.01 95.45 96.99 96.90 96.94 

paw02a_600_5_70_BI 97.03 02.07 14.17 86.21 97.03 91.30 

04clover5z_800_7_30-

BI 

96.72 75.01 85.17 96.42 96.73 96.57 

04clover5z_800_7_50_B

I 

97.49 48.36 68.66 98.12 98.49 98.30 

04clover5z_800_7_60_B

I 

98.93 98.45 98.68 99.00 98.94 98.97 

04clover5z_800_7_70_B

I 

98.35 97.33 97.83 98.95 98.35 98.64 

03subcl5_800_7_30_BI 98.90 63.81 79.44 97.66 98.89 98.27 

03subcl5_800_7_50_BI 98.93 57.14 75.18 97.60 98.93 98.26 

03subcl5_800_7_60_BI 98.04 65.63 80.21 98.91 98.03 98.46 

03subcl5_800_7_70_BI 98.71 55.73 74.16 98.16 98.71 98.43 

paw02a-800_7_30_BI 95.71 55.74 73.04 96.16 96.71 96.43 

paw02a_800_7_50_BI 98.16 13.17 35.95 96.17 98.24 97.19 

paw02a_800_7_60_BI 97.51 01.20 10.81 86.09 95.51 90.55 

paw02a_800_7_70_BI 93.11 10.77 31.66 95.46 96.16 95.80 

Averages 97.20 56.50 69.41 95.96 97.42 96.65 

 

Table 10 

Results of the testing datasets for the ANR filter model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 95.42 53.20 71.24 95.10 96.81 95.94 

04clover5z_600_5-60-BI 96.20 05.66 23.33 83.42 93.20 88.03 

04clover5z_600_5_70_B

I 

95.11 45.12 65.50 97.10 96.12 96.60 

03subcl5_600_5_50_BI 97.13 32.30 56.01 96.70 95.13 95.90 

03subcl5_600_5_60_BI 96.36 23.00 47.07 95.35 93.33 94.32 

03subcl5_600_5_70_BI 95.00 24.00 47.74 96.63 95.00 95.80 

paw02a_600_5_50_BI 89.85 46.37 64.54 96.41 89.90 93.04 

paw02a_600_5_60_BI 96.83 38.00 60.65 95.67 96.83 96.24 

paw02a_600_5_70_BI 96.58 16.49 39.90 96.69 97.49 97.08 
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04clover5z_800_7_30-

BI 

96.42 65.66 79.56 97.56 96.41 96.98 

04clover5z_800_7_50_B

I 

63.63 59.00 61.27 89.43 63.64 74.36 

04clover5z_800_7_60_B

I 

95.69 36.36 58.98 96.92 98.71 97.80 

04clover5z_800_7_70_B

I 

96.49 47.00 67.34 97.72 94.48 96.07 

03subcl5_800_7_30_BI 97.76 61.62 77.61 97.28 96.76 97.01 

03subcl5_800_7_50_BI 92.09 37.17 58.50 94.08 96.09 95.07 

03subcl5_800_7_60_BI 92.60 93.21 92.90 96.91 93.69 95.27 

03subcl5_800_7_70_BI 97.69 92.39 95.00 98.93 98.69 98.80 

paw02a-800_7_30_BI 96.06 17.00 40.41 97.79 97.07 97.42 

paw02a_800_7_50_BI 97.35 35.00 58.37 93.73 93.02 93.37 

paw02a_800_7_60_BI 98.90 84.93 91.64 95.88 95.91 95.89 

paw02a_800_7_70_BI 90.69 76.69 83.39 89.68 89.19 89.43 

Averages 93.99 47.15 63.85 95.18 93.68 94.30 

 

       Table 11 has been prepared to show 

the result of the training datasets for the 

proposed SPIDER2-IPF Model. The 

average values of the sensitivity, 

specificity, G-Mean, precision, recall, and 

F-Measure are 99.51%, 67.78%, 81.39%, 

99.36 %, 99.63%, and 99.48% 

respectively. Table 12 has prepared to 

show the result of the testing datasets for the 

proposed method. The average values of the 

sensitivity, specificity, G-Mean, precision, 

recall, and F-Measure are 98.28%, 

55.86%, 70.66%, 98.87%, 98.46%, and 

98.65% respectively. 

