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Abstract 

In this paper we studied the combination among the levels of carbohydrate (20%, 30%, 40% and 50%),  

protein (8%, 12%, 16% and 20%) and fats (5%, 10%, 15% and 20%), where all possible combinations are 

64. We gave each combination of the aforementioned elements to an aquarium fish with volume of 1.92 

m3, each aquarium contained 5 fishes, the aim of our study is to detect which combination the three 

elements are record a high weight of the fishes, here we depend on the average of the fishes weight and 

the results clarified that the combination (15%, 12% and 10%) of 1kg for carbohydrate, protein and fats 

respectively are gave average weight of 2.312 kg, for this purpose SVR has been used. According to the 

results radial kernel function gave highest performance compared to the other kernel functions, the R2 = 

89% this implies the factors capable of explaining 92% of fishes weight with MSE and RMSE of 

(0.000506 and 0.02249) respectively. And p-values of the three aforementioned variables are  less than 

the significant level of 0.01, implying that the three factors have a statistically significant impact on the 

fishes weight. Where carbohydrate has an impact of 0.0021 on the fishes weight, in another word if 

carbohydrate increase by 1% unite, then the weight of fishes increase by 0.002 grams, also both protein 

and fats have a significant positive effect on the response variable, and the amount of impacts are (0.0136 

and 0.0014) respectively.  

Keywords: Regression Model, Support vector regression, kernel functions. 

INTRODUCTION 

Carp are several species of oily freshwater fish 

in the Cyprinidae family, a vast group of fish 

endemic to Europe and Asia. While carp is 

eaten in many parts of the world, it is 

considered an invasive species in sections of 

Africa, Australia, and the majority of the 

United States. Because these groups share 
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similar characteristics, the cypriniformes 

(family Cyprinidae) are conventionally 

grouped with the Characiformes, Siluriformes, 

and Gymnotiformes to form the superorder 

Ostariophysi. These characteristics include 

being found primarily in fresh water and 

having Weberian ossicles, which are an 

anatomical structure derived from the first five 

anterior-most vertebrae. Ribs and neural crests 

correlate.  Humans have historically relied on 

carp as a source of protein. Numerous species 

have been popular decorative fishes, including 

various goldfish breeds and the domesticated 

common carp variant known as koi.  As a 

result, carp have been brought to a variety of 

areas, with varying degrees of success.  Many 

carp species are considered invasive in the 

United States[2], and considerable quantities 

of money are spent on carp control globally. 

Literature Review 

To classify thermography images into normal 

or abnormal categories for the detection of 

canine bone cancer disease, canine anterior 

cruciate ligament rupture, and feline 

hyperthyroid disease, Lama (2017) employed 

SVM models as binary classifiers using gray 

level co-occurrence matrix texture features 

extracted from the thermographs[1]. Also 

based on parallel factor analysis coupled with 

support vector regression (SVR), Gu and Sun 

(2019) designed a probe-based fluorescence 

spectroscopy for the quick detection of lysed 

and oxidized chemicals (i.e., acids, aldehydes, 

alcohols, ketones, hydrocarbons, etc.) in frying 

palm oil. Characteristic fluorescence peaks 

were identified using loading scores at 

relevant components with the help of the 

parallel factor analysis technique. Then, a 

variety of preprocessing algorithms were 

combined with the SVR algorithm. Grid 

search performed better than the other three 

methods in a regression test using four distinct 

SVM models. The final SVR models' 

performance was evaluated using the 

following metrics: R2 = 0.9753, P = 0.9724, 

MSE = 0.0089, and P = 0.0088 for the 

calibration and prediction sets, respectively[2]. 

And Gu et al. (2020) invented probe-based 

three-dimensional fluorescence spectroscopy 

using parallel factor analysis and support 

vector regression (SVR) to identify, 

discriminate, and quantify dissolved organic 

materials in frying oil. Compared to time-

consuming and expensive chemical 

procedures, the proposed methodology 

improved the rapid assessment of frying oil 

quality and other high-oil food and beverages. 

Considering time and model robustness, 

parallel factor analysis combined with analysis 

of characteristic peaks data may be better for 

model creation[3]. 

Methodology 

Support Vector Regression (SVR) 

Linear regression is the most statistical model 

used in practical applications because these 

types of models are linearly dependent on their 

unknown parameters. This can be fitted much 

more easily than the other models which 

response have a non-linear relationship with 

their unknown parameters and because the 

properties of statistical estimators are easier to 

explain. But the assumption of OLS method 

cannot be achieved easily[4,5]. Support vector 

machines (SVMs) are well-suited to 

generalizing on unseen data due to their 

statistical learning or Vapnik-Chervonenkis 

(VC) foundations[6]. Kernels, sparse 

solutions, VC margin, and SVR control are 

similar to categorization. SVR estimates real-

valued functions better than SVM, despite its 

lesser fame. SVR's loss function punishes over 

and under-estimates equally during training. 

