Operational safety plan for the Amazon River Airport in Shell City, Pastaza Province, Ecuador

Jessica, Moreno

Ingeniera Aeronáutica. Master en Gestión de Sistemas Aeronáuticos. Facultad de Administración de Empresas. Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. Código ORCID: 0000-0003-0085-9459, jessica.moreno@espoch.edu.ec

Jorge, Lara

Doctor en Física. Máster Universitario en Formación Interncional especializada del profesorado. Facultad de Administración de Empresas. Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. Código ORCID: 0000-0002-3116-5161

Juan, Martínez

Ingeniero Mecánico. Magister en Ciencias de la Educación Aprendizaje de la Física. Facultad de Mecánica. Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. Código ORCID: 0000-0002-4860-1548

Julio, Moreno

Licenciado en Gestión del Transporte. Investigador Independiente. Riobamba, Ecuador. Código ORCID: 0000-0002-7447-7536

Abstract

The objective of this study is to develop a safety plan for Shell-Pastaza Airport through compliance with and enforcement of international regulations. Information was collected through observation sheets, surveys and interviews at the airport facilities with the main actors of this air transport system. Satisfaction surveys were aimed at airport users. After the analysis of the primary information, it can be indicated that the airport has shortcomings in aspects such as: identification of danger zones, malfunction of strategic areas, absence of operational safety procedures in the presence of dangers. The construction and development of the operational safety plan is framed in the technical and administrative aspect of the airport, which must operate in a coordinated and harmonized manner. An operational safety plan will allow the airport to have protocols, procedures, dashboards and responsible in each of the eventualities that may arise.

Keywords: Airport airport, safety, technical, administrative, hazard.

1. INTRODUCTION

To carry out an operational safety plan, SMS (S afety Man a gement S ystem) is used, it is a system that serves to guarantee the safety of operations, through effective operational risk

safety. The ICAO and its member states know that rules and regulations are not enough to prevent air accidents, the states are responsible for establishing surveillance systems at the national level, in such a way that there is a system that details operational safety in the different areas: airlines, airports, maintenance workshops, air navigation systems, which is complemented by air regulations, legislation and regulations. [2]

Annex 19 of ICAO includes all concepts and standards relating to safety in civil aviation. This document is the main reference to establish an SMS and determine the acceptable levels of operational safety in a country or an airport. It is necessary to properly implement the guidelines established regulations the annex. its in and supplementary documents that will provide guidelines for all agencies and users of an airport to adequately perform their obligations as part of a system. [3]. A safety management model should include parameters necessary for the mitigation of acts that may cause accidents and affect aviation. [4]

Operational safety has evolved since the 50s, in which only human factors were considered as possible responsible for air accidents. For the 70s, human factors began to be considered and improvements in ergonomics and performance for pilots, cabin crew and other actors in the air transport system were considered. In the 90s, organizational factors were also considered as contributors to air accidents and incidents. To finally consider a total systematic analysis in which all the factors analyzed above have participation in a possible plane crash, and therefore the risks can be mitigated in each case. [5]

If the risks of Operational Safety are considered, it is important to consider the axioms of operational safety, which start from the idea that every system is vulnerable. Under this axiom, the differences between hazard, safety deficiencies, consequences and risks of operational safety are analyzed. The analysis and articulation of these principles make it possible to assess in a simple way the risk in terms of its probability and severity by assigning a number to the consequences of the hazards. This is an essential contribution to the safety management process by means of SMS because it provides the service provider with a basis for making strategic decisions on operational safety risks, to evaluate the allocation of resources or actions to dispose and minimize the effects of a hazard on the provision of services. [6]

A process manual can be developed for airport operational safety, creating a matrix of process indicators with standards and frequencies, this matrix being the one that will be monitored continuously through the main operational safety indicators, these indicators function in conjunction with those involved and the airport. In this way, it seeks to contribute to the improvement of the operational safety of the airport, preventing and avoiding accidents. [7]

It is necessary when the airport analysis is carried out to identify if there is full compliance with ICAO in what has to do with Annex 14 and 19, since through the investigation risk areas, avian precencies and fauna can be found in their surroundings; to avoid possible risks of accidents. Normally, periodic analyses of the total operation of the airport can be recommended after that and thus solve the problems that are identified. [8]. It is also necessary to carry out a situational study of the airport for the solvency of technical and administrative problems; This can be obtained by proposing a safety management manual, with the aim of preventing, identifying, mitigating risks. [9]

Another strategy proposed by several authors is the establishment of strategic processes for the identification, correction, measurement, of the occurrence of possible incidents and air accidents, this through the proposal of a strategic manual with corrective and preventive actions [10]. It can also include the exploitation of free zones and special regimes of the district at airports, where each function and process of operation, administrative and technical, is executed with quality, thus reducing and avoiding possible accidents and incidents. [11]

The Safety Management System models can also be implemented in aeronautical training and training centers, increasing safety levels in these centers, since being students they can have failures and involuntary errors in their learning development, so it is necessary to have a safety system that prevents and avoids possible accidents. [12]

The development of occupational safety on the ground, of those who work in these areas (handling and maintenance), since their work is also essential for an aircraft to function optimally at the time of flight, in this way Effects of Air Transport

incidents and air accidents are prevented and avoided directly or indirectly. [13]. When analyzing the operational safety of an airport, it is necessary to execute an internal and external analysis that allows timely planning in this area of the airport, in order to avoid possible risks. [14]. It is essential to reduce existing risks against collaborators, physical infrastructure, users; Through continuous training and development of strategies not only technically but also these should be focused on the labor well-being of each worker, since the human factor is one of the main actors for the development of a correct and safe flight [15]

 Table 1: Effects of Air Transport [16]

Direct Effect	Indirect Effect	Dependent Effect	Induced effect
Operators Airport Airlines and Air Navigation Services are located	There are suppliers, manufacturers and services.	Trade, tourism, employment, productivity, environment and investment.	It refers to the impact that is generated when suppliers, their employees and households return to
[IndustryThere are Engines, Aircraft, Equipment and Services.	Which is generated by the consumption of its employees	\Rightarrow	spend in the economy, generating new economic activity.
	\Rightarrow		

Factors conditioning the air transport market

Political Factors: one of the main characteristics of the political factors was the liberation that the air transport industry had in the USA in 1978 through the revolution, this also influenced the privatization of public and mixed companies.

Economic Factors: oil is one of these factors globally and in each country, mentioning that in 2021 it had a cost of 61.90 USD per barrel and is currently at 14.57 USD, according to reports from Diario El Comercio.

