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Abstract 

In this research, the phenomena that follow the models for dealing with numerical data, which take the 

form of time series, have been dealt with, the time series that take the numerical form often suffer from 

the problem of zero inflation, which represents a problem that cannot be overlooked, so a set of methods 

and methods have been proposed to deal with this problem, and one of the most important models in this 

case is Poisson's zero-inflated model.  It should be noted here that there are a set of methods that are used 

for the purpose of estimating the parameters of the Poisson zero-amplified model, including the MLE 

method and the NLM method. In this paper, a genetic algorithm method was proposed for the purpose of 

improving the above estimates. The simulation and real data were used for the purpose of verifying the 

performance of the proposed method, where the research relied on the MSE standard for the purpose of 

comparison, which proved that the proposed method gave good results compared to other methods.  

Keywords: Time series; Hardel model; Zero inflation; Poisson regression; Genetic Algorithm. 

INTRODUCTION 

     Poisson distribution its a default starting 

point to modeling count data, its p.m.f. is 

provided as follows (For example, data that 

accepts only positive integer values). 

Pr[Y = y] =
exp(− 𝜇) 𝜇𝑦

𝑦!
       ;     𝑦 = 0,1,2, … 

as is well-known, (𝝁 > 0) this distribution is 

said to be "equi-dispersed" because both its 

mean and variance are greater than zero. The 

Poisson distribution is less beneficial when the 

data is "over-dispersed," or when the variance 

of them is greater than the mean of them. The 

well-known Negative Binomial (NB II) 

distribution results from letting the variation 

be described by a gamma distribution in turn. 

The latter can detect data overdispersion.  

It’s Naturally would do the same thing here 

and includes covariates in model by assigning 

covariates to the dependent variable's 

(conditional) mean in linear regression as a 

function of parameters and covariates. 

μ = exp(x′) 

where it is demonstrated using the exponential 

function that (μ >  0), as is clearly necessary. 

Maximum likelihood can then be used to 

estimate the parameters., This is 

straightforward because the log-likelihood 

function is concave (So is the NB II model). 

The following discussion will be successful if 

it is understood that the Poisson model and 

conventional variations that allow for over-

dispersion cannot describe multi-modal data.. 

(More accurately if μ  is integer, then the 
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modes of the Poisson distribution are μ  and 

(μ –  1) , but never at values that are not 

contiguous. If μ  is non-integer, the single 

mode takes place at [μ].)  A variation of the 

well-known The Poisson regression model, 

which permits a surplus of zero counts in the 

data, zero-inflated Poisson (ZIP) regression 

model. This phenomena frequently occurs in 

real-world situations. For this model, typical 

references include Heilbron (1989),   

Additionally, excellent conversations are 

offered by Winkelmann (2000) and Cameron 

& Trivedi (1998).  

The fact that the data comes from two regimes 

is the key concept. While counts in one regime 

(RI) always result in zero, counts in the other 

regime (RII) proceed according to a regular 

Poisson process. 

Suppose 

Pr[y𝑖 ∈ 𝑅𝐼] = 𝜔𝑖 ; Pr[y𝑖 ∈ 𝑅𝐼𝐼] = (1 − 𝜔𝑖) ;    𝑖

= 1,2,3, … , 𝑛 

when 

Pr[y𝑖 = 0] = 𝜔𝑖 + (1 − 𝜔𝑖) exp(−𝜇𝑖) 

And 

Pr[y𝑖 = 𝑟] =
(1 − 𝜔𝑖) exp(−𝜇𝑖) 𝜇𝑖

𝑟

𝑟!
   ;      𝑟

= 1,2,3, … 

As previously, the conditional mean serves as 

the model's entry point for covariates, 𝜇𝑖  , of 

Poisson distribution 

𝜇𝑖 = exp (𝑥𝑖
′) 

where 𝑥𝑖
′  is  (1 𝑘) vector of 𝑖𝑡ℎ observation on 

the covariates, and 𝛽  is a (𝑘 1)  vector of 

coefficients. 