SVR is supervised learning. In his e-

insensitive technique, Vapnik builds a flexible 

tube with a minimal radius symmetrically 

around the estimated function to reject 

absolute values of errors below a predefined 

threshold e in both the upper and lower 

regions of the estimate. This approach affects 

the region above and below the function but 
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not the tube[6,9,11]. SVR's computational 

complexity is independent of input space size, 

which is a significant benefit. It can predict 

and generalize well. Thus, this chapter will 

cover SVR and Bayesian regression. An 

adjusted SVR can be used to avoid 

underestimating a function. Figure(1) depicts a 

one-dimensional problem that can be viewed 

geometrically to help establish the best 

formulation for an SVR problem. Equation 4-1 

provides a convenient form for approximating 

continuous-valued functions. Simplifying the 

mathematical terminology, we may construct 

the multivariate regression from Equation 4-2 

by increasing x by one and adding b to the w 

vector. 

𝑦 = 𝑓(𝑥) =  𝑤, 𝑥 + 𝑏 = Σ𝑗−1
𝑚 𝑤𝑗  𝑥𝑗 + b , y ,b € R ,x , w € 𝑅𝑚                             (4 -1) 

𝑓(𝑥) = [
𝑤
𝑏

]
𝑟

[
𝑥
1

] = 𝑤𝑇  𝑥 + 𝑏 𝑥, 𝑤 ∈ 𝑅𝑚+1                                                            (4-2) 

Figure (1) shows one dimension SVR 

 

By framing the work as an optimization issue, 

support vector regression (SVR) seeks to find 

an approximation for a function that 

minimizes the prediction error, or the 

difference between the expected and the 

intended outputs, where ||w|| is the magnitude 

of the normal vector to the surface being 

approximated, the objective function is given 

by Equation 4-3: 

𝑚𝑖𝑛𝑤  
1

2
 |𝑤|2 

Here's an illustration of how the sum of the 

weights might be used as a proxy for 

levelness: 

𝑓(𝑥 , 𝑤) = ∑ 𝑤𝑡 𝑥
𝑡  , 𝑥 ∈ 𝑅, 𝑤 ∈ 𝑅𝑀𝑀

𝑡−1   (4-3) 

There is a clear indication of the approximate 

polynomial's order, M. As the size of the 

vector w grows. The horizontal line stands for 

a significantly off-ideal 0th order polynomial 

solution. While the 1st-order polynomial 

linear function better approximates portions of 

the data, it still doesn't produce a satisfactory 

match to the training data as a whole. The 6th-

order solution provides an acceptable 

compromise between function flatness and 

prediction error. The immense complexity of 

the highest-order solution means it will likely 

overfit the answer on unseen data even though 

it has zero error. The size of the regularizing 

term w determines the extent to which the 

flatness of the solution can be manipulated in 

an optimization problem. The constraint is to 

restrict the value of the function to be as close 

as possible to the expected value for a 

particular input[10,12]. The SVR algorithm 

penalizes predictions that are more than e 

distant from the target value by using a loss 

function that does not consider e. In addition 

to affecting the number of support vectors and, 

by extension, the sparsity of the solution, the 

value of e determines the width of the tube. A 

smaller value suggests a lower tolerance for 

error. Figure 4-1 provides a visual 

representation of this latter concept[7]. If e is 

lowered, the tube's boundary creeps inward. 

Since there are more data points near the 

boundary, more support vectors exist. 

Increased e also reduces the number of 

locations near to international borders. The 

model's resilience is enhanced by the e-

insensitive zone, which makes it less 

vulnerable to perturbations in the data. 

Equations 4-4, 4-5, and 4-6 illustrate the 

linear, quadratic, and Huber e loss functions, 

respectively, and can be applied. The Huber 

loss function, as seen in Figure 4-3, is more 

lenient on minor deviations from the desired 
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output than linear and quadratic loss functions, 

but it still penalizes any and all outliers. 

Which loss function to employ depends on the 

available computational resources for training, 

the desired degree of model sparsity, and a 

priori knowledge of the noise distribution 

affecting the data samples. 

Symmetric and convex loss functions are 

provided. To ensure that the optimization 

problem has a unique solution that can be 

found in a finite number of iterations, the loss 

function used to correct for under- or over-

estimation must be convex. To begin deriving 

the topics of this chapter, we will use Equation 

4-4's linear loss function. 

𝐿𝛿(𝑦, 𝑓(𝑥, 𝑤)) = {
0                                                       |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝛿;
|𝑦 − 𝑓(𝑥, 𝑤)| − 𝛿                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                               (4 -  4) 

 

𝐿𝛿  (𝑦, 𝑓(𝑥, 𝑤)) = {
0                                               |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝛿; 

(|𝑦 − 𝑓(𝑥, 𝑤)| − 𝛿)2                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                    (4 - 5) 

 

𝐿(𝑦, 𝑓(𝑥, 𝑤)) =  {
𝑐|𝑦 − 𝑓(𝑥, 𝑤)| −

𝑐2  

2
                               |𝑦 − 𝑓(𝑥, 𝑤)| > 𝑐

1

2
 |𝑦 − 𝑓(𝑥, 𝑤)|2                                     |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝑐

                      (4 - 6) 

Kernel SVR and Different Loss Functions 

Before, we assumed that f(x) was linear and 

focused on data in the feature space. When 

dealing with nonlinear functions, it is possible 

to improve classification accuracy by mapping 

the data into a higher-dimensional space 

(called kernel space) using kernels that satisfy 

Mercer's condition[8,10]. Substituting k(xi, xj) 

for x in Equations 4-1-4-18 results in the 

fundamental formulation illustrated in 

Equation 4-19, where Φ(.) denotes the 

transformation from feature to kernel space. 

