Detection Of Phishing Links Using Machine Learning Techniques

Pathakamuri Charan kumar^{#1}, Jackulin.C², N.Sathish³, karjala Venkatesh⁴

Department of Computer Science and Engineering, Panimalar Engineering College^{1,2,4} Chennai, Tamil Nadu 600 123, India SRM Institute of Science and Technology, Ramapuram Campus³ Chennai, Tamil Nadu 600 123, India

¹cnaidu402@gmail.com, ²chin.jackulin@gmail.com, ³sathishn1@srmist.edu.in, ⁴venkykarjala@gmail.com

Abstract— Phishing is widely used to scam people around the world. This attack is mainly used to steal the user's information such as Debit/Credit card, passwords and other sensitive data. This attack can be enforced on large mob at a time so, anyone can be target. This attack is initiated by sending a fake URLs through email, social media but link appears to be so genuine sent right from original organisation Thus, user tempts to enter the information. In this article our team is going to handle this kind of attacks .Using Machine learning techniques, our web app is to going to detect whether it is a phishing link or not.

Keywords- Phishing, Support Vector Machine, Decision Tree classifier, Machine Learning, Cyber Security.

I. INTRODUCTION

Internet-connected devices and their applications are becoming increasingly widespread all over the world as a result of technical advancement. This however garner more attention for other internetconnected computer security challenges as well. Several efforts have been made to address these difficulties and machine learning methods are frequently used in their implementation [3-5]. A cyberattack known as phishing tricks victims into malicious content and accessing disclosing personal information. The majority of phishing use the same domain and website interface as trustworthy websites. There is a great need foe an intelligent plan to protect consumers from cyberattacks. In this study, we propose a method for detecting URLs that employs machine learning techniques. Using URLs, a neural network-based recurrent neural network approach is used to identify phishing websites. Our work aims to increase cypher attack detection rates by offering high detection accuracy and low false-negative and false-positive rates as phishing attempts grow more prevalent. False-negative sites are those that are misidentified as authentic websites, whereas

false-positive sites are those that are misinterpreted as legitimate websites The start of the attack was specifically intended to target few people in particular area but, now general public are also victims. In Starting days, user needs to manually enter the information. But one clicks on to the link and providing some access levels to attacker is enough to steal information. The fig .1 depicts as simple explanation of phishing. When a victim visits a website and clicks on an external link, such as an advertisement or another pop-up link, phishing has already started.

The user gets directed to that website when they click on a phishing link. The attacker utilises the victim's information to get access to other reliable websites after acquiring it. Numerous alternative detection procedures are developed and used in the literature to identify this kind of phishing attempt.

Fig. 1 General Process of phishing link

A. Phishing Process

When Attacker sends a Phishing link to victim via email, social media or through any other platform. Using link masking attacker can change the link into original domain. By seeing that domain user believes link is from legitimate organisation. The user tempts click on the link. The Phishing site seems to be look like an original website. In most of the cases only front end of the website is prepared and backend won't be done. The user does not recognise that part. The user feels safe in the website by looking that front end of the website and tries to fill up credentials required. This could be user's username and password or credit/debit card's details with OTP. After gathering the information from the victim. The attacker tries to get on to the original website. Enters the gathered information from victim. This us how Phishing happens in today's world. Sometimes knowing about the loss, the user can't even map the entry point of the fraud. Because he/she doesn't even know that is a trap.

B. Statistics

The Fig. 2 clearing states that Phishing attacks are prone to cyber space. Risk of getting exploited increasing day by day. These are very few numbers in which there is a different situation in ground level. These numbers show only those who register case and in efficient investigation they found phishing is the cause of attack

II. RELATED WORK

The research on this field is to carried for long time since attackers change their methods accordingly new techniques need to be developed to save public from these attacks. A study done by Mr. Anklet Kote and colleagues titled as "Detection of Phishing Websites Using Data Mining" published in 2020. The model extracts the features of the website via URL when user use it. The features will be running against test data. The main objective is to detect phishing links. It uses Random Forest Algorithm be used to attain the

