On subclass of Bazilevic function With Chebyshev polynomial

Luay Thabit Ahmed
Department of mathematics, College of Education for pure science, University of AnbarIraq, lua21u2004@uoanbar.edu.iq

Abdul Rahman S. Juma
Department of mathematics, College of Education for pure science, University of AnbarIraq, eps.abdulrahman.juma@uoanbar.edu.iq

Abstract

In the current work, we determine specific coefficients of the subclass $S(\beta, r)$ of univalent functions using chebyshev polynomials and estimate the pertinent relationship of the renowned traditional functions in this class are subject to the Fekete-Szegö inequality.Introduction and definitions:

If the unit disk is U since
$\mathrm{U}=\{\mathrm{w}: \mathrm{w} \in \not \subset,|\mathrm{w}|<1\}$.
let A represent the class of analytical operationsinU, fulfilling the requirements $£(0)=0$ and $£^{\wedge}, ~(0)=1$.
$£(w)=w+\sum_{n=2}^{\alpha} a_{n} w^{n}$ Let S make reference to the category of all univalent functions that are members of the normalized analytic function A.

INTRODUCTION

In the current work, we determine specific coefficients of the subclass $\mathrm{S}(\beta, \mathrm{r})$ of univalent functions using chebyshev polynomials and estimate the pertinent relationship of the renowned traditional functions in this class are subject to the Fekete-Szegö inequality.Introduction and definitions:
If the unit disk is U since
$\mathrm{U}=\{\mathrm{w}: \mathrm{w} \in \not \subset,|\mathrm{w}|<1\}$.
let A represent the class of analytical operationsinU, fulfilling the requirements $£(0)=0$ and $£^{\prime}(0)=1$.
$£(w)=w+\sum_{n=2}^{\infty} a_{n} w^{n}$ Let S make reference to the category of all univalent functions that are members of the normalized analytic function A.
If the functions $£(w)$ and $g(w)$ are analytic on U. We refer to that as $£(\mathrm{w})$ is subordinate to
$\mathrm{g}(\mathrm{w})$ in U , written $£(\mathrm{w})<\mathrm{g}(\mathrm{w})$ if a Schwarz function is present $\phi(\mathrm{w})$, This is analytical in U , and fulfills $\phi(0)=0,|\phi(\mathrm{w})|<1 .(\mathrm{w} \in \mathrm{U})$
Such that $£(w)=g(\phi(w)) \quad(w \in U)$
In addition, $g(w)$ is univalent in U, we obtain the equivalent (see[10])
$£(\mathrm{w})<\mathrm{g}(\mathrm{w}) \quad(\mathrm{w} \in \mathrm{U}) \quad \Leftrightarrow £(0)=\mathrm{g}(0)$ and $£(\mathrm{U}) \subset \mathrm{g}(\mathrm{U})$

