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Abstract 

Generalization of the semi-parametric single index model to be more flexible  than the general linear 

model by allowing non-linear relationships between the index function  and the response variable. In this 

paper,  new estimation and variable selection method through Bayesian approach is proposed.  We have  

construct new hierarchical model based on  the representation  of scale mixture of normal distribution 

mixing Rayleigh density for the  double exponential prior density of the parameters vector. Two 

simulation examples and real data are considered to evaluation our proposed method compare to some 

existing methods and we get some results. 

Keywords: Bayesian approach, scale mixture of Rayleigh, MCMC, Gaussian process, Single index 

model.  

INTRODUCTION 

Generalization of the semi-parametric single 

index model (SSIM) to be more flexible  than 

the general linear model by allowing non-

linear relationships between the index function 

(𝑋𝑖
′𝛽) and the dependent variable (Y):-        

Y

= g( 𝑋𝑖
′β)

+ 𝑢𝑖 … … … … … … … … … … … … … … … (1) 

Where y is response variable, β is a parameter 

vector ( parametric part ), g (.) is the 

nonparametric function (non- parametric part ) 

and u is the error term    𝑢~𝑁(0, 𝜎2 ). 

Among the regularization approaches, it is 

perhaps the most widely used approach in the 

recent literature for lasso variant selection. 

Imposing an( ℒ) penalty on the fitted vector 

modulus, the lasso performs a continuous 

contraction and an automatic variable 

selection at the same time. Lasso estimations 

can be achieved for processed transactions 

Lasso methods handle data maximization by 

reducing the value of the parameter (β ) to the 

smallest possible by ( Tibshirani,1996):- 

ℒ( 𝛽, 𝛾) =  ℓ2(𝑦 − 𝑥′𝛽)2

+ 𝛾‖𝛽‖1      … … . (2)  

Where  ℓ2(. ) is the  ℓ2-Norm and 𝜸 ≥ 0 is the 

shrinkage parameter of  𝛽  ( Efron et al ,2004). 

The least absolute shrinkage and selection 

operator (lasso)  has been established as a key 

workhorse of researchers in all domains 

working with high-dimensional regulation 

(Korobilis et al,2021 ) . Lasso estimates   is 

the posterior mode when the prior distribution 

of the regression parameter distributed 

according to Laplace  distribution ( LD) . 

Considered the lasso method  is  multiuse 

function (multi-part) linear that defined on a 

series of(𝛾) and suggest that the solution path 
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of (𝛾) following algorithm called Least Angle 

Regression (LAR) which suggests that the 

posterior distribution of regression on 

parameters is linearly for is series interval 

𝛾[𝛾𝑧 , 𝛾𝑧+1] (Tibshirani,1996).  

( Park & Casella, 2008 ) considered New 

Bayesian lasso through hierarchical model that 

represent the double exponential prior density 

as scale mixture of normal mixing (SMN)  

with Laplace distribution (LD). The full joint 

Bayesian posterior distribution of regression 

parameters for conditional Laplace 

distribution (LD) ( Tibshirani,1996):- 

𝜋(𝛽, 𝜎2|�̅�) ∝

 𝜋(𝜎2)(𝜎2)−(𝑛−1) 2⁄ 𝑒𝑥𝑝 {
1

2𝜎2  (�̅� − 𝑥𝛽)𝑇(�̅� −

𝑥𝛽) − 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1 }         ..(3)   

A new family of scale normal mixtures (SNM) 

is identified , This class of distributions, the 

exponential family, has been used widely in 

robustness studies; it was introduced and 

popularized by (Box & Tiao ,1973) in the 

context of Bayesian modeling  for robustness. 

