## Synthesis and Biological Evaluation of Some Ethers Acetylene Compounds Derivatives of Oxazole

## Moayad. N.Mohammed

Department of chemistry, College of science, Al Qadisiyah university, Iraq, MoayadAlShabani@qu.ed.id

## Raheem. I.Al Shamaree

Al Kindi Hospital, Baghdad, Ismeel1986@gmail.com

## Wissam. J.Lafta

Department of chemistry, College of science, Al Qadisiyah university, sci.chem.mas.21.24@qu.edu.iq

#### Abstract

In this present synthesis anew series of some ethers acetylene compounds derivatives of

2-p-hydroxy benzyl-4,5-ditolune oxazole.

2-p-hydroxy benzyl-4-tolune-5-phenyl oxazole.

2-p-hydroxy benzyl-4,5-di-p-chloro phenyl oxazole.

2-p-hydroxy benzyl-4,5-di-p-bromo phenyl oxazole.

2-p-hydroxy benzyl-4-p-dimethyl amino phenyl -5-phenyl oxazole.

Treated with 3-bromo propyne yielded series of new ethers acetylene oxazole compounds were characterized by (FT-IR, 1HNMR, 13CNMR, C.H.N) in this study of the effect compound in the two types of bacteria isolated from amedical condition (human).

Keywords: OXAZOLE, 3-Bromo Propyne, Benzoine.

#### **INTRODUCTION**

The oxazole moieties have abroad spectrum of biological activity compounds including antiarrhythmics (1), anticonvulsant (2), anti bac- -teria (3) and antifungal.

In addition to it's connection acetylene group increased importa- -nce biological ethers acetylene importance of pharmaceutical (5,6,7,8) and drugs used to parkinson's disease (9, 10). Such as inhibiting drugs to work acetylcholine. The new derivatives were in characterized on the (FT-IR, 1HNMR, 13CNMR, C.H.N) another study includes the biological activity.

Unless otherwise stated the following generalization melting point (FT-IR, 1HNMR, 13CNMR, C.H.N)

1. Synthesis of oxazole (11,12) :

Symmetrical benzoin or unsymmetrical ( 0.01 mol ) were treated with  $\alpha$ -amino acid tyrosine ( 0.01 mol ) homogeneous mixture

and heated on an oil bath until the release of carbon dioxide and ammonia

Then we add ethanol refluxed (15 min). The solution was then cold (24 hr) and crystallization by ethanol.

2. Synthesis of acetylene ethers compounds (13, 14):

Dissolved (0.01 mol ) oxazole in ( 5 gm ) NaOH and ( 50 ml ) ethanol and stirred for ( 15 min ) then added drop-wise to the well stirred reaction mixture the which was heated to ( $60 - 70 c \circ$ ) to (3 hr), The reaction was stopped and the mixture was cooled to room temperature. An Ice water was added to the reaction mixture and the crude product was extracted twice by ethylene chloride and crystalaztion by ethanol.

#### **Results and Discussion**

The synthesis of acetylene compounds by reaction oxazole with 3-bromo propyne yielded new compounds:





R1 = CH3, CL, Br, N(CCH3)2

R2 = H, CH3, CL, Br

#### SCHEME:

The mechanism of preparing acetylene compound

The reaction was concluded to occoure via SN2 mechanism terminal alkyne was prepared by condensing oxazole with propargyl bromide in dilute ethanolic sodium hydroxide solution at (70 c $\circ$ ) according to nuchlophilic substitution reaction.

The acetylene compound were characterized using (M.P) and (C.H.N) anlysis (Table 1), and (FT-IR, 1HNMR, 13CNMR) anlysis (Table 2,3,4) and Antic bacterial activity (Table 5).