The Fekete-Szegö functional $\left|\mathrm{a}_{3}-\mathrm{r} a_{1}^{2}\right|$ for the normalized Taylor series.
$£(\mathrm{w})=\mathrm{w}+a_{2} w^{2}+\mathrm{a}_{3} w^{3}+\ldots$.
in the theory of geometrical functions is well known. The disproof of the 1933 study by Fekete-Szegö served as its foundation.Gvess Paley and Littlewoods' contention that the maximum number of odd univalent function coefficients is unity (see[12]), has since
attracted a lot of interest, especially in several classes of univalent functions. Because of this, further classes of univalent functions were discovered using the Fekete-Szegö function that was introduced by numerous authors. (see[4, 11, 15, 16, 17]).
The key findings of research publications using Chebyshev orthogonal polynomials typically come from the first kind. $\mathrm{T}_{\mathrm{k}}(\mathrm{r})$ and second kind $\mathrm{U}_{\mathrm{k}}(\mathrm{r})$ of chebyshev polynomials and their numerous applications in other fields.
Moreover, one can see the papers in ([2, 3, 5, $6,9,14,7]$. The chebyshev polynomials' first and second forms are well-known in the involving a verified variable.
$-1<t<1$ They are described as follows:
$\mathrm{T}_{\mathrm{k}}(\mathrm{t})=\operatorname{cosk} \theta$
$\mathrm{U}_{\mathrm{k}}(\mathrm{t})=\frac{\sin (k+1) \theta}{\sin \theta}$
where K is the subyript's degree in the polynomial and $\mathrm{t}=\cos \theta$.
Definition: 1. (1) For $£ \in \mathrm{~A}$ a Al-oboudi operator is defined by $D_{n}^{m}: \mathrm{A} \rightarrow \mathrm{A}$ where $\mathrm{n} \geq 0, \mathrm{~m} \in \mathrm{~N}_{0}$ and
$D_{n}^{0} £(\mathrm{w})=£(\mathrm{w})$,
$D_{n}^{1} £(w)=(1-n) £(w)+n w £^{\prime}(w)$,
$D_{n}^{m} £(\mathrm{w})=D_{n}^{1}\left(D_{n}^{m-1} £(\mathrm{w})\right) \quad \mathrm{m} \geq 2$
Moreover, the operator D_{n}^{m} can be stated as follows using a power series.:
$D_{n}^{m} £(\mathrm{w})=\mathrm{w}+\sum_{k=2}^{a}[1+n(k-1)]^{m} a_{k} w^{k}$
Definition 2. (9) A n operater $D_{n}^{m} f \in \mathrm{~A}$ is reportedly the class $S(\beta, r), \beta \geq 0$ and $r \in\left(\frac{1}{2}, 1\right)$, if the subordination follows hold.
$(1-\beta) \frac{w\left(D_{n}^{m} f\right)(21)}{\left(D_{n}^{m} s(w)\right)}+\beta\left(1+\frac{w\left(D_{n}^{m} f\right)(21)^{\prime \prime}}{\left(D_{n}^{m} s(w)\right)}<\right.$
$H(w, t):=\frac{1}{1-2 t w+w^{2}} \quad(\mathrm{z} \in \mathrm{U}) \ldots \ldots$ (2)

Noting that if $\mathrm{v}=\cos \propto$ with $\propto \in(-\pi / 3, \pi / 3)$, then
' $\mathrm{H}(\mathrm{w}, \mathrm{v})=\frac{1}{1-2 \mathrm{v} w+\mathrm{w}^{2}}$
$=1+\sum_{n=1}^{\infty} \frac{\sin (n=1) \alpha}{\sin d \alpha} w^{n} \quad(\mathrm{z} \in \mathrm{U})$
Thus
$' \mathrm{H}(\mathrm{w}, \mathrm{v})=1+2 \cos \propto \mathrm{w}+\left(3 \cos ^{2} \propto-\sin ^{2} \propto\right) w^{2}+$ $(w \in U)$
From [18], we write
$' H(w, v)=1+U_{1}(v) w+U_{2}(v)+\ldots . \quad(w \in U, v \in(-$ 1, 1))

Where
$\mathrm{U}_{\mathrm{k}-1}=\frac{\sin (k \text { are cosv })}{\sqrt{1-\mathrm{v}^{2}}},(\mathrm{k} \in \mathrm{N}=\{1,2,3, \ldots\})$
pertaining to the second class of Chebyshev polynomials. Moreover, it is acknowledged that $\mathrm{U}_{\mathrm{k}}(\mathrm{v})=\mathrm{zt} \mathrm{U}_{\mathrm{v}-1}(\mathrm{v})-\mathrm{U}_{\mathrm{v}-2}(\mathrm{v})$
And $\quad U_{1}(v)=2 v$ $\mathrm{U}_{2}(\mathrm{v})=4 \mathrm{v}^{2}-1$ $\mathrm{U}_{3}(\mathrm{v})=8 \mathrm{v}^{3}-4 \mathrm{v}$.

