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Abstract 

We have now looked rather extensively at rings and fields and in this subject we consider the basic 

concepts of group theory. Groups arise in many different areas of mathematics. For example they arise in 

geometry as groups of congruence motions and in topology as groups of various types of continuous 

functions. Later in this subject they will appear in Galois Theory as groups of automorphisms of Fields. 

INTRODUCTION 

 Definition : A group G is a set with 

one binary operation which we will denote by 

multiplication, such that 

(1) The operation is associative, that is, 

(𝒈𝟏 𝒈𝟐)𝒈𝟑 = 𝒈𝟏(𝒈𝟐𝒈𝟑)  for all 

𝒈𝟏, 𝒈𝟐, 𝒈𝟑 ∈ 𝑮 . 

(2) There exists an identity for this 

operation, that is, an element 1 such that 

𝟏 𝒈 = 𝒈 and 𝒈 𝟏 = 𝒈 for each𝒈 ∈ 𝑮. 

(3) Each 𝒈 ∈ 𝑮  has an inverse for this 

operation, that is, for each 𝒈 there exists a 𝒈−𝟏  

with the property that 𝒈𝒈−𝟏 = 𝟏 an  𝒈−𝟏𝒈 =

𝟏. 

If in addition the operation is commutative, 

that is 𝒈𝟏𝒈𝟐 = 𝒈𝟐𝒈𝟏 for all 𝒈𝟏𝒈𝟐 ∈ 𝑮  , the 

group 𝑮 is called an abelian group. 

The order of 𝑮, denoted |𝑮|, is the number of 

elements in the group  𝑮 . If  

|𝑮| < ∞ , 𝑮 is a finite group otherwise it is an 

infinite group. 

It follows easily from the definition that the 

identity is unique and that each element has a 

unique inverse. 

 

 Lemma (1): 

If 𝑮 is a group then there is a unique identity. 

Further if 𝒈 ∈ 𝑮 its inverse is unique. Finally 

if 𝒈𝟏𝒈𝟐 ∈ 𝑮 then (𝑔1𝑔2)−1 = 𝑔2
−1𝑔1

−1 . 

 

Proof.  Suppose that 1 and  𝓮  are both 

identities for  𝑮. Then 𝟏𝓮 = 𝓮 since 𝓮 is an 

identity and 𝟏𝓮 = 𝟏  since 1 is an identity. 

Therefore 𝟏 = 𝓮 and there is only one 

Identity. 

Next suppose that 𝒈 ∈ 𝑮  and 𝒈𝟏  and 𝒈𝟐  are 

inverses for  𝒈. Then 

 

𝒈𝟏𝒈𝒈𝟐 = (𝒈𝟏𝒈)𝒈𝟐 = 𝟏𝒈𝟐 = 𝒈𝟐 

 

since 𝒈𝟏𝒈 = 𝟏.  On the other hand 

𝒈𝟏𝒈𝒈𝟐 = 𝒈𝟏(𝒈𝒈𝟐) = 𝒈𝟏𝟏 = 𝒈𝟏 

since 𝒈𝒈𝟐 = 𝟏. It follows that 𝒈𝟏 = 𝒈𝟐  and  

𝒈 has a unique inverse. 

Finally consider 
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(𝒈𝟏𝒈𝟐)(𝒈𝟐
−𝟏𝒈𝟏

−𝟏) = 𝒈𝟏(𝒈𝟐𝒈𝟐
−𝟏)𝒈𝟏

−𝟏 =

𝒈𝟏𝟏𝒈𝟏
−𝟏 = 𝒈𝟏𝒈𝟏

−𝟏 = 𝟏. 

 

Therefore 𝒈𝟐
−𝟏𝒈𝟏

−𝟏  is an inverse for 𝒈𝟏𝒈𝟐 and 

since inverses are unique it is the inverse of 

the product. 

 

Groups most often arise as permutations on a 

set. We will see this, as well as other 

Specific examples of groups, in the next 

sections. 

 

Finite groups can be completely described by 

their group tables or multiplication 

tables. These are sometimes called Cayley 

tables. In general, let  𝑮 = {𝒈𝟏 … ..  𝒈𝒏} be a 

group, then the multiplication table of 𝑮 is: 

 

 

The entry in the row of  𝒈𝓲 ∈ 𝑮 and column of 

𝒈𝓳 ∈ 𝑮 is the product (in that order) 𝒈𝓲𝒈𝓳 in 

𝑮. 

Groups satisfy the cancellation law for 

multiplication. 

 

 Abelian Group  or commutative 

Group : 

 Definition :A Group {𝑮,∗} is said to be 

abelian or commutative if in addition to the 

above four postulate is also satisfied. 