The newly acetylene compound disappearance spectral (OH) in oxazole at (3500 cm-1), appearance of acetylene group in (2200 cm-1) The ether acetylene very important the biological activity:

 Table (1): Analytical data of acetylene compound

| Com .No | Molecular<br>Formule | M.wt<br>g/mol | Color           | Yield% | M.P.C | C%               | Н %            | N%             |
|---------|----------------------|---------------|-----------------|--------|-------|------------------|----------------|----------------|
| 1       | C27H23NO2            | 393.276       | Light<br>yellow | 66%    | 93-97 | 82.454<br>82.472 | 5.848<br>5.455 | 3.561<br>3.577 |
| 2       | C27H23N2O2CL         | 442.735       | Brown           | 63%    | 63-69 | 73.242<br>73.231 | 5.195<br>5.133 | 6.327<br>6.345 |

|   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C25H1      | 7NO2CL2                                          | 434.162                                                                                                                                                                                                                                                      | yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,         | 71%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94-96    | 69<br>69       | ).156<br>).119 | 3.915<br>3.973 | 3.225<br>3.238 |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|----------------|----------------|--|
|   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C25H1      | 7NO2Br2                                          | 523.256                                                                                                                                                                                                                                                      | Light<br>yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (         | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73-76    | 57<br>57       | 7.381<br>7.366 | 3.248<br>3.256 | 2.676<br>2.653 |  |
|   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C27H24N2O2 |                                                  | 408.282                                                                                                                                                                                                                                                      | auburn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,         | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oily     | 79<br>79       | 9.423<br>9.459 | 5.878<br>5.867 | 6.860<br>6.876 |  |
|   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C26H21NO2  |                                                  | 379.266                                                                                                                                                                                                                                                      | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68% 92-95 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82<br>82 | 2.332<br>2.376 | 5.537<br>5.582 | 3.692<br>3.633 |                |  |
|   | <b>Cable (2): FT-IR of acetylene compounds</b> $C_{27}H_{23}NO_2$ $C=C(1622), C-C(1100), C-O(1224),$ $(cm^{-1})$ $C-N(1020), C-H(2900), =C-H(3100),$ $C = C(2200), = C-H(3300)$ $C = C(1650), C-C(1150), C-O(1200),$ $(cm^{-1})$ $C=C(1650), C-C(1150), C-O(1200),$ $(cm^{-1})$ $C-CI(850), C-N(1230), C-H(2950),$ $C_{25}H_{17}NO_2CL_2$ $C=C(1620), C-C(1300), C-O(1050),$ $(cm^{-1})$ $C-CL(877), C-N(1200), C-H(2950),$ $C(2200),$ $C-CH(3100), C$ |            | Ta<br>C2<br>C1                                   | C27H24N2O2<br>(cm <sup>-1</sup> )<br>C26H21NO2<br>(cm <sup>-1</sup> )<br>C26H21NO2<br>(cm <sup>-1</sup> )<br>Table (3): HNMR (<br>C27H23NO2<br>C27H23NO2<br>C1<br>C27H23N2O2<br>C1<br>C27H23N2O2<br>C1<br>C27H23N2O2<br>C1<br>C27H23N2O2<br>C1<br>C27H23N2O2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | $\begin{array}{c c} C=C(1622), C-C(1100), C-\\ O(1224), \\ C-N(1200), C-H(2900), =C-\\ H(3100), \\ C \equiv C(2200), \equiv C-\\ H(3300) \\ \hline \\ C=C(1620), C-C(1100), C-\\ O(1220), \\ C-N(1200), C-H(2900), =C-\\ H(3100), \\ C \equiv C(2200), \equiv C-\\ H(3100), \\ \hline \\ C \equiv C(2200), \equiv C-\\ H(3300) \\ \hline \\ Of \ compounds \\ \hline \\ EC-H(2.5ppm)(1H,S), \\ L(3.4ppm)(2H,S), \\ 1.3ppm)(2H,D), Ph(7.2ppm)(4) \\ \hline \\ 2.4ppm)(3H,S) \\ \hline \\ EC-H(2.3ppm)(1H,S), \\ L(3.5ppm)(2H,S), \\ 1.1ppm)(2H,D), Ph(7.4ppm)(4) \\ \hline \\ \end{array}$ |          |                |                |                |                |  |
| ( | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | C25H17NO2C = 00000000000000000000000000000000000 |                                                                                                                                                                                                                                                              | $\begin{array}{c} CH_{3}(2.5ppm)(3H,S),N-\\ CH_{3}(0.9ppm)(3H,S)\\ \hlineline \\ $ |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                |                |                |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | C                                                | -H(3300)                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                |                |                |  |

