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Abstract 

The only way to enhance a patient's survival chances is to recognize the lung cancer early. A CT scan is 

utilized to determine the spot of a tumour and the extent of illness in the body. The CT scan of lung images 

was analysed in this study using an Optimal Deep Wavelet Autoencoder-Based DNN (ODWADNN). Using 

the Accelerated Greedy Snake's algorithm, a highly accurate, dependable, fast, automated paradigm was 

utilized to segment the liver tumour image (AGSA). In this case, the recommended RCSA is utilized to 

train the DBN. The recommended RCSA combines the ROAand the Cuckoo Search algorithm (CS). The 

discussed paradigm enhances the mentioned disease prediction rate, measured by MATLAB-based 

outcomes such as Reliability, Specificity, Precision, Recall, and F1 score.  

Keywords: the mentioned disease, Computed Tomography, Optimal Deep Wavelet Autoencoder-

Based DNN, Segmentation, Accelerated Greedy snake’s algorithm, ROA and CS.

1. INTRODUCTION 

The mentioned disease kills over one million 

people annually [1]. Early identification of this 

disease may limit mortality and increase patient 

survival when curative treatment is available. 

The doctor uses CT images to examine and 

predict the disease [2]. However, in many 

cases, a physician cannot make an accurate 

diagnosis without the aid of a CAD system. 

For 2020, the projected incidence of illness 

patients in India was 679,421 (94.1 per 

100,000) for males and 712,758 (103.6 per 

100,000) for females. One in every 68 men (the 

mentioned disease), one in every 29 women 

(breast illness), and one in every nine Indians 

will form illness later in life (0-74 years of age) 

[3] if illness is recognized in its early stages, the 

chances of survival increase. Early 

identification of the mentioned disease is a 

difficult task. Around 80% of patients are 

effectively predicted only in the advanced or 

terminal stages of illness [5]. The mentioned 

disease is the second most common illness in 

men and the tenth most common illness in 

women [4]. After breast and colorectal illnesss, 

the mentioned disease is the third common 

disease in women [5]. One of image 

processing’s simplest and most efficient 

dimensionality reduction paradigms is feature 

extraction [6]. The non-intrusive nature of CT 

imaging is one of its most notable 

characteristics [7]. The selected or retrieved 

characteristics will retrieve the appropriate 

details from the input data to the reduction 

operation [8]. Neural network paradigms with 

binarization image pre-processing are utilized 

for the mentioned disease image categorization 

[9].  
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Current studies for the mentioned disease 

categorization utilized a neural network 

paradigm that provided an reliability of 80%. 

Several studies have been conducted on the 

mentioned disease categorization and 

Classifiers, such as 'SVM, KNN, and ANN' 

[10]. Although, these paradigms are costly and 

only recognize the mentioned disease in its 

advanced stages, resulting in a meagre chance 

of survival. On the other hand, early 

identification of illness can aid in the complete 

cure of the disease. With this motivation, this 

study attempts to use deep learning and 

metaheuristic paradigms to provide a more 

efficient paradigm for the mentioned disease 

diagnosis. The following are the main 

accomplishments of the present research: 

• • Introducing a novel paradigm for 

predicting the mentioned disease using CT scan 

images of the lungs. 

• • Developing a new structure for the 

ODWADNN as a valuable tool for illness 

diagnosis. 

• • Metaheuristic-based optimization of 

the convolutional neural network, the ROA and 

CS. 

• • The AGSA is utilized to segment the 

tumour area in the liver image 

At last, the defined intelligent technique-based 

illness identification system is implemented 

using the MATLAB tool, and the system's 

efficiency is ascertained using various 

efficiency metrics. Based on the preceding 

analysis, the work is organised. Section 2 briefs 

the related work on the mentioned disease 

identification. Section 3 briefs the paradigm for 

developing the recommended ODWADNN-

based the mentioned disease identification 

operation. Section 4 provides simulation 

outcomes to depict the effciency of the 

recommended paradigm. Section 5 includes 

conclusions and recommendations for 

upcoming research. 