The first variety of the chebyshev polynomials' common generating function $\mathrm{T}_{\mathrm{k}}(\mathrm{v}), \mathrm{v} \in[-1,1]$, has the following structure:
$\sum_{k=0}^{\infty} T(\mathrm{v})=\frac{1-\mathrm{v} w}{1-2 \mathrm{v} w-w^{2}} \quad(\mathrm{w} \in \mathrm{U})$
(The first kind of chebyshev polynomials $\mathrm{T}_{\mathrm{k}}(\mathrm{v})$ and the second kind $\mathrm{U}_{\mathrm{k}}(\mathrm{v})$ have the relationships have the going to follow connections::

$$
\begin{gathered}
\frac{d T_{k}(\mathrm{v})}{d \mathrm{v}}=K U_{k-1}(\mathrm{v}) \\
K_{k}(\mathrm{v})=U_{k}(\mathrm{v})-\mathrm{v} U_{k-1}(\mathrm{v}), \\
2 K_{k}(\mathrm{v})=U_{k}(\mathrm{v})-U_{k-2}(\mathrm{v}),
\end{gathered}
$$

Let Ω be the class of functions of the form $\phi(\mathrm{w})=\mathrm{C}_{1} \mathrm{w}+\mathrm{C}_{2} w^{2}+\mathrm{c} 3 w^{3}+\ldots$.
Satistying $|\phi(w)|<1$ for $w \in U$
The following lemma is necessary for us to prove our findings.

Lemma.1. [16] let $\phi \in \Omega$, thus for any complex number r .

$$
\left|\mathrm{C}_{2}-\varepsilon \mathrm{C}_{1}^{2}\right| \leq \max \{1 ;|\varepsilon|\} \ldots \ldots \ldots \ldots(2)
$$

For the services provided by, the outcome is precise by $\phi(\mathrm{w})=\mathrm{w} \quad$ or $\phi(\mathrm{w})=w^{2}$

We attempt to define a subclass in this work. $\mathrm{S}(\beta, \mathrm{r})$ (see[9]) and operator Al-Aboudi (see[1]) using the chebyshev polynomial and by offering initial coefficient estimations. The Fekete-Szegö dilemma in this class is also explained in addition to that.
Theorem (1): Let $D_{n}^{m} £(w)$ presented by (1) belong to the class $\mathrm{S}(\beta, \mathrm{r})$. Then
$\left|\mathrm{a}_{2}\right| \leq \frac{2 r}{(1+n)^{m}(1+\beta)}$
$\left|\mathrm{a}_{3}\right| \leq \frac{(1+3 \beta) r^{2}}{(1+2 \beta)(1+\beta)^{2}(1+2 n)^{m}}+\frac{r}{(1+2 \beta)(1+2 n)^{m}}+$
$\frac{1}{2(1+2 \beta)(1+2 n)^{m}}$
proof: Let $£ \in S(\beta$, r). From (), we have
$(1+\beta) \frac{w f^{\prime}(w)}{f(w)}+\beta\left(1+\frac{w f^{\prime \prime}(w)}{f^{\prime}(w)}=\right.$
$1+\mathrm{U}_{1}(\mathrm{r}) \Phi(\mathrm{w})+\mathrm{U}_{2}(\mathrm{r}) \phi^{2}(\mathrm{w})+\ldots$ (3)
If w is an analytical function, that way $\phi(0)=0$ and
$|\phi(w)|<1$ for all $w \in U$. based on the equational () and (), That's what we get:
$(1+\beta) \frac{w f^{\prime}(w)}{f(w)}+\beta\left(1+\frac{w f^{\prime \prime}(w)}{f^{\prime}(w)}=\right.$
$1+\mathrm{U}_{1}(\mathrm{r}) \mathrm{C}_{1} \mathrm{w}+\left[\mathrm{U}_{1}(\mathrm{r}) \mathrm{C}_{2}+\mathrm{U}_{2}(\mathrm{r}) \mathrm{C}^{2}{ }_{1}\right] w^{2}$
It is generally acknowledged that if $|\phi(\mathrm{w})|=$ $\left|\mathrm{C} 1 \mathrm{w}+\mathrm{C}_{2} w^{2}+\mathrm{C}_{3} w^{3}+\ldots\right|<1 \quad \mathrm{z} \in \mathrm{U}$

Then $\left|\mathrm{C}_{\mathrm{j}}\right| \leq 1$, for all $\mathrm{j} \in \mathrm{N}$.
And $\left|\mathrm{C}_{2}-\varepsilon \mathrm{C}_{1}^{2}\right| \leq \max \{1,|\varepsilon|\}$, for all ε $\in \mathrm{R}$ \qquad
From (2) it follows that
$(1+\mathrm{n})^{\mathrm{m}}(1+\beta) \mathrm{a}_{2}=\mathrm{U}_{1}(\mathrm{r}) \mathrm{C}_{1}$
$\left[2(1+2 \beta)(1+2 n)^{m}\right] a_{3}-(1+n)^{2}(1+3 \beta) a_{2}{ }^{2}=U_{1}(r)$ $\mathrm{C}_{2}+\mathrm{U}_{2}(\mathrm{r}) \mathrm{C}_{1}{ }^{2}$.