Another economic factor to be highlighted was also the geographical distribution

demanded in the United States of America for air transport; as an example, the most traveled route is cited, which is New York-London.

Environmental Factors: the main characteristics among others are: global warming, infrastructure development, legislation on the emission of environmental gases such as the "Kyoto Protocol" which seeks to reduce greenhouse gases. [17]

Operational safety

It seeks to proactively reduce risks in aviation, before they cause incidents or accidents. It is done through the activation of safety management, where nations can manage their safety activities in a more comprehensive, disciplined and centralized way.

Understanding their role and contribution enables each country and the aviation industry to prioritize actions to address safety risks and manage resources more effectively for aviation safety.

In aviation, safety is dynamic; as new risks and hazards constantly arise that must be mitigated. The aviation system being very dynamic and open, as long as it is maintained at an adequate level of control, it can be kept safe. [18]

In Ecuador, the structure of operational safety is governed by the state, which is responsible for planning, regulating and controlling air navigation and airports within the territory. For the construction. operation and maintenance of heliports, airports and civil aerodromes and in the same way for the operation of their facilities and services, which includes that of air routes directly or by delegations, this according to the convenience of the nation; All this is developed according provisions of the competent laws, to technical regulations, aeronautical code, regulations, which must be in force based on the International Civil Aviation Organization (ICAO), being the Ecuadorian State a signatory of the same. [19]

To design an airport it is essential to review architectural projects of the same nature to observe the functional, technological characteristics that make an airport terminal or aerodrome work in an optimal way and be able to facilitate the process of departure and arrival of passengers or cargo in general, in addition to this it is also worth highlighting the typology of an airport to know if they could be applicable or be adapted according to the need of an airport. [20]

ICAO establishes the rules and regulations necessary for aviation safety, approval, effectiveness and global environmental protection. This report aims to provide members, the aviation community and the travelling public with high-level analysis of air transport safety trends and indicators. It is also a safety programme, highlighting the important leadership and innovation role of air transport on a global scale. [21]

In 2010 it was experienced that the total volume of scheduled commercial flights began to exceed 30 million per year. ICAO therefore seeks to continuously develop more dynamic, risk-based methods to further reduce global accident rates so that air travel can increase safely in all regions. The COVID-19 pandemic brought new challenges for global aviation. [22]

Figure 1. Evolution of global passenger traffic 1945-2020

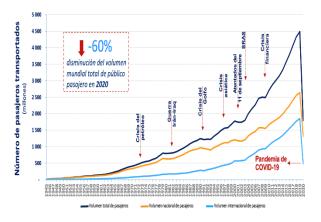
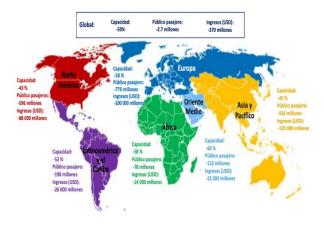



Figure 2. Air traffic by region

Number of accidents: 2005 - 2010			
Year	Number of accidents	Number of deaths	
2005	119	824	
2006	112	806	
2007	122	645	
2008	136	524	
2009	113	670	
2010	127	707	

Table 2: Number of Accidents

ICAO works in partnership with the international aviation community to achieve a sustainable reduction in accident rates globally by focusing on improving safety performance in areas with high records.

The concept of safety is found in ICAO Annex 19 and in the third edition of ICAO document 9859 "Safety Management Manual ". Generally, it is a document that provides reinforcement on all aspects of operational security, focusing on its importance; operational safety is related to the entire life function cycle of an airport.

Safety risk

It is the probability and projected severity of a consequence or result of an existing situation or threat . The result may be an accident, an "unsafe intermediate consequence/event", which can be interpreted as a "most likely outcome" [23]

Probability of safety risk

The safety risk control process begins with the evaluation of the probability of occurrence of the consequences of risks during aviation activities carried out by the organization. [23]

Amazon River Airport

The Amazon River Airport is located in the Shell parish, Mera canton in the Pastaza Province of Ecuador. The airport was established in 1937 by Royal Dutch Shell, to provide an aeronautical service to the Amazon of Ecuador. This airport is the main means of transport for the entry and exit of the indigenous population of Pastaza; a total of seven nationalities including the Achuar, Andoa, Shuar, Kichwa, Shiwiar, Waorani, Zápara and around 320 communities settle in the Ecuadorian Amazon and are the beneficiaries of the air terminal.

From this terminal, aircraft take off to authorized runways such as: Nuevo Curitza, Montalvo, Wiririma, Moretecocha, Pindoyacu, Jandiayacu, Makusar, Yusutnza, Lorocachi, Moretecocha, Llanchamacocha, among others. The trip can last between 30 minutes to 1 hour of flight depending on the remoteness of the runways and the climatic conditions of the region.

All operations at the Río Amazonas airport are carried out on HJ time, that is, from 06:00 to 18:00. During 2020, 11,627 air operations were carried out with a mobilization of 5,578 passengers and transportation of 12,823 kg of cargo.

Existing airport services at the airport

The airport has the following airport services:

Airport infrastructure system

The airport has an operational control tower, equipped with technology and facilities that are required to provide quality service to internal and external users.

• Airport security and prevention systems

The airport has security equipment, the guard is responsible for safeguarding the security of the offices and facilities of the airport.

• Rescue and firefighting service.

If you have the rescue and firefighting service inside the airport.

• Fueling system (jetal – Avgas)

The airport does not have the refueling service.