Table 11  

Results of the training datasets for the SPIDER2-IPF model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 99.49 77.93 88.05 99.88 99.56 99.71 

04clover5z_600_5-60-BI 99.79 68.24 82.52 99.36 99.79 99.57 

04clover5z_600_5_70_B

I 

99.98 50.26 70.88 98.88 99.98 99.42 

03subcl5_600_5_50_BI 99.92 64.13 80.04 99.37 99.95 99.65 

03subcl5_600_5_60_BI 99.99 59.85 77.35 99.15 99.99 99.56 

03subcl5_600_5_70_BI 99.99 92.86 96.35 99.88 99.99 99.93 

paw02a_600_5_50_BI 98.72 69.68 82.93 99.97 98.76 99.36 

paw02a_600_5_60_BI 99.96 79.96 89.40 99.58 99.98 99.77 

paw02a_600_5_70_BI 99.93 76.08 87.19 99.58 99.99 99.78 
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04clover5z_800_7_30-

BI 

99.83 59.92 77.34 99.36 99.88 99.61 

04clover5z_800_7_50_B

I 

99.91 82.80 90.95 99.54 99.93 99.73 

04clover5z_800_7_60_B

I 

99.94 98.72 99.32 99.96 99.89 99.92 

04clover5z_800_7_70_B

I 

98.84 99.59 99.21 99.97 98.89 99.42 

03subcl5_800_7_30_BI 99.94 59.17 76.89 98.65 99.93 99.28 

03subcl5_800_7_50_BI 98.95 45.87 67.37 98.97 98.96 98.96 

03subcl5_800_7_60_BI 98.76 43.26 65.36 98.96 99.66 99.30 

03subcl5_800_7_70_BI 98.77 96.29 97.52 99.97 99.33 99.64 

paw02a-800_7_30_BI 97.73 55.00 73.31 99.99 98.35 99.16 

paw02a_800_7_50_BI 99.58 53.00 72.64 99.72 99.68 99.70 

paw02a_800_7_60_BI 99.87 43.90 66.21 97.38 99.87 98.60 

paw02a_800_7_70_BI 99.89 46.92 68.46 98.48 99.93 99.19 

Averages 99.51 67.78 81.39 99.36 99.63 99.48 

 

 

Table 12  

 Results of the testing datasets for the SPIDER2-IPF model 

 

Datasets  Sensitivit

y 

Specificit

y 

G-

Mea

n 

Precisio

n 

Recal

l 

F-

Measur

e 

04clover5z-600-5_50_BI 99.93 21.42 46.26 96.45 99.93 98.15 

04clover5z_600_5-60-BI 98.63 84.34 91.20 99.94 98.66 99.29 

04clover5z_600_5_70_B

I 

97.98 31.32 55.39 98.61 97.98 98.29 

03subcl5_600_5_50_BI 96.00 73.06 83.74 98.69 96.00 97.32 

03subcl5_600_5_60_BI 98.88 17.88 42.04 95.40 98.87 97.10 

03subcl5_600_5_70_BI 97.74 39.60 62.21 98.86 98.75 98.80 

paw02a_600_5_50_BI 96.75 49.00 68.85 99.86 98.76 99.30 

paw02a_600_5_60_BI 97.42 13.76 36.61 99.97 98.43 99.19 

paw02a_600_5_70_BI 99.83 94.34 97.04 99.92 99.76 99.83 

04clover5z_800_7_30-

BI 

98.93 49.00 69.62 99.96 98.72 99.33 

04clover5z_800_7_50_B

I 

97.95 23.26 47.73 99.23 97.93 98.57 

04clover5z_800_7_60_B

I 

99.81 97.00 98.39 99.94 99.89 99.91 
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04clover5z_800_7_70_B