Clearly 

𝐸[𝑦𝑖|𝑥𝑖] = (1 − 𝜔𝑖)𝜇𝑖 

And 

𝑉𝑎𝑟[[𝑦𝑖|𝑥𝑖] = (1 − 𝜔𝑖)(𝜇𝑖 + 𝜔𝑖𝜇𝑖
2) 

and as a result, this structure also allows for 

excessive data dispersion. (𝑖𝑓 𝑖0). When the 

Poisson model is applied to the Negative 

Binomial model, the over-dispersion does not 

result from heterogeneity. Rather, it results 

from the data's division into the two regimes. 

In actuality, one or both of these factors could 

contribute to the prevalence of over-

dispersion. (Mullahy, 1986) (Greene, 2003, p. 

750). 

According to Lambert (1992), it is customary 

and practical, to modeled 𝑖 utilizing the Logit 

model, so: 

𝜔𝑖 = [exp(𝑧𝑖′)]/[1 + exp(𝑧𝑖′)] 

Where 𝑧𝑖′ is (1𝑝) the vector of 𝑖𝑡ℎ  observing 

a few covariates, and 𝛾  is a (𝑝1)  added 

parameter vector. Of course, the elements of 𝑧𝑖 

may contain components of 𝑥𝑖, in addition to 

the possibility of replacing the Logit definition 

with a Probit (or other) specification. 

If we has 𝑛  It is clear from the sample's 

independent observations that the log-

likelihood function can showed as 

log 𝐿(, ) = ∑ log[exp(𝑧𝑖′)

𝑦𝑖=0

+ exp (− exp(𝑥𝑖′β))]

+ ∑ [𝑦𝑖𝑥𝑖
′𝛽 − 𝑒𝑥𝑝(𝑥𝑖′𝛽)

𝑦𝑖=0

− log(𝑦𝑖!)]

− ∑ log[1 + exp(𝑧𝑖
′)]

𝑛

𝑖=0

 

(Cameron & Trivedi,1998,p.126.) 
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We must consider the various ranges of 

summing while coding the aforementioned 

log-likelihood function for usage in R (or any 

other program that needs just one observation 

on the log-density before adding all n, 

assuming that the observations are 

independent). The log-third likelihood's term 

doesn't need to be changed because the range 

of summation includes all n. We can create a 

dummy variable to cope using the summation 

ranges for the first two terms, that,  𝐷𝑖 ,if it 

takes the value one 𝑦𝑖 = 0 , and else zero. The 

𝑖𝑡ℎ Following that, the observation on the log-

likelihood It will be encoded as 

log 𝐿𝑖(, ) = 𝐷𝑖 log[exp(𝑧𝑖′)

+ exp (− exp(𝑥𝑖′β))]

+ (1 − 𝐷𝑖)[𝑦𝑖𝑥𝑖
′𝛽 − 𝑒𝑥𝑝(𝑥𝑖′𝛽)

− log(𝑦𝑖!)] − log[1 + exp(𝑧𝑖
′)] 

Time series: 

    time series is  collection of random 

variables over an extended period of time. The 

measurements are typically taken at regular 

intervals. Numerous uses of time series 

analysis include forecasting of the economy, 

sales, the stock market, sports, and many 

more. 

Fitting a model that describes the time series' 

structure and offers practical interpretations is 

the fundamental goal of time series modeling. 

An application for a fitted model is: 

• To draw attention to the essential elements of 

the time series, such as change-points, 

seasonality, and trend 

• To clarify the relationship between present 

and pasts occurrences so that future values of 

the series can be predicted. 

The data aren't always independent, which is 

one way time series analysis differs from 

regression analysis. Let (X1, X2,··· , Xn)   be a 

time series with n elements, denoted as {𝑋𝑡}𝑡=1
𝑛  

The mean composition of {𝑋𝑡}𝑡=1
𝑛  𝑖𝑠 𝜇𝑡 =

𝐸[𝑋𝑡]. The structure of covariance of {𝑋𝑡}𝑡=1
𝑛  

can be showed by its autocovariance  function 

(ACVF). ACVF with h lag  at time can be 

written as: 

γx(t, t + h) = Cov(Xt, Xt+h)

= E(Xt, Xt+h) − E(Xt)E(Xt+h) 

the time series {𝑋𝑡 } if it meets the following 

requirements: 

a) the mean  E(Xt) its same for each t 

b) for all 𝑡  and every ℎ ∈  {0,1,2,···} the 

covariance between 𝑋𝑡  and 𝑋𝑡+ℎ  is same. 

