
Journal of Survey in Fisheries Sciences               10(3S) 1323-1330 2023 

 

1323 
 

Quantum mechanical simulations in diffusion MRI  
 

Ahmed J. Allami 
Department of Dental technology, Komar University of Science and Technology, 

Kurdistan-Region, Iraq, ahmed.jasim@komar.edu.iq 

 

Hawar Sardar Hassan Al-windawi 
Department of Dentistry, Komar University of Science and Technology, Kurdistan-

Region, Iraq 

Department of Nuclear Medicine, Anwar-Shekha Medical City, Sulaimani, Kurdistan-

region, Iraq 

 

Abdul Amir H. Kadhum 
School of Medicine, University of Al-Ameed, Karbala, Iraq 

 
Abstract 

Background: Various magnetic resonance imaging simulation packages rely on Bloch equations, Bloch-

Torrey equations and the Liouville–von Neumann equation is which a dynamical formulation to simulate a 

voltage bias across a molecular system and to model a time-dependent current in terms of classical or 

quantum treatments of magnetic resonance imaging respectively. 

Method: The problems in these equations cannot address spin dynamic such as j-coupling and spatial 

dynamics such as diffusion and flow at the same level. In this study, the Fokker-Planck formalism was used 

to simulate phantoms that deal with diffusion and flow on the spatial dynamics side and j-coupling in the 

spin dynamic side using the Spinach simulation package. 

Result: The numerical simulation of magnetic resonance imaging has two limits in terms of research. First, 

a complicated spin system is associated with simple diffusion and flow, such as in spatially encoded NMR 

experiments. Second, a simple spin system is associated with high dimensional diffusion and flow. 

Conclusion: A unique simulation package that deals with the quantum mechanics treatment of spin 

dynamics and the classical description of diffusion and flow in three dimensions are presented in this work. 
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INTRODUCTION 

A set of equations describ net magnetization as 

a time-dependent NMR. These equations are 

known as Bloch equations or Bloch-Torrey 

equations, which appear to be the basis of all 

simulation packages. During the last decay, 

various magnetic resonance simulation 

packages have been implemented very well [1]. 

However, these packages are unable to handle 

coupled spin systems such as J-coupling. On 

the nuclear magnetic resonance side, the 

packages can deal with the coupled spin system 

but are still insufficient to handle the necessary 

spatial dynamics such as diffusion and flow. 

NMR-SCOPE[2] was the first quantum 

mechanics package to develop a product 
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operator for a coupled spin system. The C++ 

language then introduces GAMMA [3] for the 

same purpose. Many packages, such as 

SIMPSON [4], Bloch-Lib [5], 

SPINEVOLUTION [6], SIMPLTN [7], 

NMRSIM [8], Spin-Dynamics [9], and Spinach 

[10]. In this paper, a unique simulation package 

that deals with spin dynamics in quantum 

mechanics vision and the classical description 

of diffusion and flow was presented. 

1. Magnetic resonance imaging 

MRI is a noninvasively technique that is 

generally used for medical purposes. Disorders 

in muscles and joints, tumors detections, and 

viewing abnormalities in the brain can be 

performed very well using MRI. The basic idea 

of magnetic resonance imaging is the 

interaction between hydrogen atoms (protons), 

which are a part of the water molecules. The 

latter is considered 70% of the entire body. The 

protons were quantized according to their 

magnetic moments parallel to the main 

magnetic field. Subsequently, the 

radiofrequency pulse was switched on to 

transfer the magnetization from the transverse 

plane according to the applied magnetic field. 

The range of frequencies processed via 

radiofrequency pulses relies on the power of the 

magnetic field is strong. Slice can be selected 

specifically when an additional gradient 

magnetic field is applied to make the external 

magnetic field vary from point to point. Each 

point has will have its own resonant frequency 

[11]. 

