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Abstract 

When model of Poisson regression's explanatory variables consist of highly correlated, the widely 

employed maximum-likelihood estimator is unstable with high variance. As a result, the biased estimators 

are used to decrease the maximum-likelihood instability and it also produces a reduction of the mean 

squared error  matrix. For this reason, in this paper, a new biased estimator is suggested and the statistical 

properties are found. The performance of suggested estimator is studied and compared with other exist 

estimators using the mean squared error as a criterion for goodness of fit. In order to support the 

preference of the new estimator in the theoretical aspect, a real example was given represented by fatality 

resulting from traffic accidents in Sweden. 
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1. INTRODUCTION 

The Poisson regression model (PRM) is 

employed when the outcome variable comes 

in the form of a count variable. It is applicable 

in different  fields. Examples include the 

number of patents, takeover bids, bank 

failures, accident insurance and criminal 

careers, number of deaths, number of defects 

and others [ 5,7]. 

Most commonly, to estimate the regression 

coefficient for PRM , the Maximum 

Likelihood estimator (EML) method is used.  

In addition, when explanatory variables are 

correlated, the EML suffers from instability. 

Effects of Multicollinearity consist of a high 

correlation coefficient and its variance, 

neglecting t, in addition to a sizeable R-

squared. To solve this problem, possible 

alternatives like biased estimators are  

suggested like  Manson and others [8] are  

presented a Poisson regression estimator  

PRM. The ridge estimator in PRM was 

introduced by Månsson and Shukur [9]. The 

modified Liu estimator for PRM was 

presented by Türkan and Özel [11]. Two new 

parameters for PRM were developed by Asar 

and Genç [3]. Recently, the Poisson KL 

estimator was developed by Lukman et al.[6]. 

According to that, in this paper,  a modified 

Kibria-Lukman estimator is proposed to solve 

the problem of multicollinearity in PRM by 

using the concept of almost unbiasdness. In 

sec. 2 the methodology for statistics has been 

given by introducing the concept of Poisson 
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regression model and the proposed estimator 

with its properties . Also, the efficiency of 

proposed the estimator is investigated   by 

comparing it with some biased estimators. In 

Sec. 3 a real data set as an application for  

applying Poisson regression model as well as 

to observe the ability of the proposed 

estimator under some conditions is given.  

2. Methodology for statistics 

2-1 Modeling Poisson regression using the 

maximum likelihood estimator 

The model of Poisson regression is used 

whenever dependent variable  𝑦𝑖  is distributed 

as numerical information and has the form 

P(𝜇𝑖), where 𝜇 is a parameter of the Poisson 

distribution. The Poisson model's mean 

response function is 𝜇𝑖 =  𝑒𝑥𝑝(𝑥𝑖𝛽), where 𝑥𝑖 

is the  𝑖𝑡ℎ   row of  𝑋, which is a 𝑛 ×  (𝑝 +

 1) data matrix with p explanatory variables 

and is a (𝑝 +  1)  × 1 vector of coefficients. It 

is estimated using the conventional ML . 

According to this model's log probability, 

𝐿(𝛽; 𝑦) =  (∑ 𝑒𝑥𝑖𝛽𝑛
𝑖=1 ) + ∑ 𝑦𝑖 log(𝑒𝑥𝑖𝛽) +𝑛

𝑖=1

𝑙𝑜𝑔 (∏ 𝑦𝑖 !
𝑛
𝑖=1 )                         (1)                                                                                                      

As a result of solving 𝐿(𝛽;  𝑦) with regard to: 

𝜕𝐿

𝜕𝛽
= ∑ (𝑦𝑖 − 𝑒𝑥𝑖𝛽))𝑥𝑖 = 0𝑛

𝑖=1   

The ML is now calculated using the iteratively 

reweighted least squares (𝐼𝑅𝐿𝑆) technique and 

  𝛽̂ = (𝑋′𝐿̂ 𝑋)−1(𝑋′𝐿̂𝛼)  = ( 𝑆)−1𝑋́𝐿̂𝛼   ,                                                       

(2) 

where 𝑆 = 𝑋́𝐿̂𝑋,  𝐿̂ = 𝑑𝑖𝑎𝑔[𝜇̂𝑖]  and 𝛼   being 

the column vector, and 

                         𝛼 = 𝑙𝑜𝑔 𝜇̂𝑖 +
𝑦𝑖−𝜇̂𝑖

𝜇̂𝑖
 . 

The 𝛽̂  is asymptotically unbiased estimator . 