First of all, the current situation of the Shell Río Amazonas airport must be determined, this was done through the application of an **Table 3. Aspects analysed in the observation sheet**

observation sheet in which information is collected on the infrastructure of the airport and the state of it. In the present investigation, the following aspects were analyzed:

Airport Overview	IATA/ICAO cod	IATA/ICAO code		
	Location	Location		
	Type of Adminis	Type of Administration		
	Operating hours	Operating hours		
	Types of transit p	ermitted		
Track	Characteristics	Reference key		
		Track length		
		Track width		
		Obstacle-free zone		
		Fringe		
		Margin		
	Signals	Track threshold		
		Track Designator		
		Punto de visada		
		Track axis		
	Lights	Start of track		
		Track edge and axis		
		End of track		
Taxiway	Characteristics	Taxiway length		
		Taxiway width		
		Fringe		
		Margins		
	Signals	Taxiway axis		
		Waiting point		
		Intermediate waiting point		
	Lights	Taxiway axes		
		Taxiway edge		
		Stop bars		
		Intermediate waiting point		
Platform	Characteristics	Platform length		
		Platform width		
		Margin of separation		
		Track turning platform		
		Cargo terminal platform		
		Number of parking spaces		

		Service platform and hangars
	Signals	Safety lines
	o Branc	Signs
		Parking stalls
	Lights	Platform lighting
	Lights	Guide lights
Passenger Terminal Building	Characteristics	Surface
Tassenger Terminar Dunung	Characteristics	Type of infrastructure
		Administrative offices
		Dispatch of aviation companies
		Security check
		Waiting rooms
	<u> </u>	Lighting
	Signals	Information
	~	Prohibitive
Control tower	Characteristics	Dimensions
		Height
		Type of infrastructure
		Control rooms
		Machinery and equipment
		Visibility
Electric power station	Characteristics	Electricity supply
		Secondary source
		Power quality
		Machinery and equipment
Weather station	Characteristics	Year of installation
		Equipment
		Meteorological Office
		Wind distribution quality
		Visibility
Airport Services	Characteristics	Ramp Services
		Cabin service
		Fuel supply
		Food supply
		Engineering Service
		Field Operations Services
		Loading and unloading
		Storage warehouses
		Baggage handling
		Machinery and equipment
		v 11 · ·

		Customer Service
Integrated Aircraft Care System	Characteristics	Specialized Hangars
		Private flights
		Air traffic control
		Passenger attention
		Transportation services
		Free services
Rescue and firefighting service	Characteristics	Trained personnel
		SSEI Security Service
		Specialized machines and equipment
		Fire station
		Auxiliary water tanks
		Media/Alarms
Security service	Characteristics	Security check
		Accredited agent
		Safety Inspection
		Security zones
Environmental protection	Characteristics	Accredited agent
		Safety Inspection
		Sewage treatment plant
Radio aids	Radio aids en	NDB (Beacon in directional)
	route	VOR (Very High Frequency Omnidirectional Radio Beacon)
		DME (Distance Measuring Equipment)
		Radio Beacon
		Communications
		ARSR (Air Route Surveillance Radar, Passive)
		ATCBRS (Airway Surveillance Radar, Active)
	Radio landing	ILS (Instrument Landing System)
	aids	P.A.P.I. (Precision Approach Path Indicator)
		A.P.A.P.I. (Approximation indicator)
	Radio aids in the	ASR (Airport Surveillance Radar)
	terminal area	ASDE (Airport Surface Detection Equipment)
Airport Overview	occurring, th	e same as detailed in the

Airport Overview

As indicated in ICAO Annex 19, there are different types of probability of a safety event

occurring, the same as detailed in the following table:

 Table 4. Probability of safety risk

Probability	Meaning	Value
Frequent	It is likely to happen many times (has happened frequently)	5
Occasional	It is likely to happen a few times (has happened infrequently)	4
Remote	It is unlikely to happen, but not impossible (it has rarely happened)	3
Improbable	It is very unlikely to happen (it is not known if it has occurred)	2
Highly unlikely	It is almost inconceivable that the event would occur.	1

Once the probability assessment is completed, the next step is to assess the severity of the safety risk, taking into account the potential consequences of the hazard. The severity of a safety hazard is considered to be the level of damage that can occur as a result of or consequence of a specific hazard. The following table presents the severity of the risk in operational safety:

Table 5. Severity of safety risk

Gravity	Meaning	Value
Catastrophic	Destroyed equipmentMultiple deaths	Α
Dangerous	• A severe reduction in operating safety margins, physical strain Or workload, where operators are	В

	•	no longer reliable for the accurate or complete performance of their tasks. Serious injuries Major damage to equipment	
Grave	•	A significant decrease in the operating safety margin, a decrease in the capacity of operators, leads to unfavourable working conditions due to an increase in the workload due to conditions that affect their efficiency. Serious accident Injuries to people	С
Lightweight	•	Discomfort Operational constraints Use of emergency procedures Minor incident	D
Insignificant	•	Few consequences	And
W/h are a con		a arraniter all m	1. 1 .

When assessing severity, all possible consequences related to the unstable nature or object should be taken into account, taking into account the worst-case scenario.

Table 6. Safety Risk Assessment Matrix

Probability of risk	Risk severity				
	Catastrophic Dangerous Important I		Levy		
	Α	В	С	D	Insignificant and
Common 5	5A	5B	5 C	5D	5E
Occasional 4	4A	4B	4 C	4D	4 E
Remote 3	3A	3B	3C	.3D	3E
Improbable 2	2A	2B	2C	2D	2E
Highly unlikely 1	1 A	1 B	1C	1 D	1E

To determine the levels of operational safety handled by an airport, the safety risk assessment matrix is considered, being expected that all risks are in the acceptable

 Table 7. Safety Risk Assessment Matrix

region and occasionally in the tolerable region. The intolerable region should be avoided, in all cases the measures recommended in the risk index table should be applied.

Description of tolerability	Risk index assessed	Suggested criteria
	5A, 5B, 5C, 4A, 4B, 3A	Unacceptable under the circumstances.
REGIÓN INTOLERABLE	5D, 5E, 4C, 4D4E, 3B,	Acceptable according to risk mitigation.
	3C, 3D2A, 2B, 2C, 1A	You may need a management decision.
	3E, 2D, 2E, 1B,1C, 1D,	Acceptable
	1E	
REGIÓN TOLERABLE REGIÓN ACEPTABLE		

Table 8. Risk index

Risk index range	Description	Recommended action
5A, 5B, 5C, 4A, 4B, 3A	High risk	If necessary, stop or reduce the operation. Prioritize risk mitigation so that there are additional or improved preventive controls to reduce the risk index to medium or low.
5D, 5E, 4C, 4D4E, 3B, 3C, 3D2A, 2B, 2C, 1A	Moderate risk	Plan a safety assessment to reduce the risk index to a low level if possible.
3E, 2D, 2E, 1B,1C, 1D, 1E	Low risk	Acceptable as is. No subsequent risk mitigation is needed.

Additionally, surveys were developed for the following interest groups operating at the airport, which were separated into two layers for the surveys: general population and airport administration and airlines.

General population: There were 5578 passengers transported to the year 2020, so on average monthly the airport has 430 passengers.

Shell Aviation Department: At the Rio Amazonas Airport there are 30 members of administrative staff and employees in general.