• commutativity 𝒂𝒐𝒃 = 𝒃𝒐𝒂  ∀ 𝒂, 𝒃 ∈

𝑮  

Notes:   

1. In our definition of a group we have 

denoted the composition in  𝑮  by 

multiplicative notation. However we can use 

any symbol like  ∗, 𝟎, +  ect. to denote the 

composition. If we use the additive notation '+' 

to denote the composition in 𝑮  , then the 

inverse of an element 𝒂 ∈ 𝑮 is denoted by the 

symbol –  𝒂  i.e., we have  (−𝒂) + 𝒂 = 𝒆 =

𝒂 + (−𝒂)  

2. A group is not simply a set but it is an 

algebraic structure i e., a set equipped with a 

binary composition provided the composition 

satisfies certain postulates. If a group consists 

of a non-empty set 𝑮 and a binary composition 

in𝑮, then we shall often use the same symbol 

𝑮 to denote the group and the underlined set. 

3. In additive notation the element  𝒂 +

(−𝒃) ∈ 𝑮 is denoted by 𝒂 − 𝒃. 

in multiplicative notation the element  𝒂𝒃−𝟏 ∈

𝑮 is denoted by 𝒂 𝒃⁄  . 

4. If we use multiplicative notation to 

denote the composition in  𝑮, then often we 

denote the identity by the symbol 'l' thus l is 

an element of  𝑮 such that 𝒍 𝒂 = 𝒂 = 𝒂𝒍 ∀ 𝒂 ∈

𝑮 . 

Also in multiplicative notation we often 

denote the inverse of a by  𝟏 𝒂⁄  . Thus 𝟏 𝒂⁄  is 

an element of 𝑮 such that  
𝟏

𝒂
𝒂 = 𝟏 = 𝒂

𝟏

𝒂
 . 

In additive notation, we often denote the 

identity by the symbol '0'. 

Thus, 0 is an element of 𝑮 such that  𝟎 + 𝒂 =

𝒂 + 𝟎 . 

5. According to our definition of a binary 

operation if  '.' is a binary operation on 𝑮, then 

we must have 𝒂. 𝒃 ∈ 𝑮, ∀ 𝒂, 𝒃 ∈ 𝑮.Therefore 

in our definition of a group there is no 

necessity of mentioning the closure axiom. It 
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is superfluous there. We have mentioned it 

there to simply lay emphasis upon the fact that 

while showing the group postulates in a 

problem the students should not forget to show 

the closure axiom. 

 Lemma (2): 

If 𝑮 is a group and  𝒈 ∈ 𝑮 then 〈𝒈〉 forms a 

subgroup of 𝑮  called the cyclic subgroup 

generated by 𝒈. 〈𝒈〉 is abelian even if 𝑮 is not. 

 

Proof.  

If 𝒈 ∈ 𝑮  then  𝒈 ∈ 〈𝒈〉  and hence 〈𝒈〉  is 

nonempty. Suppose then that  𝒂 = 𝒈𝒏  , 𝒃 =

𝒈𝒎  are elements of 〈𝒈〉. Then  𝒂𝒃 = 𝒈𝒏𝒈𝒎 =

𝒈𝒏+𝒎 ∈ 〈𝒈〉 so 〈𝒈〉 is closed under the group 

operation. Further 𝒂−𝟏 = (𝒈𝒏)−𝟏 = 𝒈−𝒏 ∈
〈𝒈〉 so 〈𝒈〉 is closed under inverses. Therefore 

〈𝒈〉 is a subgroup.  

Finally 𝑎𝑏 = 𝒈𝒏𝒈𝒎 = 𝒈𝒏+𝒎 = 𝒈𝒎+𝒏 =

𝒈𝒎𝒈𝒏 = 𝒃𝒂and hence 〈𝒈〉 is abelian. 

 

 Definition :  

If 𝑮 and 𝑯 are groups then a mapping  𝒇: 𝑮 →

𝑯 is a (group) homomorphism if 𝒇(𝒈𝟏𝒈𝟐) =

𝒇(𝒈𝟏)𝒇(𝒈𝟐)  for any 𝒈𝟏𝒈𝟐 ∈ 𝑮. If  𝒇 is also a 

bisection then it is an isomorphism. 

As with rings and fields we say that two 

groups 𝑮 and 𝑯 are isomorphic, denoted 

by  𝑮 ≅ 𝑯, if there exists an isomorphism𝑭 ∶

𝑮 → 𝑯 . This means that abstractly 𝑮  and 𝑯 

have exactly the same algebraic structure. 

 

 

 

 

 

Example (1): 

Show that the set of vectors defined as 

directed line segments does not form a group 

(𝒊) with respect to secular (𝒅𝒐𝒕) product (𝒊𝒊) 

with respect to vector (𝒄𝒓𝒐𝒔𝒔) product. 

Solution: 

Let 𝑽 denote the set of all vectors defined as 

directed line segments. 