When there is a significant correlation 

between the explanatory variables, the matrix 

S is ill-conditioned, leading to ML estimator 

to be instability and has high variance. For this 

reason, Mansson and Shukur (2011) presented 

the Poisson ridge estimator (PR) to address 

this problem.  

𝛽̂𝑃𝑅(𝑘) = (𝑆 + 𝑘𝐼𝑃)−1𝑆𝛽̂, 𝑘 > 0       (3) 

The Poisson K-L estimator (PKL) was 

presented in the following manner by Lukman 

et al. (2021) as an extension of this concept:                             

  𝛽̂𝑃𝐾𝐿(𝑘) = (𝑆 + 𝑘𝐼𝑃)−1(𝑆 − 𝑘𝐼𝑃)𝛽̂   .                                      

(4) 

 We can get the PKL estimator as follows: 

    Let  β̂PKL(k) =  𝛽̂𝑃𝑅 (𝑘) + 𝐵𝑖𝑎𝑠 (𝛽̂𝑃𝑅(𝑘)) 

                    = (𝑆 + 𝑘𝐼𝑃)−1𝑆𝛽̂ −

𝑘(𝑠 + 𝑘𝐼𝑃)−1𝛽 

Since 𝛽  is unknown, we estimated by 𝛽̂  and 

therefore, 

                 β̂PKL(k) = (𝑆 + 𝑘𝐼𝑃)−1(𝑆 − 𝑘𝐼𝑃)𝛽̂ 

Another fashion for  PKL estimator can be 

given as: 

     𝛽̂𝑃𝐾𝐿(𝑘) =  𝑆𝑘
−1(𝑆 − 𝑘𝐼𝑃)𝛽̂ 

             = 𝑆𝑘
−1(𝑆 + 𝑘𝐼𝑃 − 𝑘𝐼𝑃 + 𝑘𝐼𝑃)𝛽̂ 

            = [𝐼𝑃 − 2𝑘𝑆𝑘
−1]𝛽̂ 

               = 𝑇𝑘 𝛽̂ , 𝑘 > 0 , 

where 𝑇𝑘 = [ 𝐼𝑃 − 2𝑘𝑆𝑘
−1]  .                                                                 

2-2 The proposed estimator 

It is known to statisticians that, the biased 

estimators  like  PKL estimator  have  

significant amount of bias. For this reason, 

there is a good chance to reduce the bias in 

order to increase the efficiency of the biased 

estimators.  Therefore,  researchers solve this 
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problem , by making a correction for bias that 

significantly has lower amount of bias 

comparing to biased estimator without using 

this procedure. 

 Now , we can say that the idea for the 

proposed estimator is to suggest a new 

estimator depending on the PKL estimator   by 

making a correction for bias of PKL estimator. 

We called the Almost Unbiased PKL 

estimator (AUPKLE) and has the following 

form: 

𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸 =  𝐹𝑘 𝛽̂ , k > 0                                                  

(5) 

where 𝐹𝑘 =  [𝐼𝑃 − 4𝑘2(𝑆 + 𝑘𝐼𝑃)−2] , k > 0 . 

We can rewrite  Eq. (5) as:  

𝐵𝑖𝑎𝑠(𝛽̂𝑃𝐾𝐿(𝑘)) = −2𝑘(𝑆 + 𝑘𝐼𝑃)−1𝛽  

Hence, by Kadiyala [1], corrected biased of 

𝛽̂𝑃𝐾𝐿  can be defined as follows:                                                                                                                                                                           

                                                         𝛽𝐴𝑈𝑃𝐾𝐿𝐸 =

 𝛽̂𝑃𝐾𝐿(𝑘) + 2𝑘(𝑆 + 𝑘𝐼𝑃)−1 𝛽 

So, in accordance with Ohtani [1], we 

substitute the unknown  parameter 𝛽 by 𝛽̂𝑃𝐾𝐿 

to obtain the proposed estimator : 

𝛽𝐴𝑈𝑃𝐾𝐿𝐸 = [𝐼𝑃 + 2𝑘(𝑆 + 𝑘𝐼𝑃)−1]𝛽̂𝑃𝐾𝐿 

= [𝐼𝑃 − 4𝑘2(𝑆 + 𝑘𝐼𝑃)−2]𝛽̂ 

The following are the AUPKLE's properties : 

𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) = 𝐹𝑘𝛽,   

where 𝐹𝑑 = 𝐼𝑃 − 4𝑘2(𝑆 + 𝑘𝐼𝑃)−2. 