Airlines: Based on the investigation carried out, it was obtained that 5 airlines operate at the Amazon River airport: Alas de Socorro (SAMAFE), Aerokashurko, Aeroconexos, AeroFor, Aero Sarayaku including the Army Air Group No. 44 "Pastaza"

Aeroclubs: At the Amazon River Airport there are 3 training centers: Aerosertec, Coeavip, Aviaciones AV and Aero Police pilot school.

 Table 9. General population stratum

Stratum	Frequency	Percentage
Average monthly users	430	100%

Table 10. Airport and airline managementstratum

STRATUM	FREQUENCY	PERCENTAGE
Aviation	10	33,33 %
Department		
Shell-mera		

Staff for each airline	8	26,66%
Aeroclubs	12	40%
TOTAL	30	100 %

To determine the sample in the present work, the following formula was used with the following criteria.

$$n = \frac{N * \sigma^2 * Z^2}{e^2 * (N-1) + Z^2 * \sigma^2}$$

Where:

- n: Sample Size
- N: Population Size
- Z: Confidence Level
- P: Probability of success
- q: Probability of failure

e: Precision (maximum permissible error in terms of proportion)

Knowledge of the concept of operational safety

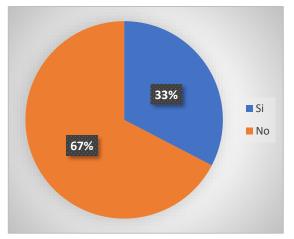


Figure 1. Safety concept

Sample according to stratum 1

Table 11. Sample according to stratum 1

Stratum 1	F	Sample
Users	430	203

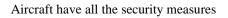

Sample according to stratum 2

 Table 12. Sample according to stratum 2

Stratum 2		Sample
Aviation Department Shell-mera	10	9
Staff for each airline	8	7
Aeroclubs	12	11
Total	30	27

3. Results and Discussion

A sample of 230 surveys was taken, obtaining the following results in terms of customer satisfaction:

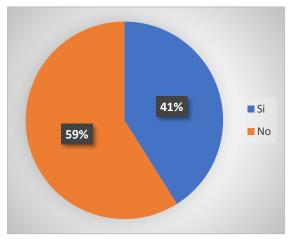


Figure 2. Aircraft security measures

The aircraft has adequate protective measures

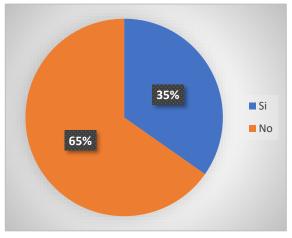
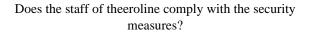



Figure 3. Protective measures on aircraft

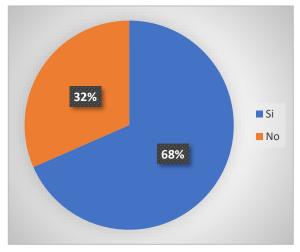


Figure 5. Airline Personal Safety Measures

Are you satisfied with the quality of service that Shell Airport has?

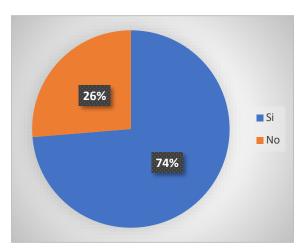


Figure 4. Quality of service at the airport

Is it advisable to socialize safety issues to users?

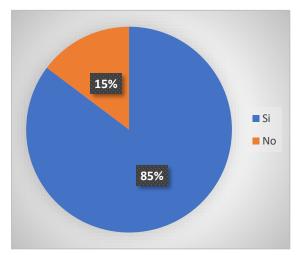


Figure 6. Operational safety for users

Are runway and aircraft conditions suitable?

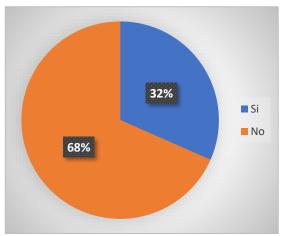
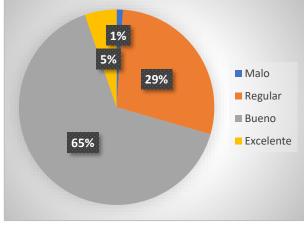
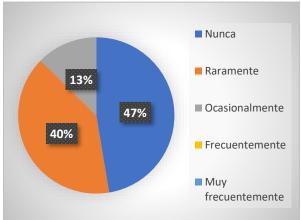



Figure 7. Runway and aircraft conditions



How do you rate safety supervision and control?

Figure 9. Safety supervision and control

Current situation of the Amazon River airport

To determine the current situation of the airport, an analysis was carried out with the background of the airport for the development of a proposal for an operational safety plan at the Río Amazonas airport, analyzing all the technical characteristics and infrastructural conditions, of each of the elements of the same, in order to comply with all the necessary parameters that an airport must have in accordance with the ICAO (Civil Aviation Organization). International, Annex 14).

How often do aviation accidents occur at Shell Airport?

Figure 8. Frequency of accidents

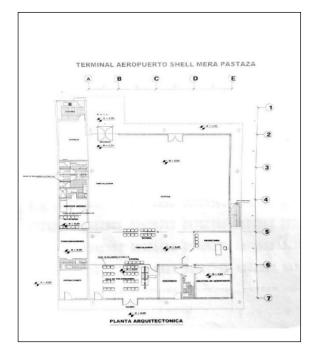


Figure 12. Architectural plan of the airport

 Table 13. Airport infrastructure

Airport infrastructure			
ICAO Amazon River Analysis Airport Analysis			
Field of action surface which may be composed of grass pavement or compacted earth on which aircraft take off and land.	Field of action surface which may be composed of grass pavement or compacted earth on which aircraft take off and land.	The airport meets the standards regarding the floor of the surface of the runway highlighting that it is composed of pavement and currently grass and earth by construction materials.	

Table 14. Length and width

ICAO	Amazon River Airport	Analysis
	The length of the surface of the runway is 1 487 meters which satisfies the operational requirements of the aircraft, the width of the runway has a measure of 23 m which does not meet the letter of key specified by the regulations.	•

Table 15. Fringe

Fringe		
ICAO	Amazon River Airport	Analysis
It is a defined surface which, includes the runway and the stopping area, in order to protect the safety of aircraft for visual flight runways must have a width on each side of 75 m with a length of 60 m.	The strip of the track has a length of 1607 m with a width of 80 m on each side, there is also a relatively natural environment i.e. weeds, grass and green areas.	The surface of the strip of the track has the measures established according to the regulations so it complies with the requirements. This is an aspect in favor of the safety of aircraft at the time of arrival or landing.