desired goal. The study by Amani Alswailem and colleagues titled as "Detection of Phishing Website Using Data Mining" Published in 2019. In which global set of features are extracted including hard-to-forge features from URLs. It uses PhishTank as a repository for finding black listed links and for legitimate links it uses top one million links. And another by Manish Jain and colleagues titled as "Phishing Website Detection System using Machine Learning "published in 2020. Machine learning techniques such as Naïve Bayes classifier, support vector machine and random forest. This study by Hemali Sampat and colleagues titled as "Detection of Phishing Website using Machine Learning" published in 2018. In this paper, System uses different methods such as extracting URL feature, Black List, and WHOIS database is implemented. The education awareness is also provided from this article. In order to identify phishing websites in the year 2020, Alsariera, Adeyemo, Balogun, and Alazzawi used a total of four different meta-learner models. These models were referred to individually as AdaBoostExtra Tree (ABET), Bagging-Extra Tree (BET), Rotation Forest - Extra Tree (RoFBET), and LogitBoost-Extra Tree (LBET) [10]. Phishing Detection Using Multidimensional Characteristics was the title of the paper. This technique was inspired by the numerous guises in which phishing assaults can take place [11].

The study by Nandini Patil and colleagues named known as

"Phishing Website Detection based on Machine Learning" published in 2019. The created neurofuzzy framework, known as Fi-NFN, was conceptualised by Pham, Nguyen, Tran, Huh, and Hong in 2018. This architecture includes an antiphishing model that guards users of fog from becoming the intended victims of phishing attacks [12].

In this article they used data mining algorithms rather than traditional algorithms which proved to be very efficient. The model scans the phishing link and by unsupervised learning techniques it adds new suspicious keywords into database. The secondary model detects the phishing links based on checking links in Black List, WHOIS database. Another study by Dhananjay Merat and colleagues titled as "A Machine Learning Approach for Phishing and Its Detection techniques "published in 2019. Dynamic machine methods are used such as single layer artificial intelligence. It has four outcomes TP (True Positive, FN (False Negative), TN (True Negative) and FP (False Positive). The Study by Sachin Nandrajog and colleagues titled as "Phishing website Detection:" came out in 2021. It used hybrid approach which increased accuracy. 70.18% of accuracy for naïve bayes, 89.44% accuracy for Random Forest and at last 91.43% of accuracy when using hybrid algorithm. A Study by Ammar Odch and colleagues gave title as "Machine Learning Techniques for Detection of Website Phishing: A Review for Promises and Challenges" in 2021. The framework Tang and Mahmoud introduced in 2021 for recognising phishing websites was built on deep learning. They put their solution into practise by creating a browser extension for Google Chrome. A warning is displayed whenever a phishing website is detected, and the user receives real-time results about the risk of phishing websites through this plugin [13].

III. PROPOSED WORK

We proposed a method to predict phishing links using machine learning. When compared to other systems we are not using any dataset because at long run it might damage the efficiency. We are fully focused on benchmarking and are sourced from third-party services like domain registers, search engines, WHOIS records. This record is used for extracting feature vectors from the given link listed vocabulary, host and word. The vocabulary feature is for text URLs that includes: host-name length, URL length, URL tokens and so on. The host-name length, URL length, the frequency of dots in the URL. A weka function called "String to Word Vector" is employed to change the URL into carrier specific words such as Index, Using IP, Long URL, Short URL, Symbol

@, Redirecting/prefix and prefix, Sub Domains, HTTPS, Domain Reg length, Favicon, Non-Standard port and HTTPS Domain Port, Req URL, Anchor URL, link in script tags, server form handler, website forwarding, website traffic, Page Rank, Google Index, Iframe Redirection, Age of domain, Links pointing to page, Stats Report. In this we use a dataset to test the algorithms for accuracy and time efficiency. Also, this dataset is collected from the Kaggle which is a data company that hosts open-source datasets for various research purposes.

A. implementation Strategy

Fig. 3 Implementation diagram

In Fig 3. We can see the block diagram for the implementation proposed model. In this the process first step is started at the URLs phase, then it is passed to the module to start extracting information from the URLs to check the attributes of the link and the sent further process and at this step the extracted attributes is made into an abstract feature packet and the sent for classification in which the algorithms do their work and classify the features into their perspective divisions, which is then graded as per the algorithm to proceed to the final step i.e. is to label the link that has been processed by the algorithms and then label is given to the final value to URL as phishing link or a legitimate link. In this stage we evaluate the models by entering the link with predictor variables to each model,

then the models will predict the targeting variable according to the prediction results and we will compare it with real values to get results.