However, The normal mixture property of the 

scale and the interesting relationship with the 

class of stable distributions are discussed so 

far. That exponential family  distributions are 

scale normal mixtures (SNM). In this paper,  It 

can be proven through the method  construct 

new hierarchical model representation 

considering the double exponential prior 

density of the parameters as scale mixture of 

normal distribution mixing Rayleigh density 

(SMNR) ( Flaih et al ,2020):- 

1

2𝛾
exp {−

|𝛽𝑗|

𝛾
} =

∫
1

√2𝜋𝑠
𝑒−𝛽2𝑗 2𝑠⁄ 𝑠

𝛾
𝑒−𝑠2 2𝛾⁄ 𝑑𝑠

∞

0
…………………

(4) 

 

2. Bayesian single index model proposed 

method and prior  assumption:  

   Consider the following single index defined 

as (Ichamuri,1993)  

Y = g( 𝑋𝑖
′β) + 𝑢𝑖    , (i = 1,2,3 … n) . 

……………….(5) 

Where 𝑦1, 𝑦2 … … … … . . 𝑦𝑛  are the dependent 

variables, 𝑢1, 𝑢2 … … … … . . 𝑢𝑛  are the errors 

and assumed to be (iid) normal distribution 

with (zero ) mean and unknown 𝜎2~ (0, 𝜎2
𝑢)  

, 𝑿𝒊 = (𝒙𝟏, 𝒙𝟐, … … 𝒙𝒑)′  is p-dimensional 

predictive variables and g( .) is the unknown 

link function and β𝑗   is the index parameters. 

The likelihood function for error 𝒖𝒊 =  𝒚𝒊 −
𝐠( 𝑿𝒊

′𝛃)  .(i=1,2,......,n ) .Where (n ) is the 

sample size can be shown as:- 

𝜋(𝑢 𝜎⁄ ) =

∏
1

√2𝜋𝜎2
exp {−

1

2𝜎2 (𝑢1)2}𝑛
𝑖=1  ………………

…….(6) 

𝜋(𝑢 g, 𝛽, 𝜎2⁄ ) =

∏
1

√2𝜋𝜎2
exp {−

1

2
 
𝑦𝑖−g( 𝑋𝑖

′β)
2

𝜎2 }𝑛
𝑖=1 ………………

……(7) 

𝜋(𝑢 g, 𝛽, 𝜎2⁄ ) =

∏
1

√2𝜋𝜎2
exp {−

1

2𝜎2  ∑ (𝑦𝑖 −𝑛
𝑖=1

𝑛
𝑖=1

g( 𝑋𝑖
′β)2}…………(8) 

The Gaussian process distribution set as prior  

for the unknown link function 𝐠(. )  

In other word , 𝐠(. ) function is  a Gaussian 

process with mean (zero ) and square 

exponential covariance furcation for more 

detail (see Chio etal, 2011, and Gramcy &Lian 

2012) , it on be shown as :- 

g(. )~𝐺𝑃 (0, 𝐸(. , . ))…...……………………

…………(9) 

𝐸(𝑋𝑖, 𝑋𝑗) =

𝒮  𝑒𝑥𝑝 {−
(𝑋𝑖−𝑋𝑗)2

𝑑
}……………………………

..(10) 

Where 𝓢 and d hyper parameters, we can write 

the prior  distribution for the unknown link 

function . 
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𝜋(g , 𝛽, 𝜎2,⁄ 𝒮) =

𝑑𝑒𝑡 [𝐸𝑛]−
1

2𝑒𝑥𝑝 {−
g𝑛

′ 𝐸𝑛g𝑛

2
}……………………

....…(11) 

𝑬𝒏   with dimension (n×n) is denoted the 

covariance matrix and given:- 

𝐸(𝑋𝑖𝛽, 𝑋𝑗
′𝛽) =  𝒮𝑒𝑥𝑝 {−(𝑋𝑖 − 𝑋𝑗)

′
𝛽𝛽′(𝑋𝑖 −

𝑋𝑗)}………………..(12) 

Gramacy and Lion ,2012 mention that the 

identifiable can be satisfy  
𝛽

√𝑑
 with necessity 

for the constraint ‖𝛽‖ = 1  . When use 

Gaussian process as prior for non parametric 

link function , so that (β) will be use instead of 
𝛽

√𝑑
 in the covariance function . 

