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Abstract 

In this paper, we develop new three types of  biased estimators depending on the superiority of unbiased 

ridge regression estimator comparing to ordinary least square estimator when there is a multicollinearity 

among the explanatory variables. The bias, variance, mean square error matrix (MSE) and scalar mean 

square error (mse) of the proposed estimators are derived. The performance of these estimators are 

evaluated in comparison to that of other estimators by utilizing the MSE criterion. Finally, a numerical 

example is analyses in order to learn more about the performance of the new proposed estimators.                
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1. INTRODUCTION 

Let us consider the multiple linear regression 

model 

Y = Xβ + ε ,     ε~N(0, σ2In)               (1) 

where vector Y  is a dependent variable of 

order an  n × 1 of observation , X is an n × p 

non-stochastic known matrix of explanatory 

variables of rank p , β  is a p × 1  unknown 

parameters vector , ε  is an n × 1 a vector of 

errors an expectation E(ε) = 0 , covariance 

equal to σ2In . The ordinary least squares 

estimator (OLSE) for model (1) we can the  

written as follows :  

β̂OLSE = Z−1X′ Y,                                                        

(2) 

where  𝑍 = X′X. For a long time, the OLSE 

has been considered the best estimator since it 

has the minimum variance in the class of 

unbiased estimators known as the best linear 

unbiased estimator. However, when there is a 

problem of multicollinearity or an ill-

conditioned of design matrix in a linear 

regression model, many results have shown 

that the OLSE is no longer a good estimator, 

leading to the development of biased 

estimators such as the Stein estimator [1], the 

ordinary ridge estimator (ORR) was proposed 

Hoerl and Kennard in [2]. The ordinary ridge 

estimator (ORR) was proposed as follows: 

                                     β̂ORR(k) = (X′X +
kI)−1X′y  ,                                          (3) 

                          = [𝐼 − 𝑘(𝑋′𝑋 +

𝑘𝐼)−1]β̂OLSE =  Wβ̂OLSE 

where Zk = Z + kI, W = [𝐼 − 𝑘(𝑍 +
𝑘𝐼)−1] ,           k > 0 . 

The Liu Estimator (LE) was proposed by Liu 

[3], Almost Unbiased Ridge Estimator 

(AURE) was in idea indicated Singh and 
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Chaubey [4] are some of the biased estimators 

proposed to solve the multicollinearity 

problem which are based only on sample 

information. The estimators are given by: 

β̂Lu(d) = (S + I)−1(Z + dI)β̂ORR =  F𝑑β̂OLSE  

,                                     (4) 

where F𝑑 = (Z + I)−1(Z + dI),  

β̂AURE(k) = [I − 𝑘2(Z + k)−2]β̂OLSE =

 A𝑘β̂OLSE ,                               (5) 

where A𝑘 = [I − 𝑘2(Z + k)−2]. 

This paper is divided into four sections: 

Section 2 discusses some of the characteristics 

of the proposed estimator . Section 3 compares  

the performance of the two estimators 

theoretically. Finally section 4 gives, a 

numerical example and some conclusions have 

been given in Section 5. 

2.  The new estimators and its properties. 

Crouse et al. [5]  presented the unbiased ridge 

estimator (URR) based on the ridge estimator 

and prior information J, which is defined as 

follows: 

                                   β̂𝑈𝑅𝑅= (Z + kI)−1(X′y + 

kJ),                                                  (6) 

with J being uncorrelated with β̂OLSE   and 

J~N( 𝛽, 𝑉 ) , and in (9)  𝑉 = (𝜎2

𝑘
)𝐼 . They 

showed that URR estimator is unbiased 

estimator and its always better than OLS 

estimator.  