2. Related work 

 Sheway et al. [11] utilized linear SVM, logistic 

regression, k-Nearest Neighbor (kNN), random 

forest, and AdaBoost classifiers to categorize 

nodules. Firmino et al. [12] utilized a rule-

based classifier and SVM to categorize 

nodules. They utilized the LIDC-IDRI database 

[13] and got 97 % and 94.4 % recall. [14] 

established an ANN-based CT illness 

categorization. The statistical paradigm was 

developed for categorization. There is more 

reliability in backpropagation networks than in 

forwarding propagation networks.  

[15] recommended a two-path CNN with 

"denoising first" (DFD-Net). It was discovered 

that this type of paradigm efficiently limits 

noise in an image, and is easily adaptable to 

nodule shape and size inconsistency. [16], a 

novel automated pulmonary nodule 

identification paradigm is based on modified 

V-Nets and a high-level descriptor-based SVM 

classifier. [17] recommended an efficient lung 

nodule identification paradigm based on 

multigroup patches retrieved from lung images 

and boosted with the Frangi filter.  

In [18], researchers recommended an boosted 

multidimensional area-based fully 

convolutional network (mRFCN)-based 

automated decision support system for lung 

nodule identification and categorization. In 

[19], researchers recommended using 

transferable texture CNN to enhance the 

categorization of pulmonary nodules in CT 

scans. Nasrullah et al. [20] recommended a 

deep CNN-based Customized Mixed Link 

Network (CMixNet) paradigm for lung nodule 

identification and categorization. [21] 

recommended a deep learning paradigm to 
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detect the mentioned disease from CT images 

for patients at Shandong Provincial Hospital. 

We use densely connected convolutional 

networks (DenseNet) to categorize malignant 

tumours from images acquired from, and 

AdaBoost algorithm to integrate multiple 

categorization outcomes to enhance 

categorization efficiency.  

Recommend a CNN-based approach in [22] 

that uses MIP images of different slab 

thicknesses (5, 10, 15, etc.). In [23], the 

vesselness filter identifies lung nodules using 

Multi-Scene Deep Learning Architecture 

(MSDLF). This work suggests a new optimal 

deep learning paradigm with effective 

segmentation for lung nodule identification to 

overcome the above surveys. 

3. Proposed Methodology 

The recommended paradigm is utilized to 

categorize CT images of the human lung and 

includes several stages, including pre-

operationing, segmentation, and finally, 

categorization. The infected area is divided 

using GSA from the noise-free lung CT image. 

The divided area is then utilized in the 

recommended categorizeing DNN paradigm to 

retrieve high-level characteristics for CT 

images using a deep wavelet auto encode to 

limit computational time and cost. The Optimal 

Deep Wavelet Autoencoder-Based DNN 

(ODWADNN) classifier was utilized in this 

study, and RCSA was utilized to optimise the 

structure. The categorisation problem is 

generally divided into two stages: training and 

testing. exThis paradigm is depicted in Fig. 1. 

 

 

 

 

Fig.1.General diagram of recommended 

ODWADNN based The mentioned disease 

identification 

 

3.1 Data set Preparation  

A LIDC/IDRI that includes 1018 helical 

thoracic CT scans from 1010 different patients 

is utilized. Four radiologists worked together in 

two stages to annotate the nodules in the 

LIDC/IDRI database. Each radiologist 

individually analysed the exams in the first 

stage. The four analyses from the first stage 

were presented to the four radiologists in the 

second stage. Each radiologist independently 

re-analyzed the exams and made their 

annotations [24]. Lung CT images were 

preserved in the DICOM format, and slice 

thickness and pixel spacing, can be validated 

[25]. The standardised pixel spacing was set to 

0.688 mm, the mean of all pixel spacing values. 

Radiologists classified the nodules they 

annotated into small nodules with diameters 

less than 3mm and large nodules greater than 

3mm. In this study, 1006 cases contained a total 

of 25723 two-dimensional nodules (>3mm) in 

these CT slices. 

3.2 Frangi filter for image quality enhancement 

In a CT scan of the lungs, vessels had a distinct 

morphology and structure from lung nodules. 