𝐸(𝑋𝑖
′𝛽, 𝑋𝑗

′𝛽) =  𝒮 𝑒𝑥𝑝 {−(𝑋′
𝑖𝛽 −

𝑋′
𝑗𝛽)

2
}………………......(13) 

Inverse Gamma will be set as a prior 

distribution , 𝓢~𝐼𝐺(𝑎𝓢, 𝑏𝓢) , where 𝑎𝓢 and 𝑏𝓢 

are the hyper parameters.  

Laplace distribution put as  a prior distribution 

for the parameters index see (  

Tibshirani,1996. Park &casella ,2008):- 

𝜋(𝛽 𝜎2) = ∏
𝛾

2(𝜎2)
1
2

exp {−
𝛾

√𝜎2
‖𝛽𝑗‖}𝑝

𝑗=1⁄ ……

………………….(14) 

Where (γ > 0) is penalty parameter . 

In the paper the researchers suggested , new 

scale mixture of normal mixing with Rayleigh 

density (Flaih et al ,2020) as in equation (4). 

3. Scale mixture Rayleigh distribution 

(SMRD) 

Follow (Flaih et al,2020) new scale mixture of 

normal distribution mixing Rayleigh density 

for Laplace distribution we can rewrite the 

prior distribution of the index parameter as 

follow .Let   𝜸 =
√𝛔𝟐

𝛌
   

𝜋(𝛽 𝛾⁄ ) = ∏ ∫
1

2𝛾
exp {−

|𝛽𝑗|

𝛾
}

∞

0
 =

∏ ∫
1

√2𝜋𝑠𝑗
exp {−

𝛽𝑗
2

2𝑠𝑗
} .

𝑠𝑗

𝛾
exp {−

𝑠𝑗

2𝛾
} 𝑑𝑠𝑗

∞

0

𝑝
𝑗=1 …

.…….(15) 

So that hierarchical model for single index 

based on (Flaih et al,2020  )  proposed method 

can be formed as follows :- 

𝑦 𝛽,⁄ 𝐠 , 𝜎2~𝑁(𝐠( 𝑋𝑖
′𝛃), 𝜎2) 

𝐠 𝑋, 𝛽,⁄  𝒮~𝐺𝑃(0, 𝐸(. , . )) 

𝛽, 𝑠𝑗 𝛾 ~ ∏
1

√2𝜋𝑠𝑗

exp {−
𝛽𝑗

2

2𝑠𝑗
} .

𝑠𝑗

𝛾
exp {−

𝑠𝑗

2𝛾
}

𝑝

𝑗=1

⁄  

𝓢 ~𝐼𝐺 (𝑎𝓢, 𝑏𝓢) 

𝛾~𝐺𝑎 ( 𝑎𝛾, 𝑏𝛾) 

𝜎2~𝐺𝑎(𝑎𝜎2 , 𝑏𝜎2)…….................................(16

) 

Where 𝑎𝓢, 𝑏𝓢, 𝑎𝛾, 𝑏𝛾, 𝑎𝜎2 , 𝑏𝜎2  hyper 

parameters 

4. The full conditional posterior 

distribution   

For all the parameter posterior can be given 

back of as follows :- 

 

𝑃(𝐠𝒏, 𝜷, 𝒔, 𝜸, 𝓢, 𝝈𝟐, 𝒚) ∝ {𝑑𝑒𝑡[𝐷]−1𝑒𝑥𝑝 {−
(𝒚−𝐠𝒏)′𝑫−𝟏(𝒚−𝐠𝒏)

𝟐
} } ×  [𝑬𝒏]′𝒆𝒙𝒑 {−

𝐠𝒏
′ 𝑬𝒏𝐠𝒏

𝟐
} ×

 ∏ ∫
1

√2𝜋𝑠𝑗
𝑒𝑥𝑝 {−

𝛽𝑗
2

2sj
}  ×

𝑠𝑗

𝛾
𝑒𝑥𝑝 {−

𝑠𝑗

2𝛾
} × ∏

1

𝜎2 𝑒𝑥𝑝 (−
𝑠𝑗

𝜎2) × ∏ (𝛾)𝑎𝛾−1exp (−𝑏𝛾𝛾) ×𝑝
𝑗=1

𝑛
𝑖=1

∞

0

𝑝
𝑗=1

(𝓢)−𝑎𝓢−1 × exp (−
𝑏𝓢

𝓢
)…(17) 