Since  URR is better than OLS estimator, we 

propose new three modified unbiased 

estimators as a generalized form depending on 

the estimators in (3) to (5) and we call the 

Modified Unbiased Ordinary Ridge Estimator 

(MUORE), the Modified Unbiased Ordinary 

Liu Estimator (MUOLE) and the Modified 

Unbiased Almost Unbiased Ridge Estimator 

(MUAURE). We can write them in the 

following generalized form  to be easy to find 

the statistical properties: 

𝛽̂G = 𝐴𝑖𝛽̂URR  ,                                                          

(7) 

where (𝐴𝑖)  is a positive definite matrix , 𝑖 =
1,2,3 and  ( 𝐴1 = W, 𝐴2 = F𝑑 , 𝐴3 = A𝑘  ).  

The bias vector, dispersion matrix and MSE 

matrix of  𝛽̂G  are given as : 

E(𝛽̂GMUE) = (𝐴𝑖𝛽̂URR) = 𝐴𝑖  𝐸(𝛽̂URR) = 𝐴𝑖𝛽   

,                               (8) 

Bais(𝛽̂GMUE) =  E(𝛽̂GMUE )– 𝛽 =  𝐴𝑖𝛽 − 𝛽

= ( 𝐴𝑖 − 𝐼)𝛽 

  The covariance matrix for any 

estimator𝛽∗ for β is defined as follows: 

Cov(𝛽̂) = E(𝛽∗ − β )(𝛽∗ −  β)′ . 

Consequently,  

                                                  Cov(𝛽̂G) =

 σ2𝐴𝑖  𝑍𝑘
−1𝐴𝑖′ .                                             (9) 

In the context of biased estimation, the best 

criterion to assess an estimator's performance 

is the mean squared error (MSE) matrix, since 

it can simultaneously calculate both the 

variance-covariance matrix and the biased 

vector with one formula. 

MSE(𝛽̂) =  Cov (𝛽̂) + Bias( 𝛽̂ )Bias(𝛽̂)
′
, 

The definition of the scalar mean square error 

(mse) is:  

mse(𝛽̂) =  𝑡𝑟 (MES(𝛽̂)), 

where tr is the  trace that defined to be the sum 

of the  main diagonal of matrix. So, the MSE 

of 𝛽̂G is given by: 

MES(𝛽̂G) =  σ2𝐴𝑖  𝑍𝑘
−1𝐴𝑖′ + ( 𝐴𝑖 − 𝐼)𝛽 𝛽 ' 

( 𝐴𝑖 − 𝐼)′                         (10) 

The properties of  ORR are defined as: 

𝑏2 = Bias ( 𝛽̂ORR) =  −𝑘(𝑍 + 𝑘𝐼)−1 𝛽  and  

Cov (𝛽̂ORR) =σ2 𝑍(𝑍 + 𝑘𝐼)−2                                         
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MSE( 𝛽̂ORR) =  σ2  𝑍(𝑍 + 𝑘𝐼)−2 +
𝑘2(𝑍 + 𝑘)−1𝛽𝛽′(𝑍 + 𝑘)−1               (11) 

The MSE of .URR  is defined as, 

MSE( 𝛼̂𝑈𝑅𝑅) = 𝜎2𝑍𝑘
−1                                               

(12) 

The properties of  LU are defined as: 

𝑏3 = Bias ( 𝛽̂LU) = (F𝑑 − 𝐼)𝛽   and  Cov 

(𝛽̂LU) = σ2F𝑑𝑍−1F𝑑
′                                           

                  MSE( 𝛽̂LU) =  σ2F𝑑𝑍−1F𝑑
′ +

(Fd − I)𝛽𝛽′(Fd − I)′                               (13) 

The properties of  AURE are defined as, 

𝑏4 =Bias ( β̂AURE) = I − 𝑘2(S + k)−2 𝛽   and  

Cov (β̂AURE) = σ2A𝐾𝑍−1A𝐾
′                                           

MSE( β̂AURE) =  σ2A𝐾𝑍−1A𝐾
′ +

𝑘4(S + 𝑘𝐼)−2 𝛽𝛽′(S + 𝑘𝐼)−2              (14) 

Therefore, The MSE of  

𝛽̂MUORE, 𝛽̂MUOLE, 𝛽̂MUAURE   are given by  

MES(𝛽̂MUORE) =  σ2𝐴1𝑍𝑘
−1𝐴1

′ + ( 𝐴1 −

𝐼)𝛽 𝛽' (𝐴1 − 𝐼)′                      (15) 