1. If  𝒂, 𝒃 ∈ 𝑽  , then  𝒂, 𝒃  is a scalar 

quantity and so 𝒂, 𝒃 ∉ 𝑽 . Thus dot product of 

vectors is not a binary operation on the set 𝑽 

.Hence 𝑽 cannot be a group with respect to dot 

product. 

2. If  𝒂, 𝒃 ∈ 𝑽  , then the cross product  

𝒂 × 𝒃 is also a vector and so 𝒂 × 𝒃 ∈ 𝑽 . thus, 

cross product of two vectors is a binary 

operation on the set  𝑽. But the cross product 

of vectors is not an associative operation. If 

𝒂, 𝒃, 𝒄 ∈ 𝑽 , then in general 𝒂 × (𝒃 × 𝒄) ≠

(𝒂 × 𝒃) × 𝒄 . 

Hence 𝑽 is not a group with respect to cross 

product. 

Example (2): 

As already mentioned groups arise in many 

diverse areas of mathematics. In this section 

and the next we present specific examples of 

groups. 

Solution: 

First of all any ring or field under addition 

forms an abelian group. Hence, for example 

(ℤ , +), (ℚ , +), (ℝ , +), (ℂ , +)  where 

ℤ, ℚ, ℝ, ℂ  are respectively the integers, the 

rational, the reels and the complex numbers, 

all are infinite abelian groups. If  ℤ𝒏  is the 

modular ring ℤ 𝒏ℤ⁄  then for any natural 

number n, (ℤ𝒏 , +)  forms a finite abelian 

 Examples on Groups 
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group. In abelian groups the group operation is 

often denoted by C and the identity element by 

0 (zero). 

In a field  𝑭  , the nonzero elements are all 

invertible and form a group under 

multiplication. This is called the multiplicative 

group of the field 𝑭 and is usually denoted 

by  𝑭 ∗   since multiplication in a field is 

commutative the multiplicative group of a 

field is an abelian group. Hence ℚ∗ℝ∗ℂ∗are all 

infinite abelian groups while if p is a prime ℤ𝒑
∗  

forms a finite abelian group. Recall that if p is 

a prime then the modular ring ℤ𝒑 is a field. 

Within ℚ∗ℝ∗ℂ∗ there are certain multiplicative 

subgroups. Since the positive rationals ℚ+and 

the positive reals ℝ+  are closed under 

multiplication and inverse they form 

subgroups of ℚ∗  and ℝ∗  respectively. In ℂ  if 

we consider the set of all complex numbers 𝒁 

with |𝒁| = 𝟏 then these form a multiplicative 

subgroup. Further within this subgroup if we 

consider the set of n-the roots of unity 

𝒁(𝒕𝒉𝒂𝒕 𝒊𝒔 𝒁𝒏 = 𝟏)for a fixed n this forms a 

subgroup, this time of finite order.  

The multiplicative group of a field is a special 

case of the unit group of a ring. If 𝑹  is a ring 

with identity, recall that a unit is an element of  

𝑹  with a multiplicative inverse. Hence in  ℤ 

the only units are  ±𝟏 while in any field every 

nonzero element is a unit. 

 

 

 

 

1. Is (𝓢, °) a group if  

(i) 𝓢 = 𝓩 and ° is the usual multiplication 

of integers? 

(ii) 𝓢 = 𝓠  and ° is the usual multiplication 

in 𝓠 ? 

(iii) 𝓢 = {𝓺| 𝓺 ∈ 𝓠 𝒂𝒏𝒅 𝓺 > 𝟎}  and ∎  is 

the usual multiplication of rational numbers? 

(iv) 𝓢 = {𝓩| 𝔃 ∈ 𝓩 𝒂𝒏𝒅 𝔃 > √𝟐} and   ° is 

the usual multiplication in 𝓩 ? 

(v) 𝓢 = 𝓡  and °  is the usual addition of 

real numbers? 

(vi) 𝓢 = 𝓩 ° is defined by 𝒂°𝒃 = 𝟎  for all 

𝒂, 𝒃 𝒊𝒏 𝓩 ? 

 solutions:  

(i) The identity element is the integer 1. 

(𝓢, °) is not a group because 𝟓 ∉ 𝓩 but there is 

no integer 𝔃 in 𝓩 such that𝔃°𝟓 = 𝟓°𝔃 = 𝟏. 

(ii) Again the identity is the number 1. 

There is no 𝓺 ∈ 𝓠 such that𝓺°𝟎 = 𝟏. Hence 

(𝓢, °) is not a group. 

(iii) (𝓢, ∎) is a group. Clearly𝓢 ≠ 𝝓 and ∎ 

is a binary operation on 𝓢 . 