Similarly,   It is argued that a time series {𝑋𝑡} 

is  strictly stationary if ( 𝑋1, 𝑋2, … , 𝑋𝑛 )  & 

(X1+h, X2+h, … , Xn+h) for all integers, the joint 

distribution is the same ℎ > 0  and 𝑛 > 0 . 

Clearly, Weakly stationary is implied by 

rigidly stationary. 

In the case of a (weakly) stationary series 

{ 𝑋𝑡 }, In this setting, The lag h ACVF is 

independent of t for some of h  

γ𝑥(t, t + h) = γ𝑥(0, h) 

For ease of notation, all ACVFs can utilize the 

same argument: γ𝑥(ℎ) = γ𝑥(0, ℎ). 

Sometimes it is simpler to examine 

correlations than covariances. A stationary 

time series' autocorrelation function (ACF) 

{𝑋𝑡} is defined as 

𝜌(ℎ) = 𝐶𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡+ℎ) =
γ(h)

𝛾(0)
 

The Cauchy-Schwarz inequality clearly shows 

that ACFs are between -1 and 1. The impact of 
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series dispersion is eliminated in ACFs. ACFs 

can be used to compare how dependent 

various series are. 

For series, it’s advantageous to pursue a 

partial autocorrelation function (PACF). In 

general, a conditional correlation is a partial 

correlation. The conditional correlation 

between 𝑋𝑡  & 𝑋𝑡+ℎ, ℎ >  0, is what is used to 

(PACF) for a time series between 𝑋𝑡  and 𝑋𝑡+ℎ, 

conditional on 𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+ℎ−1 

𝜅(ℎ)  =  𝐶𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡−ℎ|𝑋𝑡+1,··· , 𝑋𝑡+ℎ−1), 

after linear prediction for all variables between 

𝑋𝑡  and 𝑋𝑡+ℎ, where the conditional correlation 

is taken between 𝑋𝑡  and 𝑋𝑡+ℎ. 

The most popular model class in stationary 

time series analysis is an autoregressive 

moving average (ARMA) model class. The 

general (ARMA) model introduced by (Peter 

Whittle in the 1970). The most current 

observation in a series is linked to older 

observations and incorrect forecasts using the 

ARMA model class. the ARMA(p,q) model 

contains moving-average terms up to order q 

as well as autoregressive terms up to order p. 

It abides by recursion. 

Xt = ∅1Xt−1 + ∅2Xt−2 + ⋯ + ∅pXt−p + 𝑧𝑡

− θ1zt−1 − θ2zt−2 −··· −θqzt−q 

where p 𝑎𝑛𝑑 𝑞  non-negative integers. White 

noises make up the series ( 𝑧𝑡)  which is 

frequently thought to have an independent, 

uniform distribution in time t. the ARMA(p,q) 

model is also known as a moving-average 

model (MA(q)) where 𝑝 = 0. Likewise,   when 

𝑞 =  0 , This model is known as an 

autoregressive model of order p (AR(p)). 

We can use model (ARIMA)  Autoregressive 

integrated moving average to illustrate 

patterns in non-stationary series. The model's 

components, which consist of d difference 

operation, q moving average terms and p 

autoregressive terms, are defined in the form 

ARIMA (p, d, q). greater formality, operation 

{ 𝑋𝑡 } if  (1 − 𝐵)𝑑𝑋𝑡  is ARMA(p,q), 

when(p,d,q) are positive integers is called to 

be ARIMA (p,d,q) , (1 − 𝐵)𝑑  is the dth 

operator for order differences. 

 The models that belong to the generalized 

linear family, they negative binomial (NB) 

regression model and poisson regression 

model, etc... 