MES(𝛽̂MUOLE) =  σ2𝐴2 𝑍𝑘  𝐴2
′ + ( 𝐴2 −

𝐼)𝛽 𝛽' ( 𝐴2 − 𝐼)′                      (16) 

MES(𝛽̂MUAURE) =  σ2𝐴3 𝑍𝑘
−1 𝐴3

′ + ( 𝐴3 −

𝐼)𝛽 𝛽' ( 𝐴3 − 𝐼)′                  (17) 

3.  Comparison of  Estimators 

We need to provide some lemmas that will 

help us do and prove our theoretical results. 

We also take into account the new estimators. 

Lemma 3.1  Let  𝑛 × 𝑛 matrices   A >  0 and  

B > 0  ( or B > 0)  the   A is a positive definite  

(p.d) , then as  B  is a (p.d) the  A > B  if and 

only if 𝜆𝑚𝑎𝑥(𝐵𝐴−1) < 1  ,where 

𝜆𝑚𝑎𝑥(𝐵𝐴−1) < 1   is the maximum  

eigenvalue for the  matrix 𝐵𝐴−1.[6] 

Lemma 3.2  Let 𝛽̂𝑖  = 𝐴𝑖 𝑦 i=1,2 be the given  

two linear estimators of  𝛽 . Suppose that  

𝐷1 =  Cov( 𝛽̂1) − Cov( 𝛽̂2)  is p.d.,where 

Cov(𝛽̂𝑖) i=1,2 is the covariance matrix of  𝛽̂𝑖 

and 𝑏𝑖 = Bias( 𝛽̂𝑖) = (𝐴𝑖𝑋 − 𝐼)𝛼 , i=1,2 

consequently   

∆=  MSE( 𝛽̂1) − MSE( 𝛽̂2)  = 𝜎2𝐷1  + 𝑏1
′ 𝑏1 − 

𝑏2
′ 𝑏2 

is p.d. iff  𝑏2
′  ( 𝜎2𝐷1  + 𝑏1

′ 𝑏1)𝑏2 < 1 , where 

MSE(𝛽̂𝑖) = Cov(𝛽̂𝑖) + 𝑏𝑖
′𝑏𝑖 . [7] 

Lemma 3.3 Let  E  a   ( p.d) ,   matrix   and  F  

a ( n.n.d) matrix F-E > 0 if only if 𝐹−1 −
𝐸−1 > 0 . [8] 

3.1 The Comparison with  URR  Estimator 

Let       ∆1= MSE(𝛽̂URR) −MSE(𝛽̂G) = 𝜎2𝐷1 

+  𝑏1
′ 𝑏1, where 𝐷1 = Cov(𝛽̂URR) − Cov(𝛽̂G) =

  𝑍𝑘
−1 − 𝐴𝑖𝑍𝑘

−1𝐴𝑖
′  and, 𝑏1 =  (𝐴𝑖 − 𝐼)𝛽 . We 

can observe that 𝐷1 > 0      if  

diag { 1

𝜆𝑖+𝑘
−

𝑎𝑖
2

𝜆𝑖+𝑘
} > 0 , where  𝑎𝑖 is the diagonal 

elements of 𝐴𝑖 . Since 𝑎𝑖 < 1  for all i , then 
1

𝜆𝑖+𝑘
−

𝑎𝑖
2

𝜆𝑖+𝑘
> 0  . Therefore, we can state the 

following theorem: 

Theorem 3.1 The estimator  𝛽̂G  is always  

better than the estimator 𝛽̂URR  in the MSE 

sense. 

The above theorem demonstrates that all 

proposed estimators are better than URR and 

according to that, the proposed estimators will 

obviously better than OLS estimator.  