 Table 16.
 Threshold signals

Threshold signals		
ICAO	Amazon River Airport	Analysis
A runway threshold sign shall consist of a configuration of longitudinal strips of uniform dimensions which shall be at least 30 metres long and 1,80 metres wide with a separation between them of 1,80 m.	Theairport does not have the function of threshold signs for an aircraft runway.	The surface of the runway does not comply with the markings or threshold signs as stipulated in the ICAO, which is necessary for good visibility to the pilot for landing or takeoff.

Table 17-3: Platform

Platform		
ICAO	Amazon River Airport	Analysis
Area intended to accommodate aircraft, with the objective of embarking or disembarking passengers, merchandise, fueling, parking or maintenance.	1	The airport complies with the existence of a parking apron with large areas and adequate services.

Table 18. Control tower

Control tower		
ICAO	Amazon River Airport	Analysis
It must be high enough to have no blind spots and with good visibility, to control aircraft traffic, it is necessary to obtain a signal lamp, and various equipment that help the landing and operation of aircraft	The control tower is located 8m high, is in perfect condition and has all the necessary visibility of the movement area.	The control tower building has an efficient height and complies with the regulations since it allows visibility at the beginning of the runway and at the end thus obtaining better air traffic control

Table 19. Power station

Power station		
ICAO	Amazon River Airport	Analysis
The safety of operations at aerodromes depends on the quality of the electrical power supply, so a secondary source of electrical power is necessary in case the primary source of electrical power fails.	The electric power station is in adequate condition which is safe since it has a booth for the power plant at the airport also have a second sourceof energy supply in case the first one does not work.	The airport complies with a second electrical station which benefits the facilities and equipment in case of any failure of the first source, but these sources are in a suitable place and away from any accident or failure at the airport.

Table 20. Weather station

Weather station				
ICAO Amazon River Airport Analysis				
It must be built 5 years before the construction of the airport as it provides information in all its atmospheric conditions; temperature, pressure, elevation, air humidity and winds.	The airport's weather station is located one level below the control tower and has the necessary equipment for the meteorological operation, which provides truthful data to inform about atmospheric conditions nationwide.	The airport complies with the existence and standards of the regulations with respect to the weather station itself that has high quality equipment and that allow accurate informationand allow toprovide a quality service to air operations.		

Airport services

Table 21. General

General			
ICAO Amazon River Airport Analysis			
They are services whose objective is to serve the aircraft from landing to its next departure, providing ramp service food supply, cabin services engineering service field operations service, loading and unloading.	The airport has the service of ramp, cabin and loading and unloading of goods.	According to current regulations, the airport does not comply with all airport services which help the aircraft for its air operations, so it is necessary to implement them as they benefit and offer security to passengers and aircraft.	

Table 22. Storage and loading service

Storage and loading service				
ICAO Amazon River Airport Analysis				
It allows to offer users a greater speed efficiency and flexibility, since it has facilities and complete services of handling unloading and packaging and with all the security measures	It does not have the machinery or equipment for handling loading and unloading the same ones that delay the mobilization and transfer of merchandise.	The airport does not comply with the specifications dictated by the ICAO, since they do not have the adequate facilities or necessary equipment either due to lack of management or by the administration.		

 Table 23. Integrated Aircraft Care System

Integrated Aircraft Care System			
ICAO	Amazon River Airport	Analysis	
System that integrates both the attention of aircraft in specialized hangars, as well as the service of attention to passengers, providing them with all the quality services, includes in addition to the public transport service and also free services	There is no integrated system of passenger aircraft, public transport or free services that allow to provide quality services, the airport only has private flights for passengers.	The airport does not comply with an integrated system dictated by the ICAO which affects the development of the airport and interferes with the quality control of the service that must be provided to all citizens air operations center	

 Table 24. Rescue and firefighting services

Rescue and firefighting services					
ICAO AMAZON RIVER ANALYSIS AIRPORT ANALYSIS					
The existence of the firefighting service is mandatory at every aerodrome. The main objective of the service is to save lives in case of aviation accidents or incidents with the presence of fire.	The airport Rio A mazonas has the necessary facilities and equipment of aeronautical firefighters for the safety of the airport's air operations.	It complies with the regulations since there is its own fire department for the airport which is of vital importance its existence in case of a fire emergency in accidents or aerial incidents.			

Table 25.Security services

Security services				
ICAO Amazon River Airport Analysis				
The General Directorate of Aviation is the authority responsible for civil aviation security matters in Ecuadorian territory to safeguard and protect aircraft, passengers and goods.	The Río Amazonas airport has services and equipment that safeguard airport security.	The airport has interests in terms of airport security; That is, it complies with the established security standards which helps to safeguard the security of the airport and passengers.		

Table 26. Radio aids

Radio aids			
ICAO	Amazon River Airport	Analysis	
Aids en route, NDB, emits non- directional electromagnetic waves. according to Annex 10, it emits that the frequency wave arranged for NDB, L is in the range of 190kHz-1700kHz	The airport has a very high frequency omnidirectional radio beacon and DME with frequency of r19 MHZ 12675 MHZ respectively operating 24 hours a day using a ground antenna.	The airport complies with the presence of two routeaids: VOR and DME. Cumple with the frequency established in the regulations since they are useful radio aids for the position of the aircraft.	

Air scouts operating at the airport

Table 27. Air scouts

Aviation schools	PASTAZA-COEAVIPA Aviation School AEROSERTEK AVIACIONES OF
Private companies (social service)	Currently aviation companies are certified under RDAC-part 135 "scheduled and non-scheduled domestic flights"
Distress alerts - SAMAFE	Aerokashurko related air services "AEROCONEXO" Cia. Ltda. AeroFor
Military and police aviation	Due to the aeronautical facilities of the airport, the armed forces and national police determined that the military aviation that supplies its units located in the Ecuadorian Amazon Region, or gives aid to the population of the region, is based at this airport. Army aviation