Lung nodules resembled ellipses, irregular 
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spheres, or cotton-like structures. This step 

removed vascular structures in the lung, 

allowing us to analyse nodule-like structures 

better. The Frangi filter is the gold standard for 

vascular enhancement, enhancing vessel-like 

structures while weakening other structures 

[36]. Using a multi-scale Frangi filter, this 

study designed a paradigm to remove vascular 

structures from the lung. As was described in 

[32], one image 𝐼(𝑥, 𝑦), can be defined as a 

Taylor expansion in the neighbourhood of a 

random point 𝑟𝑝(𝑥0, 𝑦0) . The second-order 

term of the Taylor expansion contained the 

Hessian matrix of 𝐼(𝑥, 𝑦), which is indicated as 

𝐻𝑚𝑟𝑝,𝜎 . Here 𝑟𝑝 defines 𝑟𝑝(𝑥0, 𝑦0) and 𝜎 are 

indicated as the Gaussian kernel 𝐺𝑘(𝑥, 𝑦) 

scale, defined as (2). Thus 𝐻𝑚𝑟𝑝,𝜎  can be 

computed by (1) and (2). 𝐻𝑚𝑟𝑝,𝜎  is a matrix 

that includes the convolutions of the image 

𝐼(𝑥, 𝑦)  and the second-order differential of 

𝐺𝑘(𝑥, 𝑦) concerning 𝑥 or 𝑦.  

𝐻𝑚𝑟𝑝,𝜎 = [
𝐼(𝑥, 𝑦)⨂ (

𝜕

𝜕𝑥
) (

𝜕

𝜕𝑥
) 𝐺𝑘(𝑥, 𝑦) 𝐼(𝑥, 𝑦)⨂ (

𝜕

𝜕𝑥
) (

𝜕

𝜕𝑦
) 𝐺𝑘(𝑥, 𝑦)

𝐼(𝑥, 𝑦)⨂ (
𝜕

𝜕𝑥
) (

𝜕

𝜕𝑦
) 𝐺𝑘(𝑥, 𝑦) 𝐼(𝑥, 𝑦)⨂ (

𝜕

𝜕𝑦
) (

𝜕

𝜕𝑦
) 𝐺𝑘(𝑥, 𝑦)

]  (1) 

𝐺𝑘(𝑥, 𝑦) = (
1

2𝜋𝜎2) ∙ 𝑒𝑥𝑝(−‖𝑥, 𝑦‖2 2𝜎2⁄ )      (2) 

We, therefore, get the Hessian matrix 𝐻𝑚𝑟𝑝,𝜎. 

The eigenvalues and eigenvectors of 𝐻𝑚𝑟𝑝,𝜎 , 

which are indicated as 𝐸𝑣𝑎𝑙  and 𝐸𝑣𝑒𝑐  (𝑘 =

1,2) respectively, are both computed under the 

scale of 𝜎. For a two-dimensional (2D) image, 

two eigenvalues (𝐸𝑣𝑎𝑙1  and 𝐸𝑣𝑎𝑙2 ) indicate 

different identification structures. 𝐸𝑣𝑒𝑐1 

defines the direction along the vessel, and 

𝐸𝑣𝑒𝑐2  is the orthogonal direction of 𝐸𝑣𝑒𝑐1 . 

𝐸𝑣𝑎𝑙1  and 𝐸𝑣𝑎𝑙2  play a decisive role in 

discriminating local vascular orientation. To 

recognize the bright vessel-like structure, 

𝐸𝑣𝑎𝑙1 and 𝐸𝑣𝑎𝑙2 should fulfil two criteria:  

|𝐸𝑣𝑎𝑙1| ≈ 0 ; |𝐸𝑣𝑎𝑙1| ≪ |𝐸𝑣𝑎𝑙2|  (3) 

The measure formula of vessel likeliness 𝑉𝑙 is 

displayed in (4) by using the two eigenvalues 

(𝐸𝑣𝑎𝑙1 and 𝐸𝑣𝑎𝑙2). 