The reformulated weight vector, in terms of 

the original input, is defined by Equation 4-20. 

Equation 4-21 represents the dual problem, 

while Equation 4-22 represents the function 

approximation f (x), where k(.,.) is the kernel, 

as shown in Equation 4-23. 

𝑚𝑖𝑛
1

2
‖𝑤‖2+C∑𝑡−1

𝑁   𝜉𝑖 + 𝜉𝑖
𝑛               (4 − 7) 

Subject to 

𝑦𝑡 − 𝑤𝑇Φ(𝑥𝑖) ≤ 𝜉𝑖 + 𝜉𝑖
𝑛      𝑖

= 1, … … . , 𝑁                             

𝑤𝑇Φ(𝑥𝑖) − 𝑦𝑖 ≤ 𝜉 + 𝜉𝑖            𝑖

= 1, … … . , 𝑁                       

𝜉𝑖, 𝜉𝑖
𝑛 ≥ 0                        𝑖 = 1 … . . 𝑁 

𝑤 = ∑𝑖−1
𝑁𝑠𝑣  (𝛼𝑖

𝑛 − 𝛼𝑖)𝜙(𝑥𝑖   )                                                                                                                              (4 − 8) 

𝑚𝑎𝑥𝑛,𝑚 − 𝜀∑𝑖=1
𝑁𝑠𝑣(𝛼𝑖 + 𝛼𝑖

𝑛) + ∑𝑖=1
𝑁𝑠𝑣(𝛼𝑖

𝑛 − 𝛼𝑖)𝑦𝑖 −
1

2
∑𝑗−1

𝑁𝑠𝑣∑𝑖−1
𝑁𝑠𝑣(𝛼𝑖

𝑛 − 𝛼𝑖)(𝛼𝑗
𝑛 − 𝛼𝑗)𝑘(𝑥𝑖, 𝑥𝑗)     (4- 21) 

𝛼𝑖, 𝛼𝑖
𝑛 ∈ [0, 𝐶], 𝑖 = 1, … … . 𝑁𝑠𝑣 , ∑𝑖−1

𝑁𝑠𝑣(𝛼𝑖
𝑛 − 𝛼𝑖) = 0 

𝑓(𝑥) = ∑𝑖=1
𝑁𝑠𝑣(𝛼𝑖

𝑛 − 𝛼𝑖)𝑘(𝑥𝑖 , 𝑥)                                                                                                                     (4 − 9) 

𝑘(𝑥𝑖, 𝑥) = ∅(𝑥𝑖). ∅(𝑥)                                                                                                                                    (4 − 10) 

Applications 

Data Description  

The data of our study is an agricultural 

experiment, three factors have been used to 

measure the weight of fishes as response 

variable and each factors has four percentage 

levels in each kilograms of fishes food, which 

are carbohydrate (20%, 30%, 40% and 50%),  

protein (8%, 12%, 16% and 20%) and fats 

(5%, 10%, 15% and 20%), where all possible 

combinations are 64. We gave each 

combination of the aforementioned elements 

to an aquarium fish with volume of 1.92 m3, 

each aquarium contained 5 fishes 
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Results of SVR 

For performing the SVR model we used all 

data as training data set which are 64 

observations, because our data set is rather 

small. 

Table-1 Shows the performance of SVR for 

each kernel functions. 

Kernel 
number 

of SVR 
R2 MSE RMSE 

Linear 40 70% 0.002344 0.04841 

Polynomial 32 62% 0.004118 0.06417 

Radial 51 89% 0.000506 0.02249 

Sigmoid 35 37% 1.378911 1.17426 

Summing up to the table-1, which represents 

the application of the epsilon support vector 

regression model with selecting the best kernel 

function, it is clear that the radial kernel 

function has the highest performance among 

the other kernel functions. Furthermore, the 

R2 of the best kernel is equal to 89% with 

minimum MSE and RMSE (0.000506 and 

0.02249), respectively. 

Table-2 Displays the test of the estimators 

and their impacts. 

Explanatory 

variables 
Estimated S.E P -Value 

Carbohydrate 0.0021 0.00037 0.000 

Protein 0.0136 0.0041 0.000 

Fats 0.0014 0.00053 0.000 

The table-3 clarifies the estimated values of 

the parameters for the features and their test to 

check whether they have an impact on fishes 

weight or not. The three values of the p-value 

column are less than the significant level of 

0.01, implying that the three factors have a 

statistically significant impact on the response 

variable. 

 

 

 

 

Figure (2) 

 

Conclusions 

This paper estimated the impact of 

carbohydrate, protein and fats of 64 datasets, 

using radial kernel functions. Results showed 

that the three factors had a statistically 

significant impact on fishes weight. And 

protein has highest impact. 
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