| C25H17NO2B<br>r2 | C-H(2.5ppm)(1H,S),           O-CH <sub>2</sub> (3.6ppm)(2H,S),           CH <sub>2</sub> (1.4ppm)(2H,D),Ph(7.6ppm)(4           H,D),           CH <sub>3</sub> (2.4ppm)(3H,S)                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C27H24N2O2       | C-H(2.5ppm)(1H,S),<br>O-CH <sub>2</sub> (3.5ppm)(2H,S),<br>CH <sub>2</sub> (1.4ppm)(2H,D),Ph(7.3ppm)(4<br>H,D),<br>CH <sub>3</sub> (2.5ppm)(3H,S),N-<br>CH <sub>3</sub> (0.9ppm)(3H,S)<br>Ph(7.8ppm)(5H,T) |
| C26H21NO2        | C-H(2.5ppm)(1H,S),<br>O-CH <sub>2</sub> (3.1ppm)(2H,S),<br>CH <sub>2</sub> (1.2ppm)(2H,D),Ph(7.2ppm)(4<br>H,D),<br>CH <sub>3</sub> (2.5ppm)(3H,S),N-<br>CH <sub>3</sub> (0.9ppm)(3H,S)<br>Ph(7.6ppm)(5H,T) |

 Table (4): CNMR of Compounds

| C27H23NO2    | C===C(72ppm),C=C(123ppm)<br>,Ph(162ppm), CH <sub>3</sub> (22ppm),<br>C-N(57ppm),C=N(157ppm), C-<br>O(74ppm).            |
|--------------|-------------------------------------------------------------------------------------------------------------------------|
| C25H17NO2Cl2 | C===C(72ppm),C=C(122ppm),<br>Ph(160ppm), CH <sub>3</sub> (17ppm),<br>C-N(44ppm),C=N(153ppm),<br>C-O(63ppm),C-Cl(77ppm). |
| C25H17NO2Br2 | C===C(80ppm),C=C(142ppm),<br>Ph(138ppm), CH <sub>3</sub> (26ppm),<br>C-N(42ppm),C=N(157ppm),<br>C-O(67ppm),C-Br(59ppm). |
| C27H24N2O2   | C===C(84ppm),C=C(138ppm),<br>Ph(118ppm), CH <sub>3</sub> (32ppm),<br>C-N(51ppm),C=N(145ppm),<br>C-O(68ppm).             |
| C26H21NO2    | C===C(70ppm),C=C(131ppm),<br>Ph(133ppm), CH <sub>3</sub> (26ppm),<br>C-N(48ppm),C=N(146ppm),<br>C-O(71ppm).             |

# Table (5): Biological activity of new ethersacetylene compounds

| Com<br>.No | Staphylococcus<br>aureus | Escherichia Coli |
|------------|--------------------------|------------------|
| 1          | +++                      | +                |
| 2          | +++                      | -                |
| 3          | ++                       | ++               |
| 4          | +++                      | -                |
| 5          | +                        | ++               |
| 6          | ++                       | -                |

. 11-5= +++ (highly active )

. 0-10= ++ (active )

. 1-5 = + ( slightly active )

The results of anti bacterials were present in table (5) in this study of the effect of bacteria isolated from amedical condition(human) and it Has studied and diagnosed and proved their attributes.

## **CONCLUSION:**

In conclusion a series of symmetrical and unsymmetrical oxazole With propargyl bromide give new ethers acetylene compounds the reaction good yield and products in future .

## **ACKNOWLEDGEMENTS:**

I would like to thank the department of chemistry for providing organic chemistry laboratories to complete the requrements for Reaction.

## Reference

- 1. B.Srinans, B.Patu ,Med-Chem.Lett2002,12,1965.
- 2. V.Voronin , M.Ledroky and V.Anonkve moleccles, 2018, 10, 23100442 .

- 3. L. Marrod an , A.Millea , EISEVLER, 2022, 327,125143.
- Schdnberg, A., & Moubacher, R. A. D. W. A. N. (1952). The Strecker degradation of ct-aminoacids. Chem Rev, 50,261-277.
- 5. Dose,K.(1957).A new method for the preparation of amines for amino carboxylic acids.chem Ber, 90, 1251-1258.
- 6. Chatelus, G. (1964). Thermal decarboxylation of  $\alpha$  -amino acids. Bull soc Chim Fr, 10, 2523-2532.