The Poisson Regression Model: 

     Poisson distribution models the probability 

of y, its formula: 

𝑃𝑟(𝑌 = 𝑦|𝜇) =
𝑒−𝜇𝜇𝑦

𝑦!
                 (𝑦 = 0,1,2, … ) 

Keep in mind that there is only one parameter 

used to define the Poisson distribution. This is 

a rare event's average incidence rate per unit 

of exposure. parameter 𝝁 it can be explained 

as the risk of a new incident of the event 

during a given exposure period, t. The 

probability of y events is given by the relation: 

𝑃𝑟(𝑌 = 𝑦|𝜇, 𝑡) =
𝑒−𝜇𝑡(𝜇𝑡)𝑦

𝑦!
              (𝑦

= 0,1,2, … ) 

The likelihood that the mean, variance and 

Poisson distribution's are equal is. 

Regular multiple regression is similar to 

Poisson regression, but the dependant variable  

(Y) in Poisson regression is a count that is 

observed and follows Poisson distribution. 

Thus, the possible values of (𝑌) are positive 

integers: (0, 1, 2,3,ect.). It’s believed that high 

numbers are uncommon. In light of the fact 
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that logistic regression also involves a discrete 

response variable, Poisson regression is 

comparable to it. However, unlike in logistic 

regression, the answer is not constrained to 

particular values. The investigation of the 

relationships between the colony counts of 

bacteria and various environmental factors and 

dilutions is one example of an appropriate 

application of Poisson regression. Another 

illustration is the quantity of machine 

breakdowns under various operating 

circumstances. Another illustration would be 

crucial data on cancer incidence or newborn 

mortality in certain demographic groups. 

In Poisson regression, we assume that of 

collection of k regressor variables (X's) 

determine the Poisson incidence ratio. A 

formula of this quantity is: 

𝜇 = 𝑡 𝑒𝑥𝑝(𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘) 

The regression coefficients 𝛽1, 𝛽2, … , 𝛽𝑘  a 

parameters who are unknown and are estimate 

using the set of data. Their estimates is labeled 

𝑏1, 𝑏2, … , 𝑏𝑘 . that notation is used For an 

observation, the basic Poisson regression 

model is expressed as 

𝑃𝑟(𝑌𝑖 = 𝑦𝑖|𝜇𝑖, 𝑡𝑖) =
𝑒−𝜇𝑖𝑡𝑖(𝜇𝑖𝑡𝑖)𝑦𝑖

𝑦𝑖!
 

Where 

𝜇𝑖 = 𝑡𝑖 𝜇(𝑋𝑖
′𝛽) 

                                                                 =

𝑡𝑖 𝑒𝑥𝑝(𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖) 

In other words, the result follows the Poisson 

distribution for a particular set of the regressor 

variables' values. 

The poisson model has number of issues, It 

includes Zero-inflation result of model 

estimate. 

Zero-inflated models: 

     The model class of zero-inflated models 

(Mullahy 1986; Lambert 1992) is another one 

that can handle excessive zero counts 

(Cameron & Trivedi 1998, 2005.). These 

models consist of two components: a point 

mass at zero and the count distribution like the 

geometric, (NB) or Poisson distribution. Due 

to this, two sources for zeros are there: the 

count component and the point mass. The 

unobserved state was modeled by using a 

binary model (zero vs. count): in the simplest 

example, it merely has an intercept but could 

also have regressors. 

Formally, the point of the mass at zero and the 

zero-inflated density is combined. 𝐼{0}(𝑦) and 

the count distribution 𝑓𝑐𝑜𝑢𝑛𝑡(0; 𝑧, 𝑦) . 

Probability inflates the likelihood of seeing a 

zero count.𝜋 = 𝑓𝑧𝑒𝑟𝑜(0; 𝑧, 𝑦): 

𝑓𝑧𝑒𝑟𝑜𝑖𝑛𝑓𝑙(𝑦; 𝑥, 𝑧, 𝛽, 𝑦)

= 𝑓𝑧𝑒𝑟𝑜(0; 𝑧, 𝑦) . 𝐼{0}(𝑦)

+ (1

− 𝑓𝑧𝑒𝑟𝑜(0; 𝑧, 𝑦)) . 𝑓𝑐𝑜𝑢𝑛𝑡(𝑦; 𝑥, 𝛽) 

when 𝐼{0}  is the indicator function and the 

unobserved probability π of belonging for the 

point mass component are modelled by a 

binomial Generalized linear model π =

𝑔−1(𝑧′𝑦)  . The corresponding regression 

equation to the mean given by: 