B. Algorithm

In recent research, the algorithm used for detection has many limitations. Support Vector Machine: It is a supervised machine learning algorithm. It is used for classifying involving two classes. Usage of SVM gives improved outcome. Gradient-Boosting decision Tree: It is another supervised machine learning algorithm where they are predefined outcomes. Decision tree is frequently in classification adversities. Outcome will be out in binary format. The rules decision tree has can easily determine the target variable where largescale database has lot of similarities. In this J48 algorithm situation sots well. J48 is supplementary of ID3. The other feature of the J48 is greedy technique is used. Decision tree can analyse trained data and classify missing data.

Fig 4. System architecture

C. Algorithm basic steps

If in each and every case belonging to similar feature class. The tree generates leaf node and this leaf node returned with marking of same class.

Calculate the potential data which is done for every given attribute for test mode. After this, generated information is a result that is require

D. Methodology

The machine learning algorithm library known as a gradient-boosted decision tree is referred to as "Extreme Gradient Boosting" or "XGBoost" (GBDT). Using XGBoost, parallel tree boosting is feasible. It is most frequently used to solve regression, classification, and ranking problems. We choose to use XGBoost since it generates speed and performance that are optimal. The Naive Bayes technique, a supervised learning solution to the challenge of dealing with classification issues, is built on the Bayes theorem. The majority of its uses include classifying text and images while using sizable training data sets. A simple classification technique that has been proven to be both successful and efficient is the Naive Bayes Classifier. It aids in the creation of quick machine learning models that can to produce timely predictions that are accurate.

The Support Vector Machine (SVM) algorithm is used to find a hyperplane in an N-dimensional space. The entire number of features is referred to as N in this situation. The identified hyperlanes serve as representations of the decision points that categorise the data points. The size of the hyperlane is defined by the number of features, which in turn is determined by the overall number of features. The scenario is pretty difficult because there are 87 different aspects. Support vectors are the data points that are situated closer to the hyperlane. These are very important in the creation of the SVM since they help determine where the hyperlane will be. The objective of the SVM is to achieve a margin that is as large as possible between the data points and the hyperlane [6].

A Gradient Boosting classifier is a compilation of machine learning algorithms that combines numerous simple learning models into a single, cohesive whole to produce a strong predictive performance. Choice trees are generally employed as part of the gradient boosting procedure. The management of the trade-off between inclination fluctuation and performance is significantly influenced by calculations that are done to improve performance. Unlike bagging calculations, which only/control for tall change in a show, boosting controls both\aspects (bias and variance), and is therefore considered to be\more compelling. Calculations for bagging only account for dramatic changes in a performance. Decision trees are a type of supervised learning that can be used to solve a number of issues, including classification and regression-related ones; they are most often appropriate for addressing problems, nevertheless. Difficulties with categorisation. This classifier has a tree-like structure, with the internal nodes reflecting the dataset's properties, the branches the and each leaf decision rules. node the classification result.

The KNearest Neighbour computation is one of just a few in machine learning that is based on an administered learning technique. The K-NN computation assumes that the most recent case and data and the cases that are available share similarities. The new instance is then assigned to the category that best fits the available categories. A different name for it is adaptive boosting. It is a machine learning algorithm that applies the Ensemble Method.

Multilayer Perceptrons is the name of a particular type of neural network (MLP for short). The input layer, the hidden layer, and the output layer are the three layers that make up the MLP. The hidden layer, which is composed of multiple layers and includes the core engine for the MLP, receives the signal to start the training, and the output layer is in charge of doing the necessary task, in this case assessing whether or not the in-question website is a phishing site. The neurons of an MLP are trained using a back propagation learning technique. [9]

IV. IMPLEMENTATION SPECIFIES AND RESULTS

Accuracy is probably the most well-known method for validating a machine learning model so that it may be applied for classification tasks. Its extensive use can be partially attributable to the

fact that it can be executed with a respectable level of simplicity. It is simple to comprehend and simple to put into practise. For assessing a model's straightforward performance for scenarios, accuracy is a useful criterion to use, and it can be calculated using Equations 1 and 2 below. The proportion of accurate predictions that can be made is determined by a metric called accuracy, which is used when dealing with classification challenges. It needs to be calculated we must first take the total number of forecasts and divide that number by the number of predictions that turned out to be accurate; the accuracy of the suggested model can be determined by following the steps in Table I.

$$Accuracy = \frac{TP + TN}{TP + TN + FP} + FN$$
(2)

Several points of view that are connected to the classification technique have been used in this research to apply the prediction model of the proposed phishing website.