The bias of the (AUPKLE) : 

𝐵𝑖𝑎𝑠(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸 ) = (𝐹𝑘 − 𝐼𝑃)𝛽 

    = [(𝐼𝑃 − 4𝑘2(𝑆 + 𝑘𝐼𝑃)−2) − 𝐼𝑃]𝛽 

= −4𝑘2(𝑆 + 𝑘𝐼𝑃)−2𝛽                     

=  𝐵1
∗             (6) 

 The(AUPKLE) variance covariance matrix  is 

given as: 

 𝐶𝑜𝑣(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) = 𝐹𝑘 𝑆−1𝐹𝑘                                                    

(7) 

2-3 The properties of AUPKLE estimator: 

The mean squared error matrix (MSE) and the 

scalar mean square error (SMSE) of AUPKLE 

estimator is given as follows: 

   𝑀𝑆𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) = (𝐼𝑃 − 4𝑘2(𝑆 +

𝑘𝐼𝑃)−2) 𝑆−1(𝐼𝑃 − 4𝑘2(𝑆 + 𝑘𝐼𝑃)−2)́ + 𝐵1𝐵1
́ ,                 

(8)           

  where 𝐵1 = 4𝑘2 (𝑆 + 𝑘𝐼𝑃)−2 𝛽  .                                                                                  

The SMSE is given as follows: 

𝑆𝑀𝑆𝐸(𝛽)  =  𝑡𝑟(𝑀𝑆𝐸(𝛽))                                                           

(9)    

where,  tr is the sum of the diagonal elements 

of the square matrix . 

         So,  

   𝑆𝑀𝑆𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) = ∑ (
(𝜇𝑖+𝑘)2−4𝑘2

(𝜇𝑖+𝑘)2
𝑃
𝑖=1 )2.

1

𝜇𝑖
+

42𝑘4 ∑
𝛽𝑖

2

(𝜇𝑖+𝑘)4
𝑃
𝑖=1   ,                              (10) 

where 𝜇𝑖 is the ith  eigen value of S. 

According to Asar and Genc  ̧ [2] , the 𝑀𝑆𝐸 

and 𝑆𝑀𝑆𝐸 of 𝑃𝐾𝐿:  

𝑀𝑆𝐸(𝛽̂𝑃𝐾𝐿(𝑘))

= [𝐼𝑃 − 2𝑘(𝑆 + 𝑘𝐼𝑃)−1]𝑆−1[ 𝐼𝑃

− 2𝑘( 𝑆 + 𝑘𝐼𝑃)−1] + 𝐵2𝐵2
́  , 

𝑆𝑀𝑆𝐸(𝛽̂𝑃𝐾𝐿(𝑘)) = ∑ ( 
𝜇𝑖−𝑘

𝜇𝑖+𝑘
 )2𝑃

𝑖=1 .
1

𝜆𝑖
+

∑ ( 
4𝑘2

𝜇𝑖+𝑘)2
𝑃
𝑖=1  ) ,  

where 𝐵2 =  𝐵𝑖𝑎𝑠 (𝛽̂𝑃𝐾𝐿(𝑘)) =  (𝑆 +

𝑘𝐼𝑃)−12𝑘. 
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The 𝑀𝑆𝐸  and 𝑆𝑀𝑆  of the 𝑀𝐿𝐸  are defined 

accordingly as follows: 

𝑀𝑆𝐸(𝛽̂) =  𝑆−1. 

𝑆𝑀𝑆𝐸(𝛽̂) = ∑
1

𝜇𝑖

𝑃

𝑖=1
 

2-4 The efficiency of AUPKLE estimator 

2-4-1. Comparing the EML with AUMPKLE 

The comparison of EML and AUPKLE 

utilizing the mean squared error (MSE) matrix 

is shown: 

                                                                                                                                     

𝑀𝑆𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) = 𝐹𝑘𝑆−1𝐹𝑘 + 𝐵1𝐵1
′   

To demonstrate that, we state the following 

theorem. 

Theorem 2.1. Under MSE criterion, when k < 

𝜆𝑖 , the AUPKLE is superior to EML, namely: 

MSE(𝛽̂) − MSE(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) ≥ 0 if and only if:    

𝐵1
′ [𝑆−1 − 𝐹𝑘𝑆−1 𝐹𝑘]𝐵1 ≤ 1                                                                                            

                                                                    

  Proof : 

∆∗
1= 𝑀𝑆𝐸(𝛽̂) − 𝑀𝑆𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) 

          = 𝑆−1 − (𝐹𝑘𝑆−1𝐹𝑘 + 𝐵1𝐵1
′ ) 

= 𝐷1
∗ − 𝐵1𝐵1 

′  , 

where 𝐷1
∗ =  𝑆−1 − 𝐹𝑘𝑆−1𝐹𝑘. 