2. Fokker-Planck equation  

Several theoretical approaches describe the 

magnetic resonance. The selection of a specific 

approach relies on the application field. The 

Bloch-Torrey equation [12], can be used for 

relaxation simulations of an isolated spin 1/2 

system. An ensemble spin system simulation 

experiment can be performed using the 

Liouville-Von Neumann equation [13]. Most 

nuclear magnetic resonance theories depend on 

the Livioulle-von Neumann equation. The 

latter is based on the density operator 

formalism, which is described as the dynamics 

of a quantum system. In general, water 

molecules with diffusion and flow can be 

simulated owing to the competition between 

complicated spatial dynamics and a simple spin 

system [14]. On the other hand, researchers 

have good knowledge of the simulation of 

simple diffusion and flow with a complicated 

spin system such as spatially encoded NMR 

experiments. However, the completion of 

complicated spatial dynamics such as diffusion, 

flow, and convection in three-dimensional 

geometry with sophisticated spin systems (J-

coupling, cross-correlation, etc.), such as a 3-

dimensional phantom combined with typical 

metabolism, can contain up to seven coupled 

spin systems. 

Methodology 

1. Simulation platform   

The Fokker-Planck formalism is used to treat 

an accurate quantum mechanical of spin 

dynamics such as spin-spin coupling and cross-

relaxation coexisting with spatial distribution 

dynamics such as diffusion, flow, and chemical 

kinetics [15]. The Liouville-von Neumann 

equation is the central importance equation that 

all nuclear magnetic resonance simulation 

packages rely on in terms of the dynamics of 

quantum systems description. The Liouville-

von Neumann equation can be derived from 

TDSE: 

( ) ( ) ( )t i t t
t


= −


ρ H ρ    (1) 

Where  is the density operator and  

is the spin Hamiltonian commutation 

( )tρ ( )tH
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superoperator [16]. The Hamiltonian can be 

defined as: 

 Hρ = Hρ = Hρ -ρH     (2) 

When relaxation and kinetics superoperators 

present, equation (1) can be updated to: 

( ) ( ) ( )t i t t
t

  = − + +  
ρ H R K ρ     (3) 

Where ( )tH  is the Hamiltonian superoperator, 

R  is the relaxation superoperator [3], which 

includes the diffusion term, and K  is the 

kinetics superoperator responsible for the 

chemical processes in the system. If the 

thermodynamic equilibrium is non-trivial, the 

relaxation target must be added: 

( ) ( ) eqt t → −  
Rρ R ρ ρ

   (4) 

Where eqρ   is the density matrix in the thermal 

equilibrium condition. 

Indirect representation of the spatial degrees of 

freedom is the main issue in current magnetic 

resonance simulation platforms. It is always 

assumed that spatial dynamics influence the 

spin Hamiltonian, whereas the latter does not 

affect the spatial dynamics. Bloch-Torrey 

equations [17], distributed Bloch equations 

[18], and k-space Bloch equations [19], etc. are 

used in current MRI methods. However, these 

methods are insufficient in terms of J-coupling 

interactions and some cannot deal with spatial 

dynamics such as diffusion and flow.  

The Fokker-Planck formalism is the only 

equation that can deal with high spin dynamics 

including j-coupling interactions and spatial 

dynamics such as diffusion and flow at the 

same level. In this communication, we illustrate 

sufficient Fokker-Plank simulation for some 

MRI phantoms such as diffusion-weighted 

images in three dimensions which is required 

simultaneous treatments of spin dynamics and 

spatial dynamics at the same level. 

2. Diffusion MRI  

In the 1-D diffusion formalism for 

concentration c(x,t), the scalar diffusion 

coefficient D can rely on the spatial location: 

( )
( ) ( )

,
,

c x t
D x c x t

t x x

  
=

  
   (5) 

When we move to the 3-D diffusion equation, 

all six components have coordinate dependence 

with a symmetric 3×3 diffusion tensor: 

( ) ( ) ( )
0

   
t

q t P t G t d=     (6) 

Because of high structure structure in 

biological tissues, even if the diffusion is 

isotropic, the diffusion coefficient D  will vary 

from the ideal isotopic diffusion and it will not 

be the same in all directions.  