Rio Amazonas Airport Traffic Mix

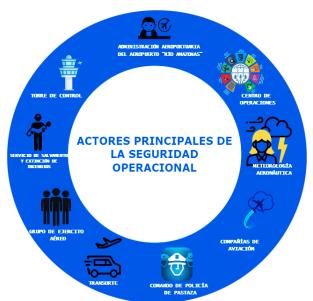
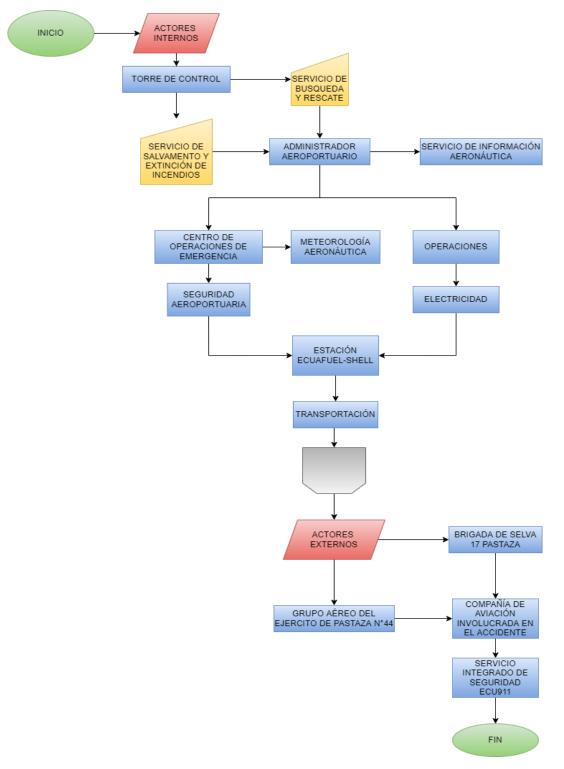

The most common types of aircraft operating at this airport due to the characteristics of the runway are:

Table 28. Types of aircraft operating at the airport


Aircraft type	Capacity (Passengers)
Arava Airplane	23
House 212	26
House 235	43
Hercules C130 aircraft	70
MI-8	24
Twin Otter	19
Bell 212 helicopter	09
Cessna 150	02
Cessna 182	04
Cessna 206	06
Piper Azteca	06
Super Puma	20
Cessna172	04
Gazella	05
Kodiak	09

The aircraft with the highest criticality in the event of an accident is the House 235 (CN 235).

Figure 13. Main actors of operational safety at the airport

Actors involved in an aircraft crash inside or outside the Rio Amazonas airport

Figure 14. Flowchart of actors involved in an aircraft crash

Figure 15. Internal entities and support institutions at the airport

Entidades Internas

Administración aeroportuaria del aeropuerto "Río Amazonas" Torre de control Centro de operaciones de emergencia Servicio de salvamento y extinción de incendios Meteorología aeronáutica Seguridad aeroportuaria Servicio de información aeronáutica Electrónica Servicio de búsqueda y salvamento Director de Seguridad y Prevención Aeronáutica Transportación Personal de mantenimiento de pista

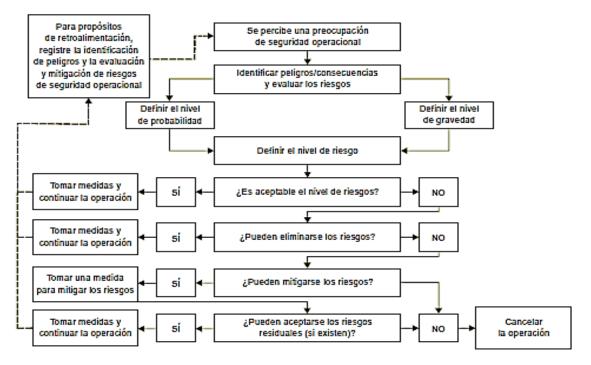
INSTITUCIONES DE APOYO

Compañías de aviación Grupo Aéreo del Ejercito 44 Pastaza Brigada de selva 17 Pastaza Servicio integral de seguridad ecu 911 UPC Shell Somando de policía provincial Nro. 16 Pastaza Subcentro de salud Shell Bomberos de Shell, Mera y Puyo Hospital general Puyo, hospital básico 17 Pastaza y Hospital IESS-Puyo Empresa eléctrica Ambato-sucursal Puxo Coordinación provincial de gestión de riesgos de Pastaza

Operational Safety Center

Annex 14 states that each airport must have an operations center which must be installed in a permanent and operational location with a mobile unit during the airport's business hours to support and coordinate operations in the event of an accident. Currently, the Emergency Operations Center (EOC) should be located at the Airport Authority. It also establishes the responsibility of the Ministry of Defense in the Aviation Safety Crisis Management Program to carry out all planned actions to respond to situations caused by illegal interference, as well as to combat the security crisis. aerial. Assessment of operational security threat information

Civil aviation security authorities periodically assess the level and nature of the threat to civil aviation in the territory and airspace of the Republic of Ecuador, with information provided by the Secretariat of Intelligence and other relevant government agencies and based on civilian information , or Aviation security risk assessment tailored to the scope of the threat to civil aviation in the country.


 Table 29. Levels of threats to aviation

	Threat levels		
LOUD	It will be applied when an event generated by an act of unlawful interference or any attempt against the safety of operations and persons occurs, this level must be established when a critical condition is generated or when there is ordinary information that an aerodrome or airport operator or aircraft can be subject to some type of		
	aggression.		

Figure 16. Risk Mitigation Assessment

MEDIA	It will apply when there are conditions		
MEDIA			
	that allow constant alert to be		
	maintained about frequent		
	circumstances regarding the operation		
	of the aerodrome or airport or of an		
	aircraft operator (strikes, theft,		
	disruption of airport services, others)		
CASUALTY	This level applies when it is considered		
	that the development of public activity		
	and the security measures taken, the		
	aerodrome or airport or aircraft		
	operator is not in danger of suffering		
	any act that threatens its facilities or		
	operations.		

The process begins with the identification of risks and their possible consequences. Vulnerabilities are categorized by probability and severity to determine the level of risks. If they are considered tolerable upon evaluation, appropriate measures should be taken and operations can continue. Complete risk identification and safety risk assessment and risk mitigation are documented and validated are part of the safety and information management system.

After assessing the risks, the service provider enters a decision-making process to determine whether risk mitigation measures should be implemented. To use the matrix described in

the methodology, risks can be categorized after assessing their severity and probability. Risks assessed as unacceptable (red and yellow categories) should be mitigated to reduce their severity and likelihood. The airport should consider suspending any activity that continues to expose the organisation to unacceptable safety risks if risk mitigation measures can be reduced to an acceptable level.