𝜇𝑖 = 𝜋𝑖0 + (1 − 𝜋𝑖). 𝑒𝑥𝑝(𝑥𝑖
′ 𝛽) 

utilizing the link in the canonical log. The 

zero-inflation model's vector of regressors 

𝑧𝑖and the regressors in the count component 𝑥𝑖 
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Wants not to distinction the simple case, 𝑧𝑖 =

1 is only an intercept. The hypothetical link 

function 𝑔(𝜋) in binomial GLMs are the logit 

link, but other links like the probit is also 

available. The full set of parameters of𝛽, 𝛾 , 

and Dispersion potential parameter 𝜃  (if we 

used (NB) count model) we can estimate by 

Maximum likelihood. Inference is usually 

performed to  𝛽 & 𝛾 , when 𝜃  is treated as a 

nuisance parameter even if a (NB) model is 

use. 

hurdle models: 

       Several experimental count data sets show 

Excessive  dispersion and more zero 

observations than the Poisson model would 

predict. The hurdle model, first put forth by 

Mullahy (1986) in the econometric literature, 

is one model class capable of capturing both 

characteristics (Cameron & Trivedi 1998, 

2005,). A censored count distribution or a 

binomial model can be used for the latter. The 

hurdle model combine  count data model more 

formally.𝑓𝑐𝑜𝑛𝑡(𝑦; 𝑥, 𝛽) (that was left truncated 

in 𝑦 = 1) and  zero hurdle model 𝑓𝑧𝑒𝑟𝑜(𝑦; 𝑧, 𝛾) 

(right-censored in 𝑦 = 1) 

𝑓ℎ𝑢𝑟𝑑𝑙𝑒(𝑦;  𝑥, 𝑧 , 𝛽, 𝛾)

= {
𝑓zero(0; 𝑧, 𝛾)                                                                                𝑖𝑓 𝑦 = 0

(1 − 𝑓𝑧𝑒𝑟𝑜(0; 𝑧, 𝛾)). 𝑓𝑐𝑜𝑛𝑡(𝑦; 𝑥, 𝛽)(1 − 𝑓𝑐𝑜𝑛𝑡(0; 𝑥, 𝛽))   𝑖𝑓 𝑦 > 0
 

A model of the parameters 𝛽, 𝛾, and likely to 

be two or one additional scattering parameter 

θ (whether 𝑓𝑧𝑒𝑟𝑜 𝑜𝑟 𝑓𝑐𝑜𝑛𝑡 or both of them (NB) 

densities) were estimate by MLE , when a 

benefit of likelihood definition is the ability to 

maximize the count and hurdle components 

independently. According to, there is a 

matching mean regression relationship. 

𝑙𝑜𝑔(𝜇𝑖) = 𝑥𝑖
′𝛽 + 𝑙𝑜𝑔(1 − 𝑓𝑧𝑒𝑟𝑜(0; 𝑧𝑖 , 𝛾)) − 𝑙𝑜𝑔(1

− 𝑓𝑐𝑜𝑢𝑛𝑡(0; 𝑥𝑖, 𝛽)) 

use the canonical log URL once again The 

most logical specification for using zero 

model such a barrier is probably the binomial 

GLM 1. If the same regressors are used, a 

different insightful interpretation emerges 

𝑥𝑖  =  𝑧𝑖 are use the same count model in both 

of components 𝑓𝑧𝑒𝑟𝑜 = 𝑓𝑐𝑜𝑛𝑡 . 

the test of the hypothesis 𝛽 =  𝛾  then tests 

whether the hurdle is required or not. 