𝑉𝑙𝑟𝑝 = {
0 𝑖𝑓𝐸𝑣𝑎𝑙2 > 0 
∁ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4) 

∁=

exp (
−|𝐸𝑣𝑎𝑙1 𝐸𝑣𝑎𝑙2⁄ |2

2𝑡ℎ1
2 ) (

1−exp‖(𝐸𝑣𝑎𝑙1,𝐸𝑣𝑎𝑙2)‖2

2𝑡ℎ2
2 ) (5) 

Where ∁ is a parameter to denote the formula 

of (5). The attributes 𝑡ℎ1  and 𝑡ℎ2  are 

adjustable thresholds that can control the filters' 

sensitivity to |𝐸𝑣𝑎𝑙1 𝐸𝑣𝑎𝑙2⁄ |  is important for 

differentiating the vessel-like and nodule-like 

structures, and 2-norm ‖(𝐸𝑣𝑎𝑙1, 𝐸𝑣𝑎𝑙2)‖ ∙
|𝐸𝑣𝑎𝑙1 𝐸𝑣𝑎𝑙2⁄ |can reflect the contrast of the 

object and the background. According to the 

grayscale of images utilized in this study, 𝑡ℎ1 

and 𝑡ℎ2 were set to 0.6 and 20, respectively. 

First, the Frangi filter was utilized to create the 

vessel structure image. Then, two images were 

created: one of generated vessel structure and 

one of the lungs. When scale σ was set to 1.5, 

the vessel-like structures were virtually deleted, 

and the distortion of nodule-like structures was 

virtually eliminated. 

3.3 Segmentation using AGSA 

The recommended study utilized the fast 

greedy snake’s algorithm to segment liver CT 

images. This algorithm utilized control points 

to fix the initial contour curve. Internal energy 

and curvature were obtained from the image 

gradient. The greedy snake algorithm includes 

energy function 𝐸as shown in Eq. (6)  

𝐸 = ∑ 𝛼𝑖𝐸𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦(𝑐𝑝𝑖) +𝑁
𝑖=1

𝛽𝑖 𝐸𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑐𝑝𝑖) + 𝐿𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔(𝑐𝑝𝑖) (6) 
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In which 𝛼𝑖 , 𝛽𝑖  and 𝛾𝑖  are weighing factors, 

𝑐𝑝𝑖(𝑖 = 1,2, … 𝑁)  defines all of the control 

points of the contour curve. The image energy 

(𝐿𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔) is the external energy derived 

from the input image. The image contour is 

indicateed by pixels with arc lengths less than 

one. By selecting the neighbourhood pixel, the 

arc length is limited. The continuity energy is 

computed using the first-order continuity 

function shown in Eq. (7) 

𝐸𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦(𝑐𝑝𝑖,𝑗) =
𝐷𝑖𝑠𝑡𝑎𝑣𝑔−𝐷𝑖𝑠𝑡𝑐𝑝𝑖−𝑐𝑝(𝑖+1,𝑗)

max(𝐷𝑖𝑠𝑡𝑎𝑣𝑔−𝐷𝑖𝑠𝑡𝑐𝑝𝑖−𝑐𝑝(𝑖+1,𝑗)
)
  (7) 

𝐷𝑖𝑠𝑡𝑐𝑝𝑖−𝑐𝑝(𝑖+1,𝑗)
 is the distance between two 

consecutive pixels and 𝐷𝑖𝑠𝑡𝑎𝑣𝑔 is the average 

distance between the adjacent pixels. It is the 

distance distribution between adjacent pixels of 

the contour. Dist_avgis  is upgraded when the 

distance between adjacent pixels approaches 

davr. This helps the arc's pixels be evenly 

spaced. This energy determines how far the arc 

should bend to reach the concavity. Curvature 

energy is computed using Eq. (8)  

𝐸𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑐𝑝𝑖,𝑗) =
𝑐𝑝𝑖−1−2𝑐𝑝𝑖,𝑗+𝑐𝑝𝑖+1

max(𝑐𝑝𝑖−1−2𝑐𝑝𝑖,𝑗+𝑐𝑝𝑖+1)
 (8) 

The largest values normalize the energy terms 

in the neighbourhood. Counteracting energy is 

de¯ned based on the local gradient energy 

given by Eq. (9)  

𝐿𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔(𝑐𝑝𝑖,𝑗) =
𝐼(𝑐𝑝𝑖,𝑗)

max(𝐼(𝑐𝑝𝑖,𝑗))−min(𝐼(𝑐𝑝𝑖,𝑗))
  (9) 

where 𝐼(𝑐𝑝𝑖,𝑗)  is the intensity gradient. 