 

As for the Gibbs sampler the full conditional 

distribution of (β) is a normal distribution and 

those of (𝜎2) and (𝜸)are Gamma distribution  

and full conditional distribution  of (𝓢) and 

( 𝑠𝑗) are generalized inverse  Gaussian  

distribution   (Jorgensen, 2012) 
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4.1 The full conditional distribution for 

sampling 𝐠𝒏 

𝜋(𝐠𝒏, 𝛽, 𝓢, 𝜎2, 𝑠, 𝑦)

∝ 𝜋(𝑦 𝐠𝒏⁄ , 𝛽, 𝜎2)

× 𝜋(𝐠𝒏 𝜷⁄ , 𝒮) 

∝ [det(𝐷)]−
1

2𝑒𝑥𝑝 {−
(𝑦 − g𝑛)′𝐷−1(𝑦 − g𝑛)

2
}

× det(𝐸𝑛)−
1

2 𝑒𝑥𝑝 {−
g𝑛

′ 𝐸𝑛g𝑛

2
} 

The full conditional distribution for  g𝑛   is 

normal distribution with mean 

𝐴 = 𝐷(𝐷 + 𝐸𝑛)−1𝑦,   and variance 𝐵 =

𝐷(𝐷 + 𝐸𝑛)−1𝐸𝑛 

4.2 The full conditional distribution for 

sampling β: 

 

  𝜋(β g𝑛,⁄ 𝒮, 𝑠, 𝛾, 𝜎2, 𝑦) ∝ 𝜋(𝑦 g𝑛⁄ , 𝛽, 𝜎2) ×

𝜋(g𝑛 𝛽⁄ , 𝒮) × 𝜋(𝛽 𝑠⁄ ) 

 ∝ 𝑒𝑥𝑝 {−
(𝒚−𝐠𝒏)′𝑫−𝟏(𝒚−𝐠𝒏)

𝟐
} [det(𝐷)]−

1

2 ×

det(𝑬𝒏)−
1

2 𝑒𝑥𝑝 {−
𝐠𝒏

′ 𝑬𝒏𝐠𝒏

𝟐
} × ∏ 𝒆𝒙𝒑 {−

𝛽𝑗
2

2𝑠𝑗
}

𝒑
𝒋=𝟏  

Metropolis algorithm will be considered to 

sample β. 

 

 4.3  The full conditional distribution for 

sampling 𝓢: 

 

        𝜋(𝒮 g𝑛,⁄ 𝛽, 𝑠, 𝛾, 𝜎2, 𝑦) ∝

𝜋(𝑦 g𝑛⁄ , 𝛽, 𝜎2) × 𝜋(g𝑛 𝛽⁄ , 𝒮) × 𝜋(𝒮) 

∝ 𝑒𝑥𝑝 {−
(𝒚 − 𝐠𝒏)′𝑫−𝟏(𝒚 − 𝐠𝒏)

𝟐
} [det(𝐷)]−

1

2

× det(𝑬𝒏)−
1

2 𝑒𝑥𝑝 {−
𝐠𝒏

′ 𝑬𝒏𝐠𝒏

𝟐
}

× (
𝟏

𝓢
)

𝒂𝓢+𝟏

𝒆𝒙𝒑 {−
𝒃𝓢

𝓢
} 

Metropolis algorithm will be considered to 

sample 𝓢. 

 

4.4 The full conditional distribution for 

sampling 𝒔𝒋 

           𝜋(𝑠𝑗 g𝑛,⁄ 𝛽, 𝜎2, 𝛾, 𝒮, 𝑦) ∝ 𝜋(β 𝑠𝑗⁄ ) ×

𝜋(𝑠𝑗) 