The Maximum Likelihood (ML) estimator: 

     We observe data {(𝑥𝑖, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑛}.  The 

number 𝒚𝒊 is a realization of the random 

variable 𝑌𝑖. Using independence, the total log-

likelihood is given by: 

𝑙𝑜𝑔 𝐿(𝑦𝑖 , … , , 𝑦𝑛\𝛽, 𝑥𝑖 , … , 𝑥𝑛

= ∑ 𝑙𝑜𝑔 𝑃(𝑌𝑖 = 𝑦𝑖\𝛽, 𝑥𝑖

𝑛

𝑖=1

 

With, according to: 

𝑃(𝑌𝑖 = 𝑦𝑖\𝛽, 𝑥𝑖) =
𝑒𝑥𝑝(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
 

And 𝜇𝑖 = exp (𝛽𝑡𝑥𝑖). Write now long 𝐿(𝛽) is a 

quick way to express the overall likelihood. 

It then follows. 

𝑙𝑜𝑔 𝐿(𝛽) = ∑{−𝑒𝑥𝑝

𝑛

𝑖=1

(𝛽𝑡𝑥𝑖) + 𝑦𝑖(𝛽𝑡𝑥𝑖)

− log (𝑦𝑖!)} 

Therefore (ML) estimator is of course is given 

by: 

𝛽̂𝑀𝐿 = 𝑎𝑟𝑔𝛽𝑚𝑎𝑥 𝑙𝑜𝑔 𝐿(𝛽) 

∑(𝑦𝑖 − 𝑦̂𝑖)𝑥𝑖 = 0

𝑛

𝑖=1
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With 𝑦̂𝑖 = 𝑒𝑥𝑝(𝛽𝑡𝑥𝑖) the fitted value of 𝒚𝒊 . As 

is customary, the anticipated fitted value has 

been used as the estimated value of 𝐸[𝑌𝑖|𝑥𝑖]. 

The vector of the residual is orthogonal to the 

vectors of the explicative variables, according 

to this first order requirement. 

The advantage of the maximum likelihood 

framework is that the cov formula is readily 

available: 

𝑐𝑜𝑣(𝛽̂𝑀𝐿) = (∑ 𝑥𝑖𝑥𝑖
𝑡𝑦̂𝑖

𝑛

𝑖=1

)

−1

 

Additionally, Wald tests, Lagrange multiplier 

tests, and Likelihood Ratio tests can now be 

used to do hypothesis tests. 

Genetic Algorithm (GA): 

      Workability  (GA) are based in Darwin’s 

theory of survival of the fittest. It may 

contains a chromosome, a gene of fitness, set a 

population, fitness function, selection, 

breeding and mutation. chromosome's are set 

Solutions (called population) by their they 

(GA) is begin with. . depend on we Solutions 

from one population to create a new 

population, who is motivated by possibility 

that a new population will be best from the old 

population. Furthermore, solutions are select 

according to their fitness to form new 

solutions, that is, offsprings. The above 

process is repeated Until some conditions are 

met algorithmically, the basic (GA) is outlined 

As follows: 

Stage A (Start) Create a chromosomal 

population at random, or appropriate answers 

to the issue. 

 Stage B (Fitness) Analyze every 

chromosome's fitness in the population. 

 Stage C (New population) Repeat the 

subsequent stages until the new population is 

finished to create a new population. 

1- (Selection) Based on their fitness, Select 

two parents chromosomes from the 

population. Greater fitness increases the 

likelihood of being chosen as a parent.  

2- (Crossover) Cross over the parents in the 

event of a crossover probability to create 

additional offspring, or children. If there is no 

Crossing, the offspring would be a perfect 

replica of the parents. 

 3- (Mutation) Create new children with a 

mutation probability at each locus. 

 4- (Accepting) Add fresh progeny to the new 

population. 

 Stage D (Replace) Use the newly formed 

population to run the algorithm again. 

 Stage E (Test) Stop and return the most 

effective solution available to the present 

population if the final condition is met. 

 Stage F (Loop) went to stage B. 

The crossover and mutation operators have a 

significant impact on the performance of 

genetic algorithms. In Fig. 1, the block 

diagram for (GA) is displayed. 