𝓆∎𝟏 = 𝟏∎𝓺 = 𝓺 for all 𝓺 ∈ 𝓢, is an identity. 

Multiplication of rational numbers is 

associative and every element in 𝓢  has an 

 Problems 
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inverse; for if 𝓺 ∈ 𝓢, then  
𝟏

𝓺
∈ 𝓢 and 

𝟏

𝓺
∎𝓺 =

𝟏 =  𝓺∎
𝟏

𝓺
.  

(iv) 𝓢 = 𝝓  since √𝟐 ∉ 𝓩.  Therefore (𝓢, °) 

is not a group. 

(v) (𝓢, °) is a group. 𝓢 ≠ 𝝓 and addition is 

an associative binary operation on 𝓢. 𝓻 + 𝟎 =

𝟎 + 𝓻 = 𝓻  and 𝓻 + (−𝓻) = 𝟎 = (−𝓻) + 𝓻 

for all ∈ 𝓢 . 

(vi) (𝓢, °) is not a group because there is no 

identity element in 𝓢. 

 

2. let 𝓂 be any fixed positive integer and 

let 𝒮 = {0,1,2, … , 𝓂 − 1}.  Define a binary 

operation in  𝒮 by         𝒶°𝔟 = 𝒶 + 𝔟  if 𝒶 +

𝔟 < 𝓂  

                             𝒶°𝔟 = 𝓇  if 𝒶 + 𝔟 = 𝓂 +

𝓇 , 0 ≤ 𝓇 < 𝓂 

Prove that (𝒮, °)  is a group of order  𝓂 .  

(Hard.) 

 solutions:  

If 𝒂, 𝒃 ∈ 𝓢, then 𝓪°𝖇 is uniquely defined and 

belongs to 𝓢.  𝓪°𝟎 = 𝟎°𝓪 = 𝓪  so 0 is an 

identity.Note that 𝓪°𝖇 = 𝓪 + 𝖇 − 𝜹𝓶  where 

𝛅 is 0 or 1, for any 𝒂, 𝒃 ∈ 𝓢, So 𝖇°𝓬 = 𝖇 + 𝓬 −

𝜹𝟏𝓶 where 𝜹𝟏 is 0 or 1. Hence 

𝓪°(𝖇°𝓬) = 𝓪 + 𝖇 + 𝓬 − 𝜼𝟏𝓶   Where   𝜼𝟏 is 

0 or 1 or 2. 

Similarly                          (𝓪°𝖇)°𝓬 = 𝓪 + 𝖇 +

𝓬 − 𝜼𝟐𝓶   Where   𝜼𝟐 is 0 or 1 or 2. 

Now             𝟎 ≤ 𝓪°(𝖇°𝓬) < 𝓶        and     

𝟎 ≤  (𝓪°𝖇)°𝓬 < 𝓶  Suppose  𝜼𝟏 > 𝜼𝟐 

𝓪°(𝖇°𝓬) = 𝓪 + 𝖇 + 𝓬 − (𝜼𝟐 + 𝟏)𝓶 = 𝓪 +

𝖇 + 𝓬 − 𝜼𝟐𝓶 − 𝓶  

because 𝜼𝟏  is at least 𝜼𝟐 + 𝟏  But  𝟎 ≤  𝓪 +

𝖇 + 𝓬 − 𝜼𝟐𝓶 < 𝓶  and the above equation 

implies that 𝓪°(𝖇°𝓬) < 𝟎;   this contradicts 

𝟎 ≤ 𝓪°(𝖇°𝓬).  Hence 𝜼𝟏 ≤ 𝜼𝟐  𝜼𝟐 > 𝜼𝟏  leads 

in a similar way to a contradiction. Thus 𝜼𝟏 =

𝜼𝟐  and 

𝓪°(𝖇°𝓬) = (𝓪°𝖇)°𝓬  If  𝖆 ∈ 𝓢 then 𝓶 − 𝓪 ∈ 𝓢 

and 

𝓪°(𝓶 − 𝓪) = (𝓶 − 𝓪)°𝓪 = 𝟎  hence 𝓶 − 𝓪 

is an inverse to 𝓪 Thus 𝓢 is a group. 

 2- subgroups : 

In this chapter, we’ll continue to utilize our 

intuitive definition of a group. That is, a group 

G is a set of actions that satisfies the following 

rules. 

Rule 1.  There is a predefined list of actions 

that never changes. 

Rule 2.  Every action is reversible. 

Rule 3.  Every action is deterministic. 

Rule 4.  Any sequence of consecutive actions 

is also an action. 

In the previous chapter, we constructed lots of 

Clayey diagrams for various groups. To 

construct a Clayey diagram for a group G, we 

need to first identify a set of generators, say S. 

Recall that our choice of generators is 
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important as changing the generators can 

result in a deferent Clayey diagram. 