According to the equation above, moving the 

arc limited the total energy. The algorithm finds 

the next pixel cross pattern and diagonal 

pattern. Each iteration swaps these two patterns 

to limit computation time and enhance 

segmentation reliability. 

3.4 The mentioned disease prediction using 

ODWADNN 

A DWA can retrieve and learn principal 

components from large data distributions. This 

technique was utilized as an image 

compression and feature selection technique in 

this study. The middle layer includes the 

encoded image with a  64 × 64 size. 

Mathematically let 𝑋𝑖  defines the divided 

input, 𝐻𝑖 defines Hidden Layer (here 𝐼 is 1 to 

3), and 𝑌𝑖  defines the outcome. Let the 

activation functions 𝑎𝑓 utilized 𝐼 as depicted in 

eq (10):  

𝐻𝑖 = 𝑎𝑓𝑖(𝑊𝑖𝑋𝑖 + 𝑏𝑖), 𝑖 = 1,2,3,4  (10) 

𝑊𝑖 is the weight vector between 𝑋𝑖 to 𝐻1, 𝐻1 to 

𝐻2 and 𝑌𝑖. The sparse Autoencoder [27] has a 

higher amount of hidden units than input units. 

Mathematically, the basic sparse Autoencoder 

includes a single hidden layer, 𝐻, connected to 

the input vector, 𝑣, with a weight matrix 𝑤. The 

outcome is created from the hidden layer as a 

reconstructed vector, 𝑣’, that uses a new weight 

matrix 𝑛𝑤. The bias is indicated as 𝑏𝑖𝑎𝑠, and 

the activation function is slated as 𝑎𝑓  . The 

formulation is indicated below in eq. (11)  

𝑋 = 𝑎𝑓(𝑊𝑣 + 𝑏𝑖𝑎𝑠); 𝑣′ = 𝑎𝑓(𝑊′𝑋 + 𝑏𝑖𝑎𝑠′) 

(11) 

The learning operation for the error 

propagation is stated below in eq.(12): 

min‖𝑣 − 𝑣′‖2
2   (12) 

Fig.2. A architecture of a single layer of Deep 

Wavelet Autoencoder. 
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A single layer DWA architecture is shown in 

Fig.2. This architecture can be deepened. This 

technique uses a DWT [28]. Only 

approximation coefficients are utilized for 

categorization in a DNN paradigm. Table 1 

shows the DWA step-by-step algorithm. 

Table 1. The step by step algorithm of DWA 

Step 1. Segmentation of Lung CT images to 

retrieve the illness area only.  

Step 2. Dividing of a dataset to sub arrays  

Step 3. for each sub-array, continue the steps 4 to 8  

Step 4. Provide the image sub-array to Deep 

Wavelet Autoencoder for encoding  

Step 5. Transfer the encoded image via low and 

high pass filters by discrete wavelet transform for 

decomlocation. 

Step 6. Employ inverse wavelet transform to 

integrate and decode the images to acquire the real 

image  

Step 7. Operation the Autoencoder for the amount 

of epochs to acquire optimized weight and bias 

values  

Step 8. Retrieve approximation coefficients from 

the hidden layer, integrate them and bring an input 

to a DNN for categorization.  

3.5. Categorization of lung CT images 

The present study suggested DNN in the CT 

image categorization paradigm. Following 

feature selection, DNN groups the resulting 

component vector. This classifier uses two 

capacities: deep DBN and RBM. An RCSA 

optimization is considered to enhance the 

recommended paradigm's categorization 

efficiency (see the section below for details).  