Encoding Technique in (GA): 

      The solution to the problem is transformed 

into chromosomes using the problem-specific 

encoding technique is use in (GA). Binary 

encoding, permutation encoding, value 

encoding, and tree encoding are some of the 

different encoding methods utilized in (GA). 
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Selection Techniques in (GA): 

      Genetic algorithms (GA) rely on an 

assessment criterion that provides a Measure 

the value of any chromosome in the context of 

the task as the basis for their selection 

function. In this stage of the genetic algorithm, 

certain genomes are selected from the 

collection of chromosomes. The three most 

popular methods for chromosomal selection 

are steady state, rank, and roulette wheel. 

 (GA) Operators: 

     (GA) can be used to optimize various 

parameters in any process control application. 

(GA) uses a variety of operators, including as 

crossover and mutation, to properly choose the 

optimal value. The encoding methodology and 

the requirements of the challenge determine 

the right crossover and mutation approach to 

use. 1-Crossover  ; 2- Mutation 

Figure no 1. Block Diagram Representation 

(GA). 

 

Figure no 1 Displays block diagram of different 

phases of performance improvement (GA). 

 

 

Simulation study: 

     To compare the genetic method with other 

methods used in the experiment and the extent of 

its impact on the data, a simulation was conducted 

consisting of four cases with different sample 

sizes(50;150; 250), fixed iteration number to 

(500), different ratio of zeros in data with, (0.1; 

0.4; 0.6) the lambda values of the variables ( x=2; 

y=1 ) are fixed, and the values of the estimated 

parameters are variable in each case of the 

simulation, in the first case there are default values 

and the second is estimated values  In( mle)   

method  real data, the third is by (+0.5) the 

estimated values, and the fourth is(-0.5) 

Case 1: in case 𝛽 = (0.2,0.04,0.1) 

Table 1: MSE for method: 

n p.zero Mle nlm GA 

50  

0.1 

0.2232 0.2255 0.1897 

150 0.2108 0.2208 0.1849 

250 0.1941 0.2205 0.1731 
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50  

0.4 

0.2101 0.2263 0.1876 

150 0.1759 0.2214 0.1825 

250 0.1089 0.2176 0.1747 

50  

0.6 

0.5094 0.2343 0.1785 

150 0.2977 0.2270 0.1745 

250 0.2049 0.2254 0.1479 

 

It is clear from the above table that the genetic 

method (GA) was the best compared to other 

methods and based on the values of (MSE) as it is 

clear that when the data's fraction of zeros rises, 

(MSE) is heading towards a decrease in all 

methods, but the genetic method was affected less 

than the rest of the methods and at all studied 

samples, in addition to that we note that when the 

sample size increases, the (MSE) is directed to The 

decline in general 

Case 2: in case 𝛽 = (0.972, −0.002, −0.226) 

Table 2: MSE for method: 

N p.zero Mle nlm GA 

50  

0.1 

0.1274 0.0229 0.0433 

150 0.1156 0.0212 0.0351 

250 0.0786 0.0196 0.0315 

50  

0.4 

0.1433 0.0244 0.0648 

150 0.0879 0.0211 0.0341 

250 0.0423 0.0206 0.0321 

50  

0.6 

0.1652 0.0267 0.0849 

150 0.1540 0.0250 0.0634 

250 0.1255 0.0223 0.0498 

It is clear from the above table that the genetic 

method (GA) was the best compared to other 

methods and based on the values of (MSE) as it is 

clear that when the data's fraction of zeros rises, 

(MSE) is heading towards a decrease in all 

methods, but the genetic method was affected less 

than the rest of the methods and at all studied 

samples, in addition to that we note that when the 

sample size increases, the (MSE) is directed to The 

decline in general 

Case 3: in case 𝛽 = (1.472,0.498,0.274) 
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Table 3: MSE for method: 

N p.zero mle Nlm GA 

50  

0.1 

0.5176 0.2682 0.2075 

150 0.4662 0.2665 0.2026 

250 0.3945 0.2601 0.1753 

50  

0.4 

0.9486 0.2781 0.1903 

150 0.5023 0.2748 0.1800 

250 0.4724 0.2720 0.1674 

50  

0.6 

0.6104 0.2776 0.1911 

150 0.5408 0.2764 0.1876 

250 0.1667 0.2496 0.1599 

It is clear from the above table that the genetic 

method (GA) was the best compared to other 

methods and based on the values of (MSE) as it is 

clear that when the data's fraction of zeros rises, 

(MSE) is heading towards a decrease in all 

methods, but the genetic method was affected less 

than the rest of the methods and at all studied 

samples, in addition to that we note that when the 

sample size increases, the (MSE) is directed to The 

decline in general 

Case 4: in case 𝛽 = (0.472, −0.502, −0.726)    