I 

97.58 99.91 98.73 99.89 97.55 98.70 

03subcl5_800_7_30_BI 99.82 66.49 81.46 99.05 99.83 99.43 

03subcl5_800_7_50_BI 98.99 11.50 33.74 98.16 96.99 97.57 

03subcl5_800_7_60_BI 97.77 28.27 52.57 99.75 98.67 99.20 

03subcl5_800_7_70_BI 97.12 85.80 91.28 93.76 97.13 95.41 

paw02a-800_7_30_BI 96.77 89.91 93.27 99.67 97.81 98.73 

paw02a_800_7_50_BI 98.71 25.22 49.89 99.66 98.71 99.18 

paw02a_800_7_60_BI 99.97 97.58 98.76 99.94 99.97 99.95 

paw02a_800_7_70_BI 97.50 74.47 85.21 99.72 97.33 98.51 

Averages 98.28 55.86 70.66 98.87 98.46 98.65 

 

6.1 Statistical Test 

     In this research, the nonparametric 

Wilcoxon signed rank test is used to 

compare sets of two or related samples [64]. 

When samples have small sizes and non-

normal distributions, this method is applied. 

After computing the differences between 

the two procedures (with n objects), 

followed by calculating the absolute values, 

the results are sorted by removing the zero 

values. The rankings of the positive 

differences in R+ and the ranks of the 

negative differences in R- are added to get 

the values of R+ and R-. The p-value also 

provides useful information about the 

significance differences in the classifier, 

and the significance value “α” is fixed at 

0.05. Table 13 provides a summary of all 

computations. The techniques are displayed 

in the selection column based on whether 

the hypothesis is accepted or denied. Out of 

the investigated strategies, the suggested 

technique, "Hybrid SPIDER2-IPF Boosting 

Ensemble," is selected as the best one. 

 

Table 13 Wilcoxon test (for pair wise comparison) 

Comparison R+ R- p-

value 

Hypothesis (α 

= 0.05) 

Selection 

SPIDER2-IPF vs. 

Saturation 

34 32 0.9468 Not Rejected SPIDER2-

IPF 

SPIDER2-IPF vs. 

Panda 

168 212 0.6653 Not Rejected SPIDER2-

IPF 

Classification vs. 

SPIDER2-IPF 

20 58 0.1413 Rejected SPIDER2-

IPF 

ANR vs. SPIDER2-

IPF 

54 366 0.0037 Rejected SPIDER2-

IPF 

7. Conclusions and Future Work 

      In many different industries, such as 

fraud detection, video surveillance, genetic 

data analysis, and many others, data 

imbalance is a critical issue. It could be due 

to a very expensive or difficult data 

collection approach, natural rarity, skewed 

and/or incomplete data sources, errors, or 

unequal sensor location. In these cases, the 

cost of misclassification is never balanced 
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for positive and negative instances, and the 

usual accuracy measure is inaccurate since 

it presupposes those true positives and true 

negatives are equally important. The topic 

of knowledge discovery using noisy and 

unbalanced data, which is of tremendous 

interest to practitioners and researchers in a 

range of domains, is thoroughly explored 

experimentally in this study. SPIDER2's 

superiority in controlling noisy instances 

within the majority class is demonstrated in 

this experiment (also accompanied with 

borderline ones). IPF's ensemble nature, 

which provides a reliable and accurate 

technique of detecting mis-labelled 

samples, the iterative noise detection and 

elimination processes used, and the 

flexibility to modify classifier diversity are 

all significant elements of IPF that result in 

a more accurate set of filters. Other 

sampling approaches, as well as various 

ensemble methods, may be explored in 

future study to handle imbalanced datasets.  

     The design of a more effective 

parameter and other ensemble techniques 

will be the main topics of future research. 

There are numerous intriguing prospective 

study areas for the suggested strategy. It is 

possible to test the filter's performance 

further. The classification of unbalanced 

data will continue to attract attention in both 

the "scientific and industrial" sectors due to 

the interesting topics and numerous future 

perspectives. 
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