Deep belief network: The DBN paradigm 

rewards the system for delivering precise starts 

based on its hidden unit conditions. A DBN's 

attributes are the layer weights and the layer 

bias. Setting up attributes to train DNN help of 

a restricted RBM [29].  

Restricted Boltzmann machine (RBM): It is a 

two-layer rehashed neural architecture in which 

symmetrically-weighted affiliations link 

stochastic twofold sources of details. The class 

check is ignored in a preparation case, and the 

RBM condition is expanded stochastically (13). 

This vector is also reversed in RBM, resulting 

in confabulating (retrying) the remarkable data. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑤, ℎ) = − ∑ ∑ 𝐼𝑖𝑗𝑤𝑖ℎ𝑗
𝑗
𝑗=1

𝑖
𝑖=1 − ∑ 𝛼𝑖𝑤𝑖

𝐼
𝑖=1 −

∑ 𝛽𝑗ℎ𝑗
𝐽
𝑗=1   (13) 

Where 𝐼𝑖𝑗  defines the symmetric interaction 

term between the visible unit, 𝑤𝑖 is the weight 

matrix. The hidden unit s hj, 𝛼 , 𝛽  are the 

bias terms, 𝑖, 𝑗 are the numbers of visible and 

hidden units. 

Training of RCSA based DBN: This section 

describes how to train the recommended 

RCSA-based DBN classifier. RCSA is utilized 

to train RCSA-based DBNs to choose the 

appropriate weights optimally. The MLP 

training operation is based on the RCSA 

algorithm and involves distributing training 

data.  

Furthermore, RCSA is utilized to compute 

optimal weights, then evaluated using an error 

function. The recommended RCSA is created 

by combining ROA and CSA. ROA [30] is 

based on the concept of a group of riders racing 

to a specific spot. The cuckoo breed behaviour 

is utilized to develop the CS algorithm [31]. 

The  RCSA is outlined below:  

Initialization Operation. Initialize the weights 

in a random manner and is indicated as 

𝑤 = {𝑤1, … , 𝑤′, … 𝑤𝜗}  (14) 

In which w' defines the weight between input 

and hidden layers, and w^ϑ defines the weight 

between hidden and outcome layers.  
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Error computation. The error Err is computed 

based on the difference formed between the 

desired and the acquired outcomes and is 

indicated as, 

𝐸𝑟𝑟𝑓 =
1

𝑢
∑ (𝑂𝑂𝑞 − 𝐷𝑂𝑞

)
2𝑢

𝑞=1 , 1 ≤ 𝑢  (15) 

here 𝑂𝑂𝑞  shows the acquired outcome, and 

𝐷𝑂𝑞 defines the desired outcome.  

The equation for these are given below. 

𝑤𝑞+1
𝐵 (𝑐, 𝑤) = 𝜂 [𝑤𝑞(𝑙, 𝑤) ∗ 𝜆(𝑤) + 𝑤𝑞(𝜊, 𝑤) ∗

[1 − 𝜆(𝑤)]]  (16) 

here η shows a random number, l and ο is a 

random number between 1 and R, and λ defines 

a random number ranging between [0,1]. The 

equation of the follower is given by 

𝑤𝑞+1
𝐹 (𝑐, 𝑠) = 𝑤𝑙𝑟(𝑙𝑟, 𝑠) + [cos(𝑣𝑐,𝑠

𝑞
∗ 𝑤𝑙𝑟(𝑙𝑟, 𝑠) ∗ 𝐵𝑐

𝑞
)] 

  (17) 

here 𝑠  is coordinate selector, 𝑤𝑙𝑟  defines the 

leading rider's spot, 𝑙𝑟  specifies the index of 

leading rider, 휐 𝑣𝑐,𝑠
𝑞

 defines the steering angle 

of 𝑐 th rider in 𝑠 th coordinate, and 𝐵𝑐
𝑞

 is the 

distance traveled by cth rider. The overtaker 

upgrade is utilized in the weight upgrade 

operation to maximize the success rate and is 

given by 

𝑤𝑞+1
𝑜 (𝑐, 𝑠) = 𝑤𝑞(𝑐, 𝑠) + [𝜉𝑞

∗(𝑐) ∗ 𝑤𝑙𝑟(𝑙𝑟, 𝑣)]  