To understand the formalism of diffusion, we 

begin with the gradient 𝑠(휀), where 0 ≤ 휀 ≤ 1. 

The shape factor 𝜎 represent the total effect of 

the gradient : 

( )
1

0

s d  =    (7) 

Two more type gradient parameters are 

common: 

( ) ( )
1 1

2

2
0 0

  
1

      
1

=  S d S d     
 

=    (8) 

where 𝑆(휀) is an integral of 𝑠(휀): 

( ) ( )
0

S s d


  =      (9) 

According to the spin-echo pulse sequence, the 

coherence can be expressed according to the 

gradient shape as follows: 
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( ) ( )

( )

( )

        0

0                 

  t +

ga t t

P t G t t

ga t

 



 

   
  

=    
 
 − −      

 (10) 

Where 𝑃(𝑡) is the coherence in terms of time,  

𝐺(𝑡) is the gradient variation per unit time,  𝑔 

is the strength of the magnetic field, 𝑎(𝑡) is the 

pulse structure, and 𝛿  is the pulse length: 

( )
t

a t s


 
 =   
 

   (11) 

Substitute equation (12) in equation (11) 

( ) ( )

        0

0                    

  t +

t
gs t

P t G t t

t
gs

 




 


            
 

=    
 
   −   −             

(12) 

Back to the equation(10), we can find: 

     
 

 
0

0

0 0 0 0

0

  

t t
s

t

t

t t t t t t t t
s dt s d



 
   

 − 
 
  
        − − − −       

= =              
       

   

(13) 

The amount of dephasing per unit length can be 

represented as: 

( ) ( ) ( )
0

   
t

q t P t G t dt=    (14) 

Put equation (12) in the equation (14): 

( )

 

           0

                   

 

t
gS t

q t g t

t
g S t

 


  

  


 
  
      

  
  

=    
 
   −     − −     +         

 

(15) 

The Einstein diffusion equation contains the 

square root. Therefore, it is important to 

introduce the square of Equation (15): 

( )

 

2 2 2 2

2 2 2 2 2

2

2 2

           0

                   

t
g S t

q t g t

t
g S t

  


   

  


 
  
       
  
  

=    
 
    −    −     +         

 

(16) 

To integrate Equations (15) and (16) for all 

pulse sequences, we must define the shape 

parameters 𝜆 and 𝜅 

 

 

0

0

0

0

0

0

02 2 2

0

  

  

t

t

t

t

t t t t
S dt S d

t t t t
S dt S d

 

 

 
  

  
  

+

+

     −     = =              
     −     = =              

 

 

     

        (17) 

The integral over 𝑞(𝑡) is important to show the 

effects of unidirectional translation 𝐸transl  

( ) ( ) ( )transl
0 0

ln  
t t

E q t dt g g


 

      
+

   

    
    = = +  − + − =             

  (18) 

where: 

𝐸transl = 𝑒𝑥𝑝 (𝑖𝑣𝑧 ∫ 𝑞(𝑡)𝑑𝑡
𝛥+𝛿

𝑜
)  (19) 

where  𝑣𝑧 is the speed of the𝐸transl along the z-

axis. 

Assessment diffusion effect required integral 

over 𝑞2(𝑡): 

𝑙𝑛(𝐸diff) = ∫ 𝑞2(𝑡)
𝛥+𝛿

0

 𝑑𝑡 



Quantum mechanical simulations in diffusion MRI  

1327 

               = 𝛾2𝛿2𝑔2

× [(𝛿𝜎2𝜅)⏟    
0≤𝑡≤𝛿

+ (𝛥 − 𝛿)𝜎2⏟      
𝛿≤𝑡≤𝛥

+ (𝛿𝜎2 + 𝛿𝜎2𝜅 − 2𝛿𝜎2𝜆)⏟              
𝛥≤𝑡≤𝛥+𝛿  

] 