  ∝
1

√2𝜋𝑠2
𝑒𝑥𝑝 {−

𝛽𝑗
2

2𝑠𝑗
2

}
𝑠𝑗

𝛾
𝑒𝑥𝑝 {−

𝑠𝑗
2

2𝛾
}  

                              ∝ 𝑒𝑥𝑝 {−
1

2
(𝛽𝑗

2(𝑠2
𝑗)−1 +

1

𝛾
𝑠2

𝑗)} ×
𝟏

𝜸 √𝟐𝝅𝒔𝟐
 

  The full conditional distribution is 

Generalized Inverse Gaussian (GIG ) 

distribution  

4.5 The full conditional distribution for 

sampling 𝜸 

          𝜋(𝛾 g𝑛, 𝛽, 𝛾, 𝒮, 𝜎2, 𝑦) ∝ 𝜋(𝑠 𝛾⁄ )⁄ ×

𝜋(𝛾) 

  ∝ ∏
sj

γ
exp {−

sj
2

2γ
} × γaγ−1exp{−bγγ}

p

j=1

 

  ∝ ∏
sj

γ2−aγ
exp {− (

sj
2

2γ
− bγγ)}

p

j=1

 

Metropolis algorithm used to sample 𝛾. 

 4.6 The full conditional distribution for 

sampling 𝝈𝟐 

         𝜋((𝜎2 g𝑛,⁄ 𝛽, 𝛾, 𝒮, 𝑠, 𝑦) ∝

𝜋(𝑦 g𝑛⁄ , 𝛽, 𝜎2) × 𝜋(𝜎2) 

       ∝ (
1

𝜎2
)

𝑛

2
𝑒𝑥𝑝 {−

1

2𝜎2
(𝑦𝑖 − 𝐠𝒏)2} ×

(
1

𝜎2)
𝑎

𝜎2   +1

𝑒𝑥𝑝 {
𝑏

𝜎2

𝜎2
} 

 ∝ (
1

𝜎2
)

𝑛

2
+𝑎

𝜎2  +1

exp {−
1

𝜎2
[

1

2
(𝑦𝑖 − 𝐠𝒏)2 +

𝑏𝜎2]} 

The conditional distribution for 𝜎2  is Inverse 

Gamma distribution . 

5. Simulation study  

 Simulation approach are used to investigating  

the performance of our proposed method  

(BSIReg) compared with Bayesian single 

index quantile regression with quantile τ=0.50 
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(BQSIMτ=0.50) and non-Bayesian single index   

(SIReg)  methods. Two simulation examples 

are considered, for each   example, random 

errors are generated from exponential 

distribution with shape parameter (0.5). For 

each simulation examples, we run one hundred 

replications. All  methods under study are 

investigated  based on standard division  of the 

parameter estimates and  the median of mean 

absolute deviations denoted as MMAD, and 

mean absolute error referred to as “MAE”.  

5.1 Example One  

In this simulation example , We demonstrate 

how the proposed approach performed  for 

true model that used to simulate the data: 

𝑦 = 𝑔(𝑥𝑖
𝑇𝛽) + 𝜖       𝑤ℎ𝑒𝑟𝑒 𝑔(𝑡) =

5 cos(𝑡) + exp (−𝑡2)  

where the explanatory variables     𝑥𝑖, (𝑖 =

1,2,3,4,5, ) are identical independent 

distribution are simulated from normal 

distributions with mean 0 and variance 

(0.25)2 ,  𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) =
1

√5
(2,0,1,0,0) . In this simulation , we use 

different sample sizes (25,50,100,150,200 and 

250).  The results for simulation listed  in 

Table 1 , and Figure 1 

Table (1): comparison SD of the parameter estimates for SIReg,  
BQSIMτ=0.50 and BSIReg based on 100 replications for Simulated 1. 