(18) 

where 𝜉𝑞
∗(𝑐)) indicate the direction indicator, 

𝑤𝑞(𝑐, 𝑠) defines the spot of the 𝑐th rider in the 

vth coordinate. The attacker tends to take the 

leader's spot by updating the coordinates rather 

than the selected values, so the attacker's 

upgrade operation is given by 

𝑤𝑞+1(𝑐, 𝑤) = 𝑤𝑙𝑟(𝑙𝑟, 𝑠) + [cos 𝑠𝑐,𝑠
𝑞

∗ 𝑤𝑙𝑟(𝑙𝑟, 𝑠)] + 𝐵𝑐
𝑞
 

(19) 

Assuming the leading spot of ROA 

𝑤 (𝑜𝑟𝑙𝑑, 𝑠) be done using 𝑤𝑞+1, and thus, the 

equation is given by, 

𝑤𝑞+1
𝑐,𝑤 = 𝑤𝑞

𝑐,𝑤 + 𝜅⨂𝑙𝑒𝑣𝑦(𝜈) = 𝑤𝑙𝑟(𝑙𝑟, 𝑠)  (20) 

where 𝑤𝑞
𝑐,𝑤

 defines the weight at current 

iteration, 𝜅 defines the step size, ⨂ defines the 

entry wise multiplication operator, and 

𝑙𝑒𝑣𝑦(𝜈)defines the levy fight with dimension 

𝑣. After substituting the above equation in Eq. 

(19), the final equation for recommended 

RCSA is given as,  

𝑤𝑞+1(𝑐, 𝑤) = 𝑤𝑙𝑟(𝑙𝑟, 𝑠)[1 + cos 𝑠𝑐,𝑠
𝑞

] + 𝐵𝑐
𝑞
  (21) 

Use the fitness function to find a outcome. The 

outcomes are ranked based on fitness values 

computed by specificity, with the best outcome 

having the lowest fitness values. Stop the flow. 

The iteration is repeated until the optimal 

global outcome is generated. Fig.3 shows the 

recommended ODWADNN general 

architecture. 
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Fig.3.The general architecture of the recommended ODWADNN 

4. Experimental outcomes and 

discussion 

This section assesses the boosted DNN and 

ensemble classifier-based the mentioned 

disease identification system. As previously 

stated, the system uses the LIDC-IDRI dataset 

during implementation. Comparing 

ODWADNN outcomes to SVM, KNN, ANN, 

mRFCN, and CNN. The recommended 

paradigm's efficiency is determined by its 

ability to recognize illnessous or nonillnessous 

lung images. The paradigm can predict a new 

patient's lung condition based on testing data. 

Because the divided area is utilized to derive 

practical characteristics, its reliability must be 

evaluated. Table 4 shows the obtained 

outcomes. 

accuarcy =  
T P +T N

T P +T N+F P +F N
  (22) 

specificity =
 TN

T N+F P
  (23) 

Precision =
TP

TP+FP
    (24) 

Recall =
TP

 TP+FN
    (25) 

F1 score = 2 × 
precision×recall

 precision+ recall
  (26) 

Metrics 

       

Paradigms 

KNN ANN SVM mRFCN CNN ODWADNN 

Reliability 0.72 0.84 0.87 0.88 0.91 0.96 

Feature retrieveion 

through DWA Hidden unit 1 

Input unit weights 

Input unit weights 

Outcome 

layer 

Generate initialization 

and search space of 

RCSA 

Error computation 

Evaluate fitness function 

New weight calculation 

using ROA 

Weigh updating using CS 

Termination satisfied 

End operation 

No 

Yes 

 