              =𝛾2𝛿2𝜎2𝑔2[𝛥 + 2(𝜅 − 𝜆)𝛿]                     
(20) 

where: 

( )2

transl
0

exp  E D q t dt
+ 

 = − 
 

  (21) 

If the gradient has a rectangular shape. The 

shapes parameters can be written as: 

1 1
1,  ,  =

2 3
  = =     (22) 

By adding equation (22) to the equation (20), 

the entire ST equation becomes: 

2 2 2

3

diff

D g

E e


 

 
 − −  
 =    (23) 

In which 𝐸𝑑𝑖𝑓𝑓is the signal intensity. The 

resulting attenuation is [20]: 

( ) 2 2 2

0 exp .                 
3

c c b D b G


 
 
 = − =  −  
 

  (24) 

here c and c_0 are the signal intensities within 

and without diffusion respectively; D is the 

coefficient of diffusion; γ is the magnetogyric 

ratio; G is the strength of the gradient; δ is the 

duration of the gradient; and Δ is the diffusion 

timestep. The b factor defines the diffusion 

sensitivity of the sequence, as shown in Figure 

1. 

 

 

 

 

 

Figure 1: DWI imaging, where G is gradient 

strength, δ is the gradient duration and Δ is 

the diffusion interval 

 

The diffusion-weighted pulse sequence should 

have two strong gradient fields G separated by 

time Δ and duration δ. A higher 𝑏  value was 

obtained when diffusion-sensitive gradients 

were inserted.  

RESULTS 

The representations for the numerical solution 

that includes diffusion and stationary flow 

simultaneously (Figure 2) are essentially 

comparable to those applicable for diffusion; 

the software package is practically identical, 

and only the velocity distribution data are now 

given. 

 

 

 

 



Journal of Survey in Fisheries Sciences               10(3S) 1323-1330 2023 

 

1328 

Figure 2: A one-dimensional simulation of the interaction of diffusion and flow in Spinach 

using the Fokker-Planck solver. A symmetrical flow velocity field (0.2 m/s) is utilized, and 

the diffusion rate is 50 mm2/s 

 

The boundary conditions are a significant issue 

that must be addressed with flow simulations. 

The periodic boundary [92] is the only type of 

border that is not a veritable minefield in terms 

of the underlying numerical mathematics. At 

this point in the development, I've decided to 

merely construct the periodic boundary 

condition, as shown in Figure 3. 

Figure 3: In the case of two-dimensional 

uniform and isotropic diffusion combined 

with a linear flow mechanism, the sampling 

distribution function evolves with increasing 

diffusion times. D = 5x10-5 m2/s, initial 

condition displayed in the left panel, 

periodic boundary values. 

 

Because Spinach claims to be able to mimic 

three-dimensional MRI procedures in an 

acceptable amount of time, an instance is 

necessary (Figure 4). 

Figure 4: Images from a three-dimensional diffusion and flow model of three separate 

elements flowing in a circular flow field. On a modern computer, the simulation takes only a 

few minutes. 
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Conclusion 

It was impossible to simulate in three 

dimensional diffusion and flow using 

numerical simulation.  The numerical 

simulation of magnetic resonance imaging has 

two limits in terms of research. First, a 

complicated spin system is associated with 

simple diffusion and flow, such as in spatially 

encoded NMR experiments. Second, a simple 

spin system is associated with high dimensional 

diffusion and flow. Both cases are well covered 

by the existing simulation software, and both 

are well established because the matrix 

dimension is controllable either directly or by 

using approximation. In our study using 

Fokker-Planck formalism with stacking 

filtering helped us improve the simulation 

outcomes. Furthermore, the proposed 

simulation enabled us to obtain a high-

dimensional phantom with three-dimensional 

diffusion and flow [21, 22] to be closer to the 

real MRI outcomes.           
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