N Methods 𝑆𝐷𝛽1 𝑆𝐷𝛽2 𝑆𝐷𝛽3 𝑆𝐷𝛽4 𝑆𝐷𝛽5 

 

N=25 

SIReg 0. 445 0. 735 0. 682 0. 842 0. 714 

BQSIMτ=0.50 0. 562 0. 493 0. 582 0. 624 0. 507 

BSIReg 0. 272 0. 351 0. 172 0. 392 0. 217 

 

N=50 

 

SIReg 0. 603 0. 728 0. 581 0. 728 0. 632 

BQSIMτ=0.50 0. 539 0. 492 0. 367 0. 472 0. 576 

BSIReg 0. 197 0. 267 0. 302 0. 382 0. 319 

 

N=100 

SIReg 0.543 0.638 0.798 0.608 0.541 

BQSIMτ=0.50 0.473 0.418 0.531 0.508 0.429 

BSIReg 0.261 0.391 0.241 0.141 0.211 

 

N=150 

SIReg 0.618 0.531 0.481 0.592 0.445 

BQSIMτ=0.50 0.677 0.505 0.537 0.675 0.472 

BSIReg 0.132 0.226 0.126 0.111 0.104 

 

N=200 

SIReg 0.627 0.538 0.439 0.475 0.734 

BQSIMτ=0.50 0.527 0.519 0.407 0.568 0.636 

BSIReg 0.240 0.184 0.118 0.294 0.184 

 

N=250 

SIReg 0.429 0.492 0.379 0.477 0.423 

BQSIMτ=0.50 0.395 0.311 0.301 0.292 0.246 

BSIReg 0.119 0.128 0.096 0.078 0.098 

The results listed in Table 1 present the 

standard deviation  (SD) of the parameters 

estimates for three methods under study. We 

can  see clearly the SD values for our 

proposed method much smaller than that 

values  for the other two methods. Therefore, 

our proposed method is better than  the other 

methods. Figure 1 shows standard deviation 

for these three methods via different samples 

size. 
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Figure (1) display standard deviation of parameters estimation  for the samples size 

(0.25,50,100,150,200 and 250) 
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5.2 Example Two 

In this example, we generated the data from 

the following model  

𝑦 = 𝑔(𝑥𝑖
𝑇𝛽) + 0.1𝜖    ,          𝑔(𝑡)

= 𝑠𝑖𝑛 {
𝜋(𝑡 − 𝐷)

(𝐸 − 𝐷)
} 

where  𝑦  is the dependent variable ,  𝑥𝑖 , 𝑖 =

1,2,3,4,5,6,7,8,9,10  are the independent 

variables, these variables are simulated from 

uniform distributed with  interval [0,1] , and  

𝐷 =
√3

2
−

1.645

√12
  ,  𝐸 =

√3

2
+

1.645

√12
 .  The 

parameters vector 𝛽 =
(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9𝛽10) 

=
1

√3
(1,1,0,0,1,0,0,0,0,0). The performance of 

these three methods are illustrate via  

“MMAD”  “MAE”. 

Table -2- MMADs and MAE for simulation 2, The results are averaged over 100 

simulations. 

N Methods MAE MMAD 

 

N=25 

 

 

SIReg 0.536 (0 .397) 0.541 ( 0 . 384) 

BQSIMτ=0.50 0.417 ( 0 . 278) 0.391 ( 0 . 217) 

BSIReg 
0.185 ( 0 . 087) 0.157 ( 0 . 079) 

 

N=50 

SIReg 0.527 ( 0 . 383) 0.543 ( 0 . 385) 

BQSIMτ=0.50 0.374 ( 0 . 185) 0.343 ( 0 . 186) 

BSIReg 0.183 ( 0 . 064) 0.156 ( 0 . 084) 

 

N=100 

SIReg 0.569 ( 0 . 383) 0.529 ( 0 . 255) 

BQSIMτ=0.50 0.329 ( 0 . 215) 0.330 ( 0 . 227) 

BSIReg 0.163 ( 0 . 087) 0.142 ( 0 . 074) 

 

N=150  

SIReg 0.438( 0 . 271) 0.426 ( 0 . 252) 

BQSIMτ=0.50 0.392 (0.237) 0.384 ( 0 . 216) 

BSIReg 0.126 ( 0 . 077) 0.139 ( 0 . 037) 

 

N=200 

SIReg 0.413 (0.296) 0.428 ( 0 . 268) 

BQSIMτ=0.50 0.276 ( 0 . 145) 0.431 ( 0 . 284) 

BSIReg 0.137 (0.057) 0.122 ( 0 . 049) 

 

 

N=250 

SIReg 0.373 ( 0 . 235) 0.328 ( 0 . 283) 