The objective experimental evaluation is the purpose of this application. I tested various algorithms to determine how accurate they were at identifying phishing websites by their URL. The highest rate of testing accuracy was provided by the Gradient boosted classifier, which was 96.4 percent. There is a possibility of four outcomes:

- TP (True Positive)
- TN (True Negative)
- FP (False Positive)
- FN (False Negative)

Depending upon these four parameters outcome is decided. In simple words, the above outcome decides whether the link is legitimate or not.

ML Model	Train Accuracy	Test Accuracy
Decision Tree	0.979	0.937
SVM	0.600	0.596
KNN	0.931	0.832
Adaboost	0.954	0.952
Random Forest	0.992	.965
MLP	0.824	0.810
XGBoost	0.995	0.966
Naïve Bayes	0.731	0.735
Gradient	0.993	0.966
Boosting		

TABLE I COMPARISON OF METHODS

The Support Vector Machine (SVM) algorithm is used to find a hyperplane in an N-dimensional space. The entire number of features is referred to as N in this situation. Consequently, in this project, we employed machine learning techniques to identify phishing websites and reduce their success rates. With 11,053 URLs, 89 features, and a 50:50 split between training and testing, we chose our Kaggle dataset. The huge number of features that distinguish the dataset apart from other datasets helped boost accuracy. We trained our dataset using 9 machine learning techniques. XGBoost, Gradient Boosting, Random Forest Tree, Adaboost, Decision Tree, K-Nearest Neighbors, Multilayer Perceptrons, Naive Bayes, and Support Vector Machine were among the techniques utilised. In terms of test accuracy, recall, and precision among the employed algorithms, XGBoost had the highest scores of 96.4, 96.3, and 96.5.

Our findings indicate that the best algorithm for identifying phishing websites is XGBoost. Our methods for identifying phishing websites have such high accuracy, making our project superior to earlier ones. In our future study, we want to improve accuracy by enlarging the dataset. Gradient Boosting, Random, and XGBoost were the algorithms employed. Thus, the implementation may make use of certain big data. However, using Big Data necessitates the application of deep learning techniques, as described in [8], and parallel code execution is required to reduce training time, particularly when using GPU technologies [7].

V. CONCLUSION AND FUTURE WORK

It is crucial to detect the Phishing links because at later it can make you pay a lot. It reduces the risk of getting exploited. However, there is very little awareness in the society about this issue and technical persons too. It is so critical to protect our privacy and security. In this paper we presented an approach for Phishing link detection. Analysis based on URL enhances speed of detection. Based on results we can conclude that inclusion of decision tree gave an advantage to classify missing data. Our web app can be installed in any device it gives us added advantage. In upcoming years, by feature selection algorithm applying and dimensionality reduction methods can reduce the number of features and omitting unwanted stuff. There are many technologies like hybrid methods and dynamic methods can be used in future projects.

VI. REFERENCES

- [1] Huang. H, Zhong. S, and Tan. J (2009, August). "Browser-side countermeasures for deceptive phishing attack." In 2009 Fifth international conference on Information assurance and Security (pp. 352-355).∖
- [2] U. Ozker and O. K. Sahingoz, "Content based Phishing Detection with Machine Learning." 2020 i=International Conference on Electrical Engineering (ICEE), 2020, pp1-6 doi: 10.1109/ICEE49691.2020.92.
- [3] Leon Reznik," Computer Security with Artificial Intelligence, Machine Learning, and Data Science Combination," in Intelligent Security Systems: How Artificial Intelligence, Machine Learning and Data Science Work for and Against Computer

Security, IEEE, 2022, pp.1- 56, doi: 10.1002/9781119771579.ch1.