From (4), (6) we obtain
$\mathrm{a}_{2}=\frac{U_{1}(r) C_{1}}{(1+n)^{m}(1+\beta)}$
$\left|\mathrm{a}_{2}\right| \leq \frac{2 r}{(1+n)^{m}(1+\beta)}$
And by using (7), (8), to find the bound on $\left|a_{3}\right|$, we obtain
$2(1+2 \beta)(1+2 n)^{m} \quad \mathrm{a}_{3}=\left\{\mathrm{U}_{2}(\mathrm{r})+\frac{(1+n)^{2 m}(1+3 \beta)}{(1+n)^{2 m}(1+\beta)^{2}}\right.$
$\left.\mathrm{U}_{1}{ }^{2}(\mathrm{r})\right\} \mathrm{C}_{1}{ }^{2}$
then, in view of (5) and (6), we have form (10)
$\left|\mathrm{a}_{2}\right| \leq \frac{\left(2 \beta^{2}+10 \beta+4\right) r^{2}}{(1+2 \beta)(1+\beta)^{2}(1+2 n)^{m}}+\frac{r}{(1+2 \beta)(1+2 n)^{m}}+$
$\frac{1}{(1+2 \beta)(1+2 n)^{m}}$
Theorem2. Let $D_{n}^{m} £(\mathrm{w})$ belong to the class $\mathrm{S}(\beta, \mathrm{r})$. Then
$\left|\mathrm{a}_{3}-\varepsilon \mathrm{a}_{2}{ }^{2}\right| \leq \frac{r}{2(1+2 n)^{m}(1+2 \beta)} \max \left\{1, \frac{4 r^{2}-1}{2 r}+\right.$ $\left.\frac{2(1+3 \beta) r}{(1+\beta)^{2}}-4 \varepsilon \frac{(1+2 \beta)(1+2 n)^{m} r}{(1+n)^{2 m}(1+\beta)^{2}}\right\}$

Proof: from (9) and (11), we have
$\left.\left|\mathrm{a}_{3^{-}} \varepsilon \quad \mathrm{a}_{2}^{2}\right| \leq \frac{U_{1}(r)}{2(1+2 n)^{m}(1+2 \beta)} \right\rvert\, \mathrm{C}_{2}\left\{1, \frac{U_{2}(r)}{U_{1}(r)}+\right.$ $\left.\frac{(1+3 \beta) r}{(1+\beta)^{2}} U_{1}(t)-2 \varepsilon \frac{(1+2 \beta)(1+2 n)^{m} U_{1}(r)}{(1+n)^{2 m}(1+\beta)^{2}}\right\} \mathrm{C}_{1}{ }^{2} \mid$.

Then, in view of (2) we obtain that
$\left|\mathrm{a}_{3^{-}} \varepsilon \mathrm{a}_{2}{ }^{2}\right| \leq \frac{U_{1}(r)}{2(1+2 n)^{m}(1+2 \beta)} \max \left\{1, \left\lvert\, \frac{U_{2(}(r)}{U_{1}(r)}+\right.\right.$ $\left.\left.\frac{(1+3 \beta) r}{(1+\beta)^{2}} U_{1}(r)-2 \varepsilon \frac{(1+2 \beta)(1+2 n)^{m}}{(1+n)^{2 m}(1+\beta)^{2}} U_{1}(r) \right\rvert\,\right\}$.