BQSIMτ=0.50 0.284 ( 0 . 162) 0.276 ( 0 . 134) 

BSIReg 0.110 ( 0 . 056) 0.112 ( 0 . 061) 

Note: In the parentheses are standard deviation (S.D) 
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From results of MMADs and MAE that listed 

in Table 2, It is readily observed that for all 

samples size  under considerations, the 

proposed method (BSIReg) achieves  the 

smallest values of  MMADs and MAE ,which 

shows that (BSIReg) estimates more 

accurately. Also, the standard deviation (SD) 

computed for the coefficients of our proposed 

method (BSIReg) is much smaller than the 

(SD) values that computed for the coefficients 

that estimated by the other two methods for all 

samples size  under consideration. Therefore, 

our proposed method  (BSIReg) is more 

accurately compared with other methods. 

6. Real Dataset  

In this section, we used Air Pollution dataset 

which  belong to Public Roads Administration 

in Norway. We used these dataset to 

investigated the performance the methods 

under considerations. These dataset consist 

from one dependent variables and seven 

independent variables, The dependent variable 

is represented log (concentration of NO2per 

hour), and the seven independent variables  

are: x_1 represented (log (number of cars per 

hour)), x_2 represented temperature , x_3 

represented wind speed in meters per second, 

x_4 represented the temperature difference , 

x_5 represented  wind direction, x_6 

represented  time of day in hours and  x_7 

represented day number. 

Similar to simulation section, we compare 

three methods (SIReg)and (BQSIMτ=0.50)  

and our proposed method (BSIReg). These 

methods under considerations are investigated 

based on the median of  mean absolute 

deviations (MMAD) , and mean squared error 

(MSE). The results are listed in the table 

below. 

 

 

 

Table (3): MMAD and MSE for Air 

Pollution dataset 

Methods MMAD MSE 

SIReg 1.518(1.273) 0.981(0.764) 

BQSIMτ=0.50 1.382(1.086) 0.859(0.697) 

BSIReg 0.872(0.648) 0.792(0.577) 

Note: In the parentheses are standard deviation 

(S.D) 

From the results of MMAD , MSE and SD are 

listed in Table (3), we can see that our 

proposed method (BSIReg) tends to get lower 

values of  MMAD , MSE and SD compare to  

the other two methods. Therefore, based on 

these result reported in this table we can 

conclude that the performance of the proposed 

method is better than others. We can see  

coefficients estimation  of air Pollution dataset 

via our  proposed method and other two 

method as following: 

Table (4): Parameters estimates of air Pollution dataset 

 

Independent variables 
Parameters SIReg BQSIMτ=0.50 BSIReg 

𝑥1 𝛽1 0.261 0.341 0.513 

𝑥2 𝛽2 0.471 0.136 0.008 

𝑥3 𝛽3 0.006 0.004 0.004 

𝑥4 𝛽4 -0.241 -0.175 -0.023 



New Bayesian Estimation for Single Index Model  

 

4477 

𝑥5 𝛽5 0.156 0.251 0.734 

𝑥6 𝛽6 0.007 0.002 -0.005 

𝑥7 𝛽7 -0.035 0.004 0.0009 

In general, some of the parameter estimates by 

our proposed method is very closed from zero 

compared with other two methods. The 

independent variable (x_4) temperature 

difference has negative affecting through  

three methods. But  independent variables ( 

x_1,x_2,x_3 and x_5 ) have positive  affecting 

through  three methods. 

7. Conclusion  

In this paper, we proposed new estimation and 

variable selection method through Bayesian 

approach for single index model. We have  

construct new hierarchical model based on  the 

representation  of scale mixture of normal 

distribution mixing Rayleigh density for the  

double exponential prior density of the 

parameters vector.  This  model  shrinkage  the  

dimensionality while  retention  nonparametric  

flexibility. 

 Two simulation examples and real data are 

considered to evaluation the performance of 

the  proposed method compare to the other 

two  existing methods.  The results that we 

reported in simulation and real data tables this 

paper demonstrated the superiority of our 

proposed method  compare to the other 

competitor methods. 
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