- [4] O. K. Sahingoz, U. Cekmez and A. Buldu," Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning" 2021, Journal of Web Engineering, 2021, pp. 1721– 1760, vol. 20, iss. 6, doi: 10.13052/jwe1540-9589.2062.
- [5] R. Yetis and O. K. Sahingoz," Blockchain Based Secure Communication for IoT Devices in Smart Cities," 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), 2019, pp. 134-138, doi: 10.1109/SGCF.2019.8782285.
- [6] Gandhi, R. (2018, July 5). Support Vector Machine - introduction to machine learning algorithms. Medium. Retrieved May 18, 2022, from https://towardsdatascience.com/supportvector-machineintroduction to- machinelearning-algorithms-934a444f.
- [7] S. I. Baykal, D. Bulut and O. K. Sahingoz," Comparing deep learning performance on Bigdata by using CPUs and GPUs," 2018 Electric Electronics, Computer Science, Biomedical Engineering' Meeting (EBBT), 2018, pp. 1-6, doi: 10.1109/EBBT.2018.8391429.
- [8] S. C. Kalkan and O. K. Sahingoz," Deep Learning Based Classification of Malaria from Slide Images," 2019 Scientific Meeting on ElectricalElectronics Biomedical Engineering and Computer Science (EBBT), 2019, pp. 1-4, doi: 10.1109/EBBT.2019.8741702
- [9] Multilayer Perceptron. Multilayer Perceptron

 an overview ScienceDirect Topics. (n.d.).
 Retrieved May 18, 2022, from
 https://www.sciencedirect.com/topics/comput
 erscience/multilayer perceptron.

- [10] Y. A. Alsariera, V. E. Adeyemo, A. O. Balogun and A. K. Alazzawi," AI Meta-Learners and Extra-Trees Algorithm for the Detection of Phishing Websites," in IEEE Access, vol. 8, pp. 142532-142542, 2020, doi: 10.1109/ACCESS.2020.3013699.
- [11] P. Yang, G. Zhao and P. Zeng," Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning," in IEEE Access, vol. 7, pp. 15196-15209, 2019, doi: 10.1109/ACCESS.2019.2892066.
- [12] C. Pham, L. A. T. Nguyen, N. H. Tran, E. -N. Huh and C. S. Hong," Phishing-Aware: A Neuro-Fuzzy Approach for Anti-Phishing on Fog Networks," in IEEE Transactions on Network and Service Management, vol. 15, no. 3, pp. 1076-1089, Sept. 2018, doi: 10.1109/TNSM.2018.2831197.
- [13] L. Tang and Q. H. Mahmoud," A Deep Learning-Based Framework for Phishing Website Detection," in IEEE Access, vol. 10, pp. 1509-1521, 2022, doi: 10.1109/ACCESS.2021.3137636.
- [14] Machine learning random forest algorithm javatpoint. www.javatpoint.com. (n.d.). Retrieved May 18, 2022, from <u>https://www.javatpoint.com/machinelearning-random-forestalgorithm</u>.
- [15] Dong-Jie Liu, Guang-Gang Geng, Xiao-Bo Jin, Wei Wang, An efficient multistage phishing website detection model based on the CASE feature framework: Aiming at the real web environment, Computers Security, vol 110, 2021, 102421, ISSN 0167-4048,https://doi.org/10.1016/j.cose.2021.102 421.
- [16] Xi Xiao, Wentao Xiao, Dianyan Zhang, Bin Zhang, Guangwu Hu, Qing Li, Shutao Xia, Phishing websites detection via CNN and multihead self-attention on imbalanced

datasets, Computers Security, Vol 108,2021,102372,ISSN 0167-4048.

- [17] A.V. Ramana, Rao, K.L. Rao, R.S. Stop-Phish: an intelligent phishing detection method using feature selection ensemble. Soc. Netw. Anal. Min. 11, 110 (2021). https://ezproxy.iku.edu.tr:2444/10.1007/s132 78- 021-00829-w.
- [18] Abdullateef O. et al., "Improving the phishing website detection using empirical analysis of Function Tree and its variants", Heliyon, vol 7, Issue 7, 2021, e07437, <u>https://doi.org/10.1016/j.heliyon.2021.e0743</u>7.
- [19] E. Kocyigit, M. Korkmaz, O.K. Sahingoz, B. Diri, "Real-Time ContentBased Cyber Threat Detection with Machine Learning". In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Application, 2021, ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-71187-0129</u>.
- [20] M. Korkmaz, O. K. Sahingoz and B. Diri, "Feature Selections for the Classification of Webpages to Detect Phishing Attacks: А Survey," 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020, pp. 1-9, doi: 10.1109/HORA49412.2020.9152934.