Finally, by substituting (5) and (6) into (2) we get
$\left|\mathrm{a}_{3}-\varepsilon \mathrm{a}_{2}{ }^{2}\right| \leq \frac{r}{2(1+2 n)^{m}(1+2 \beta)} \max \left\{1, \frac{4 r^{2}-1}{2 r}+\right.$ $\left.\frac{2(1+3 \beta) r}{(1+\beta)^{2}}-4 \varepsilon \frac{(1+2 \beta)(1+2 n)^{m} r}{(1+n)^{2 m}(1+\beta)^{2}}\right\}$.
Taking $\beta=1$ Theorem above yields the following consequence..
Corollary: If $D_{n}^{m} £(\mathrm{w})$ belong to the class $\mathrm{S}($ r). Then

$$
\begin{aligned}
& \left|\mathrm{a}_{2}\right| \leq \frac{r}{(1+2)^{m}} \\
& \left|\mathrm{a}_{3}\right| \leq, \frac{4 r^{2}}{3(1+n)^{2 m}}+\frac{r}{3(1+2 n)^{m}}-\frac{1}{6(1+2)^{m}} \\
& \left|\mathrm{a}_{3}-\varepsilon \mathrm{a}_{2}^{2}\right| \leq\left|\frac{8 r^{2}-6 \varepsilon r^{2}-1}{6(1+2 n)^{m}}\right|
\end{aligned}
$$

Reference

Al-Oboudi Fm. On univalent functions defined by a generalized Salageam operator. International Journal of Mathematics and Mathematical sciences; 2004 (27): 1429-1436, (2004).
S. Altuinkaya and S. Yalcin, On the Chebyshev polynomial coefficient problem of some subclass of bi-univalent function, Gulf J. Math. 5(3)(2017), 34-40.
S. Altuinkaya and S. Yalcin, On the Chebyshev polynomial coefficient bounds for class of univalent function, Khayyam J. Math. 2(1)(2016), 1-5.
R. Bucur, L. Andrei functions, D. Breaz, coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using anew differential operator, App;e, Math. Sci. 9(2528)(2015), 1355-1368.
S. Bulut, N. Magesh and C. A birami, A comprehensire class of analytic biunivalent functions by meaw of chebyshev polynmials, J. Fract. Calc. Appl. 8(2)(2017), 32-39.
S. Bulut, N. Magesh and V.K. Balaji, Initial bounds for analytic and bi-univalent functions by means of chebyshev polynomials, J. class. Anal. 11(1)(2017), 83-89.
M. Caglar, Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, C.R. Acad. Bulg. Sci. 72(12)(2019), 1608-1615.
K.O. Babaloia, On \square-pseudo starlike fuctions, J. class. Anal, 3(2)(2013), 137-147.
J. Dizok, R.K. Raino and J Sokol, Application of chebyshev polynomials to classes of analytic functions, C.R.Math. Acad. Sci Paris Sera, I, 353(5)(2015), 433-438.
P.L. Duren, Univalent functions, Grundlehren der Mathematician Wissenschaften 259,Sprnger-Verlag, 1983.
R. El-Ashwah and S. Kanas, Fehete-Szegö inequalities for quasi-subordinations functions classes of comlex order, Kyuugpook Math. J. 55(1)(2015), 679688.
M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc. 2(1)(1933), 85-89.
B. A. Frasin, Cofficient inequalities for certain classes of sakaguchi type functions, Int. J. Nonlinear Sci. 10(2)(2010), 206-211.
H.O. Guney, Initial Chebyshev polynomial coefficient bound estimates for i-univalent functions, Acta Univ. Apvlensis, 47(1)(2016), 159-165.
A.R.S. Juma, M.S. Abdulhussain and S.N.AlKhafaji, Application of Chibysher polynomials to certain subclass of nonBazilevic functions, Filomat 32(12)(2018), 4143-4153.
A.R.S. Juma, SERAP Bulut and S.A. AlKhafaji, Fekete-Szegö inequality's for a subclass of Non-Bazile Vic Functions

Luvolving chebyshev polynomial. Honam Math. J. 43(2021). No.3, P.P,503-511.
S. Kanas and H. E. Darwish, Fekete-Szegö problem for star like and convex functions of complex order, Appl. Math. Lett. 23(1)(2010), 777-782.
E.T. Whittaker and G.N. Wastson, A couvse of Modern analysis, An introduction to the general theory of infinite processes and of analytic functions; with an a ccount of the principal transcendental functions, Reprint of the fourth (1927) edition. Cambridge Mathematical Library. Cambridge Universty Press, Cambride 1996.