Class 1 

Normal 

Class 2  

malignant 

Class 3 

Benign  
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Specificity 0.86 0.88 0.90 0.94 0.95 0.98 

precision 0.87 0.88 0.91 0.92 0.94 0.97 

Recall 0.84 0.87 0.86 0.87 0.91 0.98 

F1score 0.83 0.87 0.88 0.89 0.93 0.98 

4.1. Reliability comparison 

Fig.4. Result of Reliability 

 

To compare recommended and traditional 

paradigms for feature count in databases, see 

Fig.4. The ODWADNN enhances reliability 

while speeding up operationing. Because it 

does not require many derived factors during 

pre-operationing, the ODWADNN has a 0.96 

% reliability. In addition, the recommended 

system boosted illness identification using 

DWA-based feature reduction and image 

compression.  

4.2. Specificity comparison 

Fig.5. Result of Specificity 

 

Fig.5 shows the reliability of recommended and 

traditional paradigms for feature count in given 

databases. The ODWADNN enhances 

reliability while speeding up operationing. 

Compared to other paradigms, the 

ODWADNN is 0.98 % accurate. When 

compared to traditional classifiers, the 

recommended ODWANN algorithm 

outperforms them. The analysis shows that 

DWA-based characteristics outperform other 

classifiers in identification reliability. 

Compared to other categorization paradigms, 

the ODWADNN classifier effectively 

identifies the mentioned disease. 

4.3. Precision Rate comparison 

Fig.6. Result of Precision 

 

According to Fig.6, the precision of suggested 

and conventional paradigms for the amount of 

characteristics in given databases. While the 

amount of characteristics expands, so does the 

corresponding precision. In comparison to the 

traditional paradigms, the ODWADNN, for 

example, provides a precision of 0.97 %. This 

is because the ODWADNN does not require 

high-dimensional characteristics or derived 

factors and may discover a comparatively 

better-sorted collection of input within a given 

time interval. On the whole, the suggested 

categorization obtained good outcomes, and it 

was discovered that the system was able to 

handle this and enhance system efficiency. 
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4.4. Recall Rate comparison 

Fig.7. Result of Recall 

 

The recall of recommended and traditional 

paradigms for the amount of characteristics in 

a given database is shown in Fig.7. As the 

amount of characteristics accelerates, so does 

the recall. For example, when compared to 

traditional paradigms, the ODWADNN 

achieves a recall of 0.98 %. This is because the 

RCSA limits the computation time of the 

derived factors, allowing for the simplest fine-

tuning of DWADNN. On the whole, the deep 

learning algorithms produced the best 

outcomes when it came to detecting the 

mentioned disease in CT images.  

4.5. F-measure Rate comparison 

Fig.8. Result of F-measure 

 

According to Fig.8, the f-measure of suggested 

and traditional paradigms for the amount of 

characteristics in provided databases. The f-

measure is significantly boosted while the 

amount of characteristics is exceeded. For 

example, the ODWADNN has an f-measure of 

0.98 % compared to all other paradigms. The 

DWA algorithm was utilized to find specific 

characteristics and compress images. As a 

result, additional operationing, memory 

requirements, and time complexity can be 

limited to fit the recommended paradigm in 

illness identification.  

5. Conclusion and future work 

When contrasted to other categorization 

paradigms, the suggested ODWADNN with 

segmentation performed better in the case of 

CT images. The divided area is effectively-

recognized using AGSA, and various 

characteristics are retrieved that are prominent 

in dimension, requiring more time to recognize 

illness. An automatic the mentioned disease 

categorization paradigm limits manual 

labelling time and eliminates manual error. 

According to the outcomes of the experiments, 

the recommended technique is effective for 

categorizeing human lung images regarding 

reliability, specificity, precision, recall, and f-

measure, with values of 0.96 %, 0.98 %, 0.97 

%, 0.98 %, and 0.98 %, respectively. The 

reliability level has demonstrated that the 

recommended technique is effective in 

detecting illness-infected parts in CT images. 

The categorization outcomes demonstrate the 

benefits of this paradigm: it is quick, easy to 

use, non-invasive, and inexpensive. High-dose 

CT images and optimal feature selection are 

utilized to recognize this disease in future work. 
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