3.2 The Comparison Between  MUORE and 

ORR  Estimators 

Let          ∆2= MSE(𝛽̂ORR) −MSE(𝛽̂MUORE) = 

 𝜎2𝐷2 + 𝑏2
′ 𝑏2 − 𝑏5

′ 𝑏5 , where 

           𝐷2  = Cov( 𝛽̂ORR) −  Cov( 𝛽̂MUORE)   =  

𝑊𝑍−1𝑊 −  𝑊𝑍𝑘
−1𝑊 = 𝑊(𝑍−1 −  𝑍𝑘

−1)𝑊 , 

and 𝑏5 = ( 𝐴1 − 𝐼)𝛽 .  So,   𝐷2 > 0      if  

diag { 1

𝜆𝑖
− 1

𝜆𝑖+𝑘
} > 0    and that is  satisfied   

because  (𝜆𝑖 + 𝑘) >  𝜆𝑖 for all i.  As a result, 
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we can now state following theorem after 

applying Lemma 3.2. 

Theorem 3.2.The MUORE  estimator is better 

than the ORR estimator in the MSE sense, if 

and only if    𝑏5
′  ( 𝜎2𝐷2 + 𝑏2

′ 𝑏2)𝑏5< 1  . 

3.3 The Comparison Between  MUOLE and 

LU  Estimators 

Since the MUOLE and LU estimators                         

                                     ∆3

=  MSE (β̂LU)

− MSE (𝛽̂MUOLE ) 

  = σ2𝑍−1(𝑍 + 𝐼)−2( 𝑍 + 𝑑𝐼)2 −
[σ2(𝐴2𝑍𝑘

−1𝐴2
′ + 𝑏3

′ 𝑏3 −  𝑏6
′ 𝑏6] 

    = σ2[G2 − G1] + 𝑏3
′ 𝑏3 −  𝑏6

′ 𝑏6. 

where  𝐺2 = Cov (β̂LU)  , and 𝐺1 =

 Cov (𝛽̂MUOLE) , 𝑏6 = (𝐴2 − 𝐼) 𝛽 . Thus, the 

following theorem can be stated   

Theorem 3.3 Let λi
G2(G1) ≤ 1. Therefore, the 

MUOLE estimator is superior to the LU in the 

sense of MSE 
 

⇔  𝑏6
′ (𝜎2[G2 − G1] +

𝑏3𝑏3
′ )−1𝑏6 ≤ 1. 

Proof : Since G1 > 0 and G2 > 0, we can get 

G2 − G1  ≥ 0 
 

⇔  λi
G2(G1) ≤ 1  using Lemma 

3.1. Since 𝑏3
′ 𝑏3 ≥ 0 , deciding whether to take 

action  ∆3> 0 is reduced to that of deciding  

σ2(G2 − G1) + 𝑏3
′ 𝑏3 −  𝑏6

′ 𝑏6  > 0,  then  ∆3>
0, the proof is completed after using Lemma 

3.2. 

3.4 Comparison between MUAURE  and 

AURE  Estimators 

The MSE difference the MUAURE and 

AURE estimators is as follows 

∆4=  MSE( β̂AURE ) –  MSE( 𝛽̂MUAURE ) = 

𝜎2𝐷4 + 𝑏4𝑏4
′  −  𝑏7𝑏7

′  ,where 𝐷4 =

𝐶𝑜𝑣(β̂AURE)  –  Cov( 𝛽̂MUAURE)   =  𝑀 −  𝑁 , 

where  M= 𝐴𝑘  𝑍−1𝐴𝑘
′  ,  N= 𝐴3𝑍𝑘

−1𝐴3
′  ,  

λ𝑚𝑎𝑥 ( M𝑁−1) <1  is  the  largest  eigenvalue 

of  the  matrix M𝑁−1 and   𝑏7 =  (𝐴𝑘  − 𝐼) 𝛽. 

Now , the  following  theorem  can be stated . 