Table 30. S	Severity a	and probability	of risk
-------------	------------	-----------------	---------

		PROBABILITY				
		NOT LIKELY	SLIGHTLY	UNLIKELY	VERY	EXTREMELY
			LIKELY	•	PROPABLE	LIKELY
SEVERITY	INSIGNIFICANT	LOW	LOW	LOW	MIDDLE	MIDDLE
	MINOR	LOW	LOW	MIDDLE	MIDDLE	MIDDLE
	MODERATE	MIDDLE	MIDDLE	MIDDLE	HIGH	HIGH
	CRITICAL	MIDDLE	MIDDLE	HIGH	HIGH	VERY HIGH
	CATASTROPHI	MIDDLE	HIGH	HIGH	VERY	VERY HIGH
	С				HIGH	

After assessing the operational safety risks at the Rio Amazonas airport, appropriate mitigation measures can be implemented. Mitigation measures can include several alternatives such as: training programs, modifications existing operating to alternatives procedures. Additional may include the introduction of new operating programs, training programs, technologies or surveillance controls. These alternatives will involve the development of traditional aviation safety defenses: technology, training and regulation.

The three safety risk mitigation approaches include:

a) Prevention. - the activity is suspended because the associated safety risks are intolerable or considered unacceptable.

b) Reduction. - Some exposure of operational safety risks is accepted, although the severity or probability associated with the risks is decreased.

c) Segregation of exposure. - measure to isolate the possible hazard-related consequence or to establish several layers of defences against it.

It is necessary to consider all possible measures to find the optimal form. Before

making a decision, the effectiveness of each alternative strategy should be evaluated. Any proposed security risk mitigation alternative should be considered from the following perspectives:

a) Efficiency. The extent to which alternatives reduce or eliminate safety risks. Effectiveness can be determined in terms of technical, training and regulatory defences that can reduce or eliminate safety risks.

b) Cost/benefit. The extent to which the perceived benefits of mitigation outweigh the costs.

c) Practicality. The extent to which mitigation can be implemented and how adequate it is in terms of available technology, financial and administrative resources, legislation and regulations, political will, etc.

d) Acceptability. The extent to which the alternative is consistent with the administrator's paradigms.

e) Enforceability. The extent to which compliance with new rules, regulations or operating procedures can be monitored.

f) Durability. The extent to which mitigation will be sustainable and effective.

g) Residual operational safety risks. The degree of safety risks that remains secondary to the implementation of the initial mitigation and that may require additional risk control measures.

h) Accidental consequences. The introduction of new hazards and related safety risks that are associated with the implementation of any mitigation alternative.

Once mitigations are approved and implemented, any impact related to safety performance provides feedback to the service provider's safety assurance process. This is necessary to ensure the integrity, effectiveness and efficiency of the defence system in the new operating conditions.

Safety performance monitoring and measurement

The information used to measure the safety performance of the airport is generated through its safety notification systems, there are two types of notification systems:

a) Mandatory incident reporting systems: Rrequires certain types of incidents (e.g. critical incidents, runway violations), which require the implementation of detailed regulations defining the reporting criteria and scope of potential incidents notification capabilities, Mandatory reporting systems tend to collect more information on highimpact technical failures and other aspects of operational activities.

incident notification b) Voluntary systems: allow the sending of information about observed hazards or incidental errors, without the corresponding legal or administrative obligation to do so. In these systems, regulatory bodies or bodies may encourage reporting. Voluntary reporting systems can be confidential, requiring that information identifies any that the whistleblower be known only at the "point of entry." Youridentities are deleted after the necessary follow-up measures are taken. Unidentified reports can aid in analyzing future trends to monitor the effectiveness of security risk mitigation and identify emerging threats.

4. Conclusions

Based on the present study carried out, the standards required by the ICAO have been compared, the Río Amazonas airport based on the field work carried out has been able to detect some shortcomings within the airport, which does not comply with certain guidelines and specifications based on each item analyzed. an air transport system must be needs-based and based on the principles of quality and ICAO requirements.

It was diagnosed that the dangers and operational risks at the Río Amazonas airport are: problems in landing, lack of visibility, adverse weather conditions, lack of training and training, poor maintenance of the runway, however, these dangers and risks are little recurrent and can be reduced by applying adequate procedures and implementing the necessary resources of an airport to satisfy operational safety.

The risk indicators that allow detecting, obtaining necessary and required information to evaluate them in accordance with the operational safety plan and subsequently selecting the processes that must be assessed at the time of a degradation or failure in operational safety within the Río Amazonas airport were analyzed, which concludes that it, Due to its operability, it is constantly exempt from possible accidents and operational incidents.

Safety reporting tools should be easily accessible to operators. Operators should be aware of the benefits of a safety reporting system and get feedback on corrective actions taken in response to the report. Adapting the requirements, tools and analytical methods of the reporting system can facilitate the exchange of safety information as well as the comparison of certain safety indicators.

To solve the shortcomings located, it was proposed the development of an operational safety plan, which contributes positively to the technical and administrative development of operational activities, which seek to reduce and optimize incidents caused at Shell airport, the planning developed will have a useful life of a period 2022-2026.

Reference

Cordova, D.; Podestá, M. (2019). Analysis of the implementation of the safety management system in aviation companies, a systematic review. https://repositorio.upn.edu.pe/bitstream/ha ndle/11537/23713/Córdova%20Huamán %20Daniel%20Moisés--Podesta%20Alba%20Manuel%20Francisc

o.pdf?sequence=7&isAllowed=y

- Simon, A. (2018). Proposal of a strategic implementation guide for a Safety Management System (SMS) for Aeris Holding Costa Rica SA, based on the Safety Management manual, Document 9859 of the International Civil Aviation Organization (ICAO). https://www.scholar.google.com.pe/schol ar
- ICAO (2019). Annex 19: Safety Management. https://www.icao.int/SAM/Documents/20 17-SSP-COL/Módulo%203%20-%20Anexo%2019.pdf
- Duque, F., & Sarmiento, N. (2008). Development of an Operational Safety Management program for Colombian civil aviation. Bogota, Colombia.
- ICAO (2018). Doc 9859-Safety Management Manual, fourth edition. https://www.icao.int/SAM/Documents/20 18-SSP7/3.%20Doc%209859_MU.pdf