Let 𝐷1
∗ = 𝑃𝛾𝑃′ =

𝑃𝑑𝑖𝑎𝑔 {𝛾1, … … … … , 𝛾𝑃} 𝑃′ , where  𝛾𝑖 =

1−(1−4𝑘2(𝜇𝑖+𝑘)−2)
2

𝜇𝑖
 , 𝑖 = 1, … … , 𝑝 and P  is the 

eigen vectors of S. 

 We can get,   (1 − 4𝑘2(𝜇𝑖 + 𝑘)−2) < 1 ; 

when  k < 𝜇𝑖 , then 1 − (1 − 4𝑘2(𝜇𝑖 +

𝑘)−2)2 > 0 

∴ 𝛾𝑖 > 0 , ∀𝑖 . 

This indicates that 𝐷1
∗ is positive definite. The 

following Lemma can be used to complete the 

proof. 

Lemma 2.1 (See Farebrother, [4]). Let 𝑀 be a 

positive definite matrix and 𝛼 be a vector, then 

𝑀 − 𝛼𝛼′ ≥ 0 if and only if 𝛼′𝑀−1𝛼 ≤ 1 .  

As a result, the proof is finished by using 

Lemma 2.1. 

2-4-2 Comparison between the PKL and 

AUPKLE estimators 

The following methods are used to determine 

PKL's properties: 

 𝐵𝑖𝑎𝑠(𝛽̂𝑃𝐾𝐿(𝑘)) = −2𝑘(𝑆 + 𝑘𝐼𝑃)−1𝛽 

 = 𝐵2 

  And                     

 𝐶𝑜𝑣(𝛽̂𝑃𝐾𝐿 (𝑘)) = 𝑇𝑘 𝑆−1 𝑇𝑘 

The MSE for the PKL is as follows:        

 𝑀𝑆𝐸(𝛽̂𝑃𝐾𝐿(𝑘))

= 𝑇𝑘𝑆−1𝑇𝑘 + 𝐵2𝐵́2  .                                 (11) 

The comparison between 𝑃𝐾𝐿  and 𝐴𝑈𝑃𝐾𝐿𝐸 

is illustrated by the subsequent theorem. 

Theorem 2.2. For > 0  , under Poisson 

regression model, the 𝐴𝑈𝑃𝐾𝐿𝐸  is better than 

𝑃𝐾𝐿 in terms of 𝑀𝑆𝐸 if and only if : 

                                                                              

𝐵1
𝑇𝐷2

−1𝐵1 ≤ 1 

Proof: Let  ∆2= 𝑀𝑆𝐸(𝛽̂𝑃𝐾𝐿(𝑘)) −

𝑀𝑆𝐸(𝛽̂𝐴𝑈𝑃𝐾𝐿𝐸) 

                         = 𝑃𝐷2𝑃́ + 𝐵2𝐵2
́ − 𝐵1𝐵1

́  

                     = 𝑃 𝑑𝑖𝑎𝑔 {
(𝜇𝑖−𝑘)2

𝜇𝑖(𝜇𝑖+𝑘)2
−

(1−4𝑘2(𝜇𝑖+𝑘)−2)
2

𝜇𝑖
}

𝑖=1

𝑃

𝑃́ + 𝐵2𝐵2
́ − 𝐵1𝐵1

́ , 
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where  𝐷2 = [ 𝐼𝑃 − 2𝑘(𝛬 + 𝑘𝐼𝑃)−1]𝛬−1[𝐼𝑃 −

2𝑘(𝛬 + 𝑘𝐼𝑃)−1] − [1 − 4𝑘2(𝛬 +

𝑘𝐼𝑃)−2]𝛬−1[1 − 4𝑘2 (𝛬 + 𝑘𝐼𝑃)−2] 

𝐵2𝐵2
́  is nonnegative definite, thus we 

concentrate on the quantity. 

(𝜇𝑖 − 𝑘)2

𝜇𝑖(𝜇𝑖 + 𝑘)2
−

[1 − 4𝑘2(𝜇𝑖 + 𝑘)−2]2

𝜇𝑖
 

Therefore,  𝐷2 is positive definite if  

(𝜇𝑖 − 𝑘)2

𝜇𝑖(𝜇𝑖 + 𝑘)2
≥

[1 − 4𝑘2(𝜇𝑖 + 𝑘)−2]2

𝜇𝑖
 

After the above expression has been 

simplified, we get 

(𝜇𝑖 − 𝑘)2 +  (𝜇𝑖 + 𝑘)−2  
𝑘

𝜇𝑖
 ≥ 0 

Since 𝑘 >  0 and 𝜇𝑖 > 0 , The proof is 

completed after using Lemma 2.1. 