Theorem 3.4. When λ𝑚𝑎𝑥  ( M𝑁−1 ) <1, the  

estimator  𝛽̂MUAURE    is superior to the 

estimator  β̂AURE   in the  mean  squared  error  

matrix  sense  if  and only if 

𝑏7
′ (𝜎2𝐷4 + 𝑏4𝑏4

′ )−1𝑏7 ≤ 1 

proof : The  M and  N   are (p . d ) and  based 

on ( Lemma 3.3) one  can  say  that       M − 𝑁 

> 0 if  and  only if  λ𝑚𝑎𝑥 ( M𝑁−1) <1. Now , 

according to (Lemma 3.2),     MSE(β̂AULE) – 

MSE(𝛽̂MUAURE) ≥ 0  if  and only if,                                                     

𝑏7
′ (𝜎2𝐷4 + 𝑏5𝑏5

′ )−1𝑏7 ≤ 1 

So, the  proof is completed . 

4.Numerical Example  

In order to go for  further illustrating for the 

behavior of the proposed estimators, we 

consider the data set on Portland cement 

originally due to [9]. This data set has been 

used by many researchers such as [10]-[13]. 

The cement data set came from an 

experimental investigation of the heat evolved 

during the setting and hardening of Portland 

cements of varied composition and the 

dependence of this heat on the percentages of 

four compounds in the clinkers from which the 

cement was produced. The data set 

compounds considered by [9]. Since 𝛽 and 𝜎2 

are unknown, we estimated 𝛽  by OLS 

estimator for estimators in Eq’s (11,13,14) as 

well as we estimated it by URR estimator in 

Eq’s (15-17). For 𝜎2 we take several values to 

have a clear perception of the performance of 

the estimators and the extent of the impact of 

that value on the performance of these 

estimators, small, medium and high values 

were taken as (0.05,0.1,0.9,5). Also different 

values of k and d are taken as showing the 

following tables. We want to mention that all 

estimated mse values in following tables are 
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multiplied by 10-2 in order to be clear for comparing. 

Table 1: The mse for different estimators with proposed estimators when  σ^2=0.05 

 

𝜎2 
d=0.01 

k 0.01 0.1 0.5 0.9 1 1.5 

 

 

 