- Vera, P. G. (2021). Operational sefurity in Argentina an unfinished project (Final integrative work). National University of Quilmes, Bernal, Argentina. Available at RIIDAA-UNQ Open Access Digital Institutional Repository of the National University of Quilmes. https://ridaa.unq.edu.ar/bitstream/handle/2 0.500.11807/2745/TFI_2021_vera_002.pd f?sequence=1&isAllowed=y
- Valencia, M.A. (2012). Implementation of a model to measure the effectiveness of logistics in the transport of goods for the air modality at the Cotopaxi airport, Latacunga canton, province of Cotopaxi. http://dspace.espoch.edu.ec/bitstream/123 456789/6772/1/112T0033.pdf
- Bueso, R.; Betancourt, I. (2016). Operational safety of the runway at Ramón Villeda Morales International Airport, towards the certification of the aerodrome. http://scholar.google.com.pe/scholar
- Periola, D. A. (2017). Aerodrome Safety Management System Manual. La Paz, Bolivia.
- Hernández, D. A., & Salazar, L. H. (2010). Development of a manual for the management of opeeracional security for the company Vigo Jet. Mexico City, Mexico.
- Aguirre, G. P. (2010). Design of a management system in the airport security department of the metropolitan public company of airport services and management of free zones and special regimes. Quito, Pichincha, Ecuador.
- Gallegos, E. (2015). Implementation model of phase 1 of the safety management system in aeronautical training centers. Mexico City, Mexico.
- Alfaro, W. (2016). Identification, measurement, evaluation and control of

noise to the workers of the handling and maintenance areas of TAME EP, in the airport platforms. Guayaquil, Ecuador.

- Córdova, D., & Zambano, M. J. (2016). Diagnosis of the operational functioning of the Eloy Alfaro International Airport in Manta-Ecuador. Manta, Ecuador.
- Caisapanta, G. (2012). Design and implementation of a Contingency Plan for emergency control, aimed at reducing the risks to which the servers and users of the Cotopaxi International Airport of the General Directorate of Civil Aviation DGAC are exposed. Quito, Ecuador.
- Benito, A. (2008). Airports in the Transportation system. SN: AENA Foundation.
- Ardavin, I.F. (2016). Airport Planning [PDF Version]. Mexico City. http://www.ptolomeo.unam.mx:8080/xml ui/bitstream/handle/132.248.52.100/10406 /Planeaci%C3%B3n%20de%20Aeropuert os%20FINAL.pdf?sequence=1&isAllowe d=y
- Méndez, E. (2019). CASO MEXICO CITY UNITING AVIATION. chromeextension://efaidnbmnnnibpcajpcglclefind mkaj/viewer.html?pdfurl=https%3A%2F %2Fwww.icao.int%2FNACC%2FDocum ents%2FMeetings%2F2019%2FSMSANS P%2FSMSxANSP-P01-SP.pdf&clen=807245
- Cevallos, G., & Legarda, W. (2019). National Operational Safety Plan in Ecuador. In I. W. Tlgo. Galo Cevallos A. Quito.
- Vargas, J. (2016). Manual of Operational Safety in pllataforma international of Tarija Cap. Oriel Lea Plaza. https://repositorio.umsa.bo/xmlui/bitstrea m/handle/123456789/9181/PG-1682%20%20Vargas%20Mendoza%2c%

20Jorge%20A..pdf?sequence=1&isAllow ed=y

10(3S) 3777-3803

- ICAO (2016). State of the security of world aviation. https://www.icao.int/safety/Documents/IC AO_State-of-Global-Safety_web_SP.pdf
- ICAO (2021). Press release: Total passenger volume in 2020 dropped by 60% and COVID-19's assault on international mobility continues unabated. https://www.icao.int/newsroom/newsdoc2 021fix/com.02.21.sp.pdf
- ICAO (2016). Design and operation of aerodromes. https://www.anac.gov.ar/anac/web/upload s/normativa/anexos-oaci/anexo-14-voli.pdf
- White, J.J. (2017). SEGURILATAM. https://www.segurilatam.com/seguridadpor-sectores/puertos-yaeropuertos/seguridad-en-losaeropuertos_20170514.html
- Camino, M. T. (2017). Security in the attention to passengers and other airport users. Mature: CEP.

Campos, M. (2021). Planning, design, operation and operational safety of airports. https://www.scribd.com/document/50504 0670/Planificacion-Diseno-Funcionamiento-y-Seguridad-Operacional-de-Aeropuertos#page=1&fullscreen=1

- Chávez, A. A. (2013). Management of handling resources in congested airports. https://ddd.uab.cat/pub/tfg/2013/112825/ AgustiChavezAlejandro-TFGAa2012-13.pdf
- Claro, M. (2017). General Directorate of Civil Aeronautics, DGAC. https://www.dgac.gob.cl/pasajeros/segurid ad-en-aeropuertos/

- Controls, J. (2014). Johnson Controls. https://blogseguridad.tyco.es/noticias/segu ridad-en-los-aeropuertos/
- DGAC. (2018). Directorate-General for Civil Aviation. https://www.dgac.gob.cl/pasajeros/segurid ad-en-aeropuertos/
- Heron, L. R. (2020). Airport Safety: Runway raids. https://www.oleanadvisors.com/post/segu ridad-operacional-en-aeropuertosincursiones-en-pista
- Osvaldo Azpeitia, V. M. (2013). Physical security at international airports in Latin America. http://sedici.unlp.edu.ar/handle/10915/104 146
- Perez, M. A. (2016). ThinkBig. https://blogthinkbig.com/causas-deaccidentes-aereos/
- Pinto, G. T. (2018). DOCPLAYER. https://docplayer.es/69883849-Caracteristicas-del-aeropuerto.html
- Tipanquiza, J. J. (2017). Implementation of a model to measure the effectiveness of logistics in the transport of goods for the air modality at the Cotopaxi airport, Latacunga canton, province of Cotopaxi. Obtained from the implementation of a model to measure the effectiveness of logistics in the transport of goods for the air modality at the Cotopaxi airport, Latacunga canton, province of Cotopaxi. http://dspace.espoch.edu.ec/bitstream/123 456789/6772/1/112T0033.pdf
- YGSH. (n/d). Chapter I: Airport. http://www.ptolomeo.unam.mx:8080/xml ui/bitstream/handle/132.248.52.100/456/A 4.pdf?sequence=4
- Cruz, And.; Gómez, F. (2017). Safety Management System (SMS) as a key aspect for the strengthening of the

aeronautical industry: Case: Dominican Republic. http://www.invesdtigare.pucmm.edu.do

International Civil Aviation Organization (2018). Safety report. Montreal, Canadá. http://www.icao.int/safet.Documents/ICA O_SR_2018_30082018.pdf