In the Clayey diagram for G using S, all the 

actions of G are represented by the vertices of 

the graph. Each vertex corresponds to a unique 

action. This does not imply that there is a 

unique way to obtain a given action from the 

generators. Each of the generators determines 

an arrow type in the diagram. One way to 

distinguish the deferent arrow types is by 

using deferent colors. An arrow of a particular 

color always represents the same generator. 

One of the vertices in the diagram is labeled 

by the do-nothing action, often denoted by e. 

Each of the other vertices are labeled by words 

that correspond to following arrows (forwards 

or backwards) from e to a given vertex. There 

may be many ways to do this as each sequence 

of arrows corresponds to a unique word. So, a 

vertex could be potentially labeled by many 

words. Also, one potentially confusing item is 

that we read our words from right to left. That 

is, the first arrow we follow out of e is the 

rightmost generator in the word. 

 Definition : Let (𝑮,∙) be a group with 

binary operation. and let 𝓗  be a non-empty 

subset of 𝑮. 

Then we say 𝓗  is a subgroup of 𝑮  if the 

operation. restricted to 𝓗 is a binary operation 

in 𝓗 which makes 𝑯 into a group. 

For example, if 𝑮 is the group with 𝓶 = 𝟒 , 

then the subset 𝓗 = {𝟎, 𝟐} is a subgroup of 𝑮. 

For when the operation ° in 𝑮, as defined in 

the multiplication table 

for 𝑮, is restrict to 𝓗, it is a binary operation 

in𝓗, i.e. 

𝟎°𝟎 = 𝟎 ∈ 𝓗,   𝟎°𝟐 = 𝟎 ∈ 𝓗, 𝟐°𝟎 = 𝟎 ∈ 𝓗   

and 𝟐°𝟐 = 𝟎 ∈ 𝓗 . 

𝓗 is a group because: 𝓗 ≠ ∅; 0, the identity, 

is in 𝓗; the operation 0 restricted to 𝓗 is an 

associative binary operation (since the 

operation in 𝑮  is associative); and every 

element in 𝓗has an inverse in 𝓗.  

 Lemma : 

Let (𝑮,∙) be a group. Then a subset 𝓗 of G is 

a subgroup of 𝑮 iff 

(i) 𝓗 ≠ ∅                and         (ii) if 𝓪, 𝖇 ∈

𝓗,     then   𝓪𝖇−𝟏 ∈ 𝓗 

Proof.  

If 𝓗 satisfies these conditions, then 𝓗 is a 

group with respect to the binary operation. For 

if 𝓗 ≠ ∅, then there exists 𝓪 ∈ 𝓗. Hence 

𝓪𝓪−𝟏 = 𝟏 ∈ 𝓗. Also, if 𝖇 ∈ 𝓗 then 𝟏𝖇−𝟏 =

𝖇−𝟏 ∈ 𝓗. Hence 𝓪, 𝖇 ∈ 𝓗 implies 

𝓪(𝖇−𝟏)−𝟏 = 𝓪𝖇 ∈ 𝓗. Associativity is true in 

𝓗, as it is true in 𝑮. Thus' is an associative 

binary operation on 𝓗, 𝟏 ∈ 𝓗 

and the inverse of every element of 𝓗 is an 

element of 𝓗. Therefore (𝓗,∙) is a subgroup. 

 Definition : Let 𝑮  be an arbitrary 

group. A subgroup 𝓗 is a normal subgroup of 

𝑮 , which we denote by 𝓗 ⊲  𝑮  , if 

𝒈−𝟏𝓗𝒈 = 𝓗 for all 𝒈 ∈ 𝑮  

Since the conjugation map is an isomorphism 

it follows that if 𝒈−𝟏𝓗𝒈 ⊂ 𝓗  then 

𝒈−𝟏𝓗𝒈 = 𝓗. Hence in order to show that a 



Journal of Survey in Fisheries Sciences              10(3S) 5100-5109 2023 

5106 
 

subgroup is normal we need only show 

inclusion. 

 Lemma : 

Every subgroup of an abelian group is normal. 

Proof.  

Let 𝑮  be abelian and 𝓗  a subgroup of 𝑮 . 

Suppose 𝒈 ∈ 𝑮 then 𝖌𝓱 = 𝓴𝖌 for 

all 𝓱 ∈ 𝓗  since 𝑮  is abelian. It follows that 

𝖌𝓗 = 𝓗𝖌 . Since this is true for every 

𝒈 ∈ 𝑮 it follows that 𝓗 is normal. 