Table 4: MSE for method: 

N p.zero mle Nlm GA 

50  

0.1 

0.3841 0.2676 0.2383 

150 0.2734 0.2619 0.2157 

250 0.2426 0.2057 0.1934 

50  

0.4 

0.2827 0.2100 0.2915 

150 0.2431 0.2040 0.2905 

250 0.2363 0.1929 0.2686 

50  

0.6 

0.2540 0.2091 0.3741 

150 0.1993 0.2028 0.3300 

250 0.1660 0.1979 0.2986 

It is clear from the above table that the genetic 

method (GA) was the best compared to other 

methods and based on the values of (MSE) as it is 

clear that when the data's fraction of zeros rises, 

(MSE) is heading towards a decrease in all 

methods, but the genetic method was affected less 

than the rest of the methods and at all studied 

samples, in addition to that we note that when the 

sample size increases, the (MSE) is directed to The 

decline in general 
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Lung Cancer Data: 

     It’s With every five cases of cancer, there is 

one case in males, and out of every nine cases of 

cancer in females, there is one case, Lung cancer 

ranks second in terms of the speed of its spread 

compared to the rest of the types of cancer. that 

originates in the lungs' cellular structure. Many 

additional cancers, including breast and kidney 

cancers, has the potential to disseminate 

(metastasize) to the lungs. There is no referral for 

the cancer to be lung disease when this occurs. 

This is so because the location of the original 

tumor determines what type of cancer it is and 

how it is treated. It’s divided into two basic types: 

Small Cell Lung Cancer and Non-Small Cell Lung 

Cancer (NSCLC) for instance, if breast cancer has 

spread to the lungs, its be treated as metastatic 

breast cancer rather than lung cancer (SCLC). 

These varieties develop and disperse differently. 

They are frequently handled differently. 

Lung cancer statistics are used to highlight the 

performance methodologies. The writers gathered 

these statistics from an Iraqi medical facility in Al-

Naasiria City, Iraq. They reflect the number of 

lung cancer patients diagnosed each day in Al- 

Naasiria City between January 1 and December 

31, 2021. One response variable (lung cancer) and 

bacterial water pollutants (T.P.C.) make up these 

data. Variable (Y) represents the number of people 

with lung cancer, and variable (X) represents 

bacterial water pollutants (T.P.C) 

Table 5: general statistics. 

Variables Means SD Cv 

X 5.12 2.1428 41.8512 

Y 5.1224 2.1599 42.1658 

It is clear from the above table that the value of the 

arithmetic mean for the variable X amounted to 

5.12 with a standard deviation of 2.1428 and a 

coefficient of variation of 41.8512, and the value 

of the arithmetic mean for the variable Y 

amounted to 5.1224 with a standard deviation of 

2.1599 and a coefficient of variation of 42.1658. 

Table 6: RMSE for the method. 

  
Par Expar 

method RMSE b0 b1 b2 b0 b1 b2 

Mle 0.1838 0.9719 -0.0021 -0.2262 2.6429 0.9979 0.7976 

Nlm 0.0904 1.7298 -0.0247 -0.0215 5.6395 0.9756 0.9787 

GA 0.0584 2.0653 0.0196 0.0218 7.8880 1.0198 1.0221 

The proposed approaches and additional methods 

are displayed in the table by (RMSE). As the 

findings of the (GA) technique were the best 

compared to the other approaches because it 

produced the lowest estimate, we observe that the 

regular methods are significantly impacted 

(RMSE).  

 

 

Conclusions: 

    The (GA) was proposed to deal with zero 

inflation data, improve estimates and obtain better 

estimator. By using simulation and real data, the 

results showed that the (GA) is the best compared 

to other methods (mle and nlm) based on the 

values of (MSE). The results proved that water 

pollution (T.P.C) is one of the causes of lung 

cancer. 
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