3. Application  

In this section, the performance of the 

proposed estimator for this  paper is illustrated  

by using the Swedish traffic. The fatality 

statistics for 2019 are analyzed. We classify  

all into three different age  (15-24 years, 25-64 

years and bigger than 64 years) [10]. The 

finding results of the model are given in Table 

I  

Table I. SMSE of the EML, PKLE and AUPKLE 

k EML PKLE AUPKLE 

0.0079 27.75217 25.05549 24.96747 

0.0091 27.75217 26.20149 24.51436 

0.0112 27.75217 28.82665 24.00333 

0.0119 27.75217 29.85099 23.93426 

0.0127 27.75217 31.10052 23.92721 

0.0134 27.75217 32.25691 23.98831 

0.0159 27.75217 36.79437 24.76774 

0.0176 27.75217 40.17494 25.83732 

0.0196 27.75217 44.38280 27.68610 
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Figure I. Empirical estimated SMSE of the 

EML, PKLE and AUPKLE. 

 

The eigenvalues of X′X  matrix are 2010, 

223.2, 186.54, 14.157, 0.581, 0.224 and 0.047. 

The condition index, CI = √
λmax
λmin

 = 207.77 , 

which means that severe issues of 

multicollinearity exist. For this reason, we use 

the biased estimators to reduce the effect of 

this problem on estimation. For that, we can 

see form Table 1, when we add a small value k 

, the SMS for PKLE and AUPKLE are starting 

for decreasing comparing to MLE. Also, the 

performance of the proposed estimator 

AUPKLE is better compared to PKLE 

estimator for some small values of k and we 

can observe that by looking for Figure1.  

Reference 

[1]-Alheety, Mustafa I, Qasim, M., Mansson, 

K.,  Kibria, , B. M. G., (2021). Modifed 

almost unbiased two-parameter estimator 

for the Poisson regression model with an 

application to accident data. SORT, 45, 

(2),  121-142. 

[2]-Asar, Y. and Genc¸, A. (2018). A new 

two-parameter estimator for the Poisson 

regression model. Iranian Journal of 

Science and Technology, Transactions A: 

Science, 42, 793-803 

[3]- Asar, Y., Eris¸oglu, M. and Arashi, M. 

(2017). Developing a restricted two-

parameter Liu- type estimator: A 

comparison of restricted estimators in the 

binary logistic regression model. 

Communications in Statistics-Theory and 

Methods, 46, 6864-6873. 

[4]- Farebrother, R. W. (1976). Further results 

on the mean square error of ridge 

regression. Journal of the Royal Statistical 

Society. Series B (Methodological), 38, 

248-250. 

  [5]- K. Månsson, and G. Shukur, A Poisson 

ridge regression estimator. Econ. Model 

28 (2011),  pp. 1475–1481.  

  [6]-Lukman AF, Adewuyi MK, Kibria BMG: 

A new estimator for the multicollinear 

Poisson regression model: simulation and 

application. Sci Rep. 2021; 11:3732. 

  [7]-M. Amin, M.N. Akram, and M. 

Amanullah, On the James-Stein estimator 

for the poisson regression model. 

Commun. Stat. -Simul.  Comput.(2020).  

[8]- Mansson, K. (2012). On ridge estimators 

for the negative binomial regression 

model. Economic Modelling, 29, 178-

184. 

[9]- Mansson, K., and Shukur, G. (2011). A 

Poisson ridge regression estimator. 

Economic Modelling, 28, 1475-1481. 

[10]-Stipdonk, H., Bijleveld, F., Van Norden, 

Y. and Commandeur, J. (2013). Analysing 

the development of road safety using 

demographic data. Accident Analysis and 

Prevention, 60, 435-444. 

  [11]-Türkan, S. & Özel, G. (2016). A new 

modified Jackknifed estimator for the 

Poisson regression model. J. Appl. Stat. 

43, 1892–1905.        



Journal of Survey in Fisheries Sciences              10(3S) 4860-4866 2023 

4866 
 

[12]-Wiklund, M., Simonsson, L. and 

Forsman, A. (2012). Traffic safety and 

economic fluctuation: long-term and 

short-term analyses and a literature 

survey. 

 