 D

efinition : Let 𝑮 be an arbitrary group and 𝓗 

a normal subgroup of 𝑮. Let 𝑮 𝓗⁄  denote the 

set of distinct left (and hence also right) 

cossets of 𝓗 in 𝑮. On 𝑮 𝓗⁄  define the 

multiplication 

(𝖌𝟏𝓗)(𝖌𝟐𝓗) = 𝖌𝟏𝖌𝟐𝓗  

for any elements 𝖌𝟏𝓗 , 𝖌𝟐𝓗 in 𝑮 𝓗⁄ . 

 

Theorem: Let 𝑮 be a group and 𝓗 a normal 

subgroup of𝑮. Then 𝑮 𝓗⁄  

under the operation defined above forms a 

group. This group is called the factor 

group or quotient group of 𝑮 modulo 𝓗. The 

identity element is the cosset 𝟏𝓗 = 𝓗 

and the inverse of a cosset 𝖌𝓗 is 𝒈−𝟏𝓗. 

 

Proof.  

We first show that the operation on 𝑮 𝓝⁄  is 

well-defined. Suppose that 𝓪 ′𝓝 = 𝓪𝓝  and 

𝖇 ′𝓝 = 𝖇𝓝, then 𝖇 ′ ∈ 𝖇𝓝 and so 𝖇 ′ = 𝖇𝖓𝟏 . 

Similarly 𝓪 ′ = 𝓪𝖓𝟐  where 𝖓𝟏, 𝖓𝟐 ∈ 𝓝  . 

Therefore  

𝓪 ′𝖇 ′𝓝 = 𝓪𝖓𝟐𝖇𝖓𝟏𝓝 = 𝓪𝖓𝟐𝖇𝓝 

Since 𝖓𝟏 ∈ 𝓝. But 𝖇−𝟏𝖓𝟐𝖇 = 𝖓𝟑 ∈ 𝓝, since 

𝓝 is normal, so the right-hand side of 

The equation can be written as 

𝓪𝖓𝟐𝖇𝓝 = 𝓪𝖇𝓝. 

Thus we have shown that if 𝓝 ⊲ 𝑮  then 

𝓪 ′𝖇 ′𝓝 = 𝓪𝖇𝓝, and the operation on 𝑮 𝓝⁄  

is indeed, well-defined.  

The associative law is true because cosset 

multiplication as defined above uses the 

Ordinary group operation which is by 

definition associative. 

The cosset 𝓝 serves as the identity element of 

𝑮 𝓝⁄ . Notice that 

𝓪𝓝. 𝓝 = 𝓪𝓝𝟐 = 𝓪𝓝 

and                            𝓝. 𝓪𝓝 = 𝓪𝓝𝟐 = 𝓪𝓝. 

The inverse of  𝓪𝓝 is  𝓪−𝟏𝓝 since 

𝓪𝓝𝓪−𝟏𝓝 = 𝓪𝓪−𝟏𝓝𝟐 = 𝓝. 

  

We emphasize that the elements of 𝑮 𝓝⁄  are 

cosets and thus subsets of 𝑮. If |𝑮| < ∞ then 

|𝑮 𝓝⁄ | = [𝑮 ∶ 𝓝], the member of cossets of 

𝓝 in 𝑮. It is also to be emphasized that in 

order for 𝑮 𝓝⁄  to be a group 𝓝  must be a 

normal subgroup of 𝑮. 

In some cases properties of 𝑮 are preserved in 

factor groups. 
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 Definition : A group 𝑮 ≠ {𝟏} is simple 

provided that 𝓝 ⊲ 𝑮 implies 𝓝 =  𝑮 or 𝓝 =

{𝟏}. 

One of the most outstanding problems in 

group theory has been to give a complete 

classification of all finite simple groups. In 

other words, this is the program to discover all 

finite simple groups and to prove that there are 

no more to be found. This was accomplished 

through the efforts of many mathematicians. 

The proof of this magnificent result took 

thousands of pages. We refer the reader to [18] 

for a complete discussion of this. We give one 

elementary example. 

 Lemma : 

Any finite group of prime order is simple and 

cyclic. 

Proof.  

Suppose that 𝑮 is a finite group and |𝑮| = 𝓟 

where 𝓟  is a prime. Let 𝖌 ∈ 𝑮  with 𝖌 ≠ 𝟏 . 

Then 〈𝒈〉 is a nontrivial subgroup of 𝑮 so its 

order divides the order of 𝑮  by Lagrange’s 

theorem. Since 𝖌 ≠ 𝟏  and  𝓟  is a prime we 

must have |〈𝒈〉| = 𝓟. 

Therefore 〈𝒈〉 is all of 𝑮, that is 𝑮 = 〈𝒈〉 and 

hence 𝑮 is cyclic. 

The argument above shows that 𝑮  has no 

nontrivial proper subgroups and therefore 

no nontrivial normal subgroups. Therefore 𝑮 

is simple. 

 3- Isomorphisms : 

We saw that there was a close relationship 

between ring homomorphisms and factor 

rings. In particular to each ideal, and 

consequently to each factor ring, there is a ring 

homomorphism that has that ideal as its 

kernel. Conversely to each ring 

homomorphism its kernel is an ideal and the 

corresponding factor ring is isomorphic to the 

image of the homomorphism. This was 

formalized in Theorem 1.5.7 which we called 

the ring isomorphism theorem. We now look 

at the group theoretical analog of this result, 

called the group isomorphism theorem. We 

will then examine some consequences of this 

result that will be crucial in the Galois theory 

of fields. 

 

 Definition : If 𝑮𝟏  and 𝑮𝟐  are groups 

and 𝒇 ∶  𝑮𝟏 → 𝑮𝟐  is a group homomorphism 

then the kernel of 𝒇  , denoted 𝒌𝒆𝒓(𝒇 ) ,  is 

defined as 

𝒌𝒆𝒓(𝒇 ) = {𝖌 ∈ 𝑮𝟏 ∶ 𝒇(𝖌) = 𝟏}. 

That is the kernel is the set of the elements of 

𝑮𝟏  that map onto the identity of 𝑮𝟐. 

The image of 𝒇 , denoted  𝒊𝒎(𝒇 ), is the set of 

elements of 𝑮𝟐 . mapped onto by 𝒇  from 

elements of 𝑮𝟏. That is 

𝒊𝒎(𝒇 ) = {𝖌 ∈ 𝑮𝟐 ∶ 𝒇(𝖌𝟏)

= 𝖌𝟐 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝖌𝟏 ∈ 𝑮𝟏 } 
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Note that if 𝒇 is a surjection then 𝒊𝒎(𝒇 ) = 𝑮𝟐 

. 

As with ring homomorphisms the kernel 

measures how far a homomorphism is from 

being an injection, that is, a one-to-one 

mapping. 

 Lemma : 

Let 𝑮𝟏  and 𝑮𝟐 are groups and 𝒇 ∶  𝑮𝟏 → 𝑮𝟐 a 

group homomorphism. 

Then 𝒇 is injective if and only if 𝒌𝒆𝒓(𝒇 ) =

{𝟏} . 

Proof.  

Suppose that 𝒇  is injective. Since 𝒇(𝟏) = 𝟏 

we always have 𝟏 ∈ 𝒌𝒆𝒓(𝒇 ). 

Suppose that 𝖌 ∈ 𝒌𝒆𝒓(𝒇 ). Then 𝒇(𝖌) = 𝒇(𝟏). 

Since 𝒇 is injective this implies that 𝖌 = 𝟏 and 

hence 𝒌𝒆𝒓(𝒇 ) = {𝟏}. 

Conversely suppose that 𝒌𝒆𝒓(𝒇 ) = {𝟏}  and 

𝒇(𝖌𝟏) = 𝒇(𝖌𝟐). Then  

 𝒇(𝖌𝟏)(𝒇(𝖌𝟐))−𝟏 = 𝟏 ⟹ 𝒇(𝖌𝟏𝖌𝟐
−𝟏) = 𝟏 ⟹

𝖌𝟏𝖌𝟐
−𝟏 ∈ 𝒌𝒆𝒓(𝒇 ) . 

Then since 𝒌𝒆𝒓(𝒇 ) = {𝟏} we have 𝖌𝟏𝖌𝟐
−𝟏 =

1 and hence 𝖌𝟏 = 𝖌𝟐 . Therefore 𝒇 is 

injective. 

We now state the group isomorphism theorem. 

This is entirely analogous to the ring 

isomorphism theorem replacing ideals by 

normal subgroups. We note that this theorem 

is sometimes called the first group 

isomorphism theorem. 

Theorem: (group isomorphism theorem) 

(a) Let 𝑮𝟏 and 𝑮𝟐 be groups and 𝒇 ∶  𝑮𝟏 →

𝑮𝟐 a group homomorphism. Then 𝒌𝒆𝒓(𝒇 ) is a 

normal subgroup of 𝑮𝟏, 𝒊𝒎(𝒇 ) is a subgroup 

of 𝑮𝟐   and 

𝑮 𝒌𝒆𝒓(𝒇 )⁄ ≅ 𝒊𝒎(𝒇 ) 

(b) Conversely suppose that 𝓝 is a normal 

subgroup of a group 𝑮 . Then there exists a 

group 𝓗  and a homomorphism 𝒇 ∶  𝑮 → 𝓗 

such that 𝒌𝒆𝒓(𝒇 ) = 𝓝 and 𝒊𝒎(𝒇 ) = 𝓗. 

Proof.  

(a) Since 𝟏 ∈ 𝒌𝒆𝒓(𝒇 )  the kernel is 

nonempty. Suppose that 𝖌𝟏, 𝖌𝟐 ∈ 𝒌𝒆𝒓(𝒇 ). 

Then 𝒇(𝖌𝟏) = 𝒇(𝖌𝟐) = 𝟏 . It follows that 

𝒇(𝖌𝟏𝖌𝟐
−𝟏) = 𝒇(𝖌𝟏)(𝒇(𝖌𝟐))−𝟏 = 𝟏. 

Hence 𝖌𝟏𝖌𝟐
−𝟏 ∈ 𝒌𝒆𝒓(𝒇 )  and therefore 

𝒌𝒆𝒓(𝒇 ) is a subgroup of 𝑮𝟏 . Further for any 

𝖌 ∈ 𝑮𝟏 we have  

𝒇( 𝖌−𝟏𝖌𝟏  𝖌) = (𝒇( 𝖌))
−𝟏

𝒇( 𝖌𝟏 )𝒇( 𝖌) =

(𝒇( 𝖌))
−𝟏

. 𝟏. 𝒇( 𝖌) = 𝒇(  𝖌−𝟏𝖌) = 𝒇( 𝟏) = 𝟏 . 

Hence  𝖌−𝟏𝖌𝟏  𝖌 ∈ 𝒌𝒆𝒓(𝒇 )  an  𝒌𝒆𝒓(𝒇 )d is a 

normal subgroup. 

It is straightforward to show that 𝒊𝒎(𝒇 ) is a 

subgroup of 𝑮𝟐 . 

Consider the map �̂� ∶ 𝑮 𝒌𝒆𝒓(𝒇 )⁄ → 𝒊𝒎(𝒇 ) 

defined by  

�̂�(𝖌𝒌𝒆𝒓(𝒇 )) = 𝒇( 𝖌). 

We show that this is an isomorphism. 

Suppose that 𝖌𝟏 𝒌𝒆𝒓(𝒇 ) = 𝖌𝟐𝒌𝒆𝒓(𝒇 )  then 

𝖌𝟏𝖌𝟐
−𝟏 ∈ 𝒌𝒆𝒓(𝒇 )so that 𝒇(𝖌𝟏𝖌𝟐

−𝟏) = 1 

This implies that 𝒇(𝖌𝟏) = 𝒇(𝖌𝟐)  and hence 

the map �̂� is well-defined. Now 

�̂�(𝖌𝟏𝒌𝒆𝒓(𝒇 )𝖌𝟐𝒌𝒆𝒓(𝒇 )) = �̂�(𝖌𝟏 𝖌𝟐𝒌𝒆𝒓(𝒇 ))

=  𝒇(𝖌𝟏𝖌𝟐) = 𝒇(𝖌𝟏)𝒇(𝖌𝟐)

= �̂�(𝖌𝟏𝒌𝒆𝒓(𝒇 ))�̂�(𝖌𝟐𝒌𝒆𝒓(𝒇 )) 

and therefore �̂� is a homomorphism. 

Suppose that �̂�(𝖌𝟏𝒌𝒆𝒓(𝒇 )) = �̂�(𝖌𝟐𝒌𝒆𝒓(𝒇 )) 

then 𝒇(𝖌𝟏) = 𝒇(𝖌𝟐)  and hence 𝖌𝟏𝒌𝒆𝒓(𝒇 ) =

𝖌𝟐𝒌𝒆𝒓(𝒇 ). It follows that �̂� is injective. 

Finally suppose that 𝓱 ∈ 𝒊𝒎(𝒇 ). Then there 

exists a 𝖌 ∈ 𝑮𝟏 with 𝒇( 𝖌) = 𝒽. 
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Then �̂�(𝖌 𝒌𝒆𝒓(𝒇 )) = 𝓱 and �̂� is a surjection 

onto 𝒊𝒎(𝒇 ) . Therefore �̂� is an isomorphism 

completing the proof of part (a). 

 

(b) Conversely suppose that 𝓝 is a normal 

subgroup of 𝑮 . Define the map 

𝒇 ∶  𝑮 → 𝑮 𝓝⁄  by 𝒇( 𝖌) = 𝖌𝓝  for ∈ 𝑮  . By 

the definition of the product in the quotient 

group 𝑮 𝓝⁄  it is clear that 𝒇  is a 

homomorphism with 𝒊𝒎(𝒇 ) = 𝑮 𝓝⁄  . if 𝖌 ∈

𝒌𝒆𝒓(𝒇 )  then 𝒇( 𝖌) = 𝖌𝓝 = 𝓝  since 𝓝  is 

the identity in 𝑮 𝓝⁄   

However this implies that 𝖌 ∈ 𝓝 and hence it 

follows that 𝒌𝒆𝒓(𝒇 ) = 𝓝  completing the 

proof. 

There are two related theorems that are called 

the second isomorphism theorem and the third 

isomorphism theorem. 
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