0.05 

OLS 0.33708 0.33708 0.33708 0.33708 0.33708 0.33708 

URR 0.046809 0.007315 0.002192 0.001402 0.001293 0.000942 

ORR 0.009981 0.00335 0.002709 0.002869 0.002922 0.003201 

LU 0.002923 0.002923 0.002923 0.002923 0.002923 0.002923 

AURE 0.024145 0.004477 0.00289 0.002695 0.002682 0.002694 

MUORE 0.005333 0.00342 0.002863 0.002869 0.002874 0.002889 

MUOLE 0.003403 0.003286 0.002982 0.002847 0.002822 0.002731 

MUAURE 0.006902 0.003638 0.002552 0.002483 0.002481 0.002497 

d=0.5 

OLS 0.33708 0.33708 0.33708 0.33708 0.33708 0.33708 

URR 0.046809 0.007315 0.002192 0.001402 0.001293 0.000942 

ORR 0.009981 0.00335 0.002709 0.002869 0.002922 0.003201 

LU 0.085647 0.085647 0.085647 0.085647 0.085647 0.085647 

AURE 0.024145 0.004477 0.00289 0.002695 0.002682 0.002694 

MUORE 0.005333 0.00342 0.002863 0.002869 0.002874 0.002889 

MUOLE 0.012981 0.002975 0.001503 0.001229 0.001189 0.00105 

MUAURE 0.006902 0.003638 0.002552 0.002483 0.002481 0.002497 

d=0.9 

OLS 0.33708 0.33708 0.33708 0.33708 0.33708 0.33708 

URR 0.046809 0.046809 0.002192 0.001402 0.001293 0.000942 

ORR 0.009981 0.009981 0.002709 0.002869 0.002922 0.003201 

LU 0.273296 0.273296 0.273296 0.273296 0.273296 0.273296 

AURE 0.024145 0.024145 0.00289 0.002695 0.002682 0.002694 

MUORE 0.005333 0.005333 0.002863 0.002869 0.002874 0.002889 

MUOLE 0.038099 0.038099 0.001876 0.00122 0.001129 0.000834 

MUAURE 0.006902 0.006902 0.002552 0.002483 0.002481 0.002497 

Table 2: The mse for different estimators with proposed estimators when  σ^2=0.1 

𝜎2 
d=0.01 

k 0.01 0.1 0.5 0.9 1 1.5 

0.1 

OLS 0.674159 0.674159 0.674159 0.674159 0.674159 0.674159 

URR 0.093617 0.014631 0.004383 0.002804 0.002585 0.001883 

ORR 0.018821 0.005106 0.00325 0.003194 0.003216 0.003396 

LU 0.003271 0.003271 0.003271 0.003271 0.003271 0.003271 

AURE 0.047429 0.007518 0.004006 0.003402 0.003333 0.00316 

MUORE 0.009098 0.004648 0.00318 0.003044 0.003028 0.00298 

MUOLE 0.003707 0.003551 0.00318 0.003011 0.00298 0.002863 
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MUAURE 0.012793 0.005566 0.003104 0.002818 0.002784 0.002697 

d=0.5 

OLS 0.674159 0.674159 0.674159 0.674159 0.674159 0.674159 

URR 0.093617 0.014631 0.004383 0.002804 0.002585 0.001883 

ORR 0.018821 0.005106 0.00325 0.003194 0.003216 0.003396 

LU 0.170637 0.170637 0.170637 0.170637 0.170637 0.170637 

AURE 0.047429 0.007518 0.004006 0.003402 0.003333 0.00316 

MUORE 0.009098 0.004648 0.00318 0.003044 0.003028 0.00298 

MUOLE 0.025172 0.00518 0.002297 0.001775 0.001698 0.001438 

MUAURE 0.012793 0.005566 0.003104 0.002818 0.002784 0.002697 

d=0.9 

OLS 0.674159 0.674159 0.674159 0.674159 0.674159 0.674159 

URR 0.093617 0.014631 0.004383 0.002804 0.002585 0.001883 

ORR 0.018821 0.005106 0.00325 0.003194 0.003216 0.003396 

LU 0.546566 0.546566 0.546566 0.546566 0.546566 0.546566 

AURE 0.047429 0.007518 0.004006 0.003402 0.003333 0.00316 

MUORE 0.009098 0.004648 0.00318 0.003044 0.003028 0.00298 

MUOLE 0.076167 0.012111 0.003724 0.002413 0.00223 0.00164 

MUAURE 0.012793 0.005566 0.003104 0.002818 0.002784 0.002697 

Table 3: The mse for different estimators with proposed estimators when σ^2=0.9 

𝜎2 
d=0.01 

k 0.01 0.1 0.5 0.9 1 1.5 

0.9 

OLS 6.067431 6.067431 6.067431 6.067431 6.067431 6.067431 

URR 0.842554 0.131676 0.039449 0.025236 0.023268 0.016947 

ORR 0.160257 0.033203 0.011904 0.008385 0.007921 0.006528 

LU 0.008831 0.008831 0.008831 0.008831 0.008831 0.008831 

AURE 0.419968 0.056175 0.021858 0.01472 0.013744 0.010609 

MUORE 0.069336 0.024296 0.00825 0.005842 0.005505 0.00444 

MUOLE 0.008572 0.007798 0.006357 0.005639 0.005503 0.004972 

MUAURE 0.107063 0.036408 0.011943 0.008171 0.007642 0.005891 

d=0.5 

OLS 6.067431 6.067431 6.067431 6.067431 6.067431 6.067431 

URR 0.842554 0.131676 0.039449 0.025236 0.023268 0.016947 

ORR 0.160257 0.033203 0.011904 0.008385 0.007921 0.006528 

LU 1.530472 1.530472 1.530472 1.530472 1.530472 1.530472 

AURE 0.419968 0.056175 0.021858 0.01472 0.013744 0.010609 

MUORE 0.069336 0.024296 0.00825 0.005842 0.005505 0.00444 

MUOLE 0.220224 0.040459 0.01499 0.010498 0.00984 0.007636 

MUAURE 0.107063 0.036408 0.011943 0.008171 0.007642 0.005891 

d=0.9 

OLS 6.067431 6.067431 6.067431 6.067431 6.067431 6.067431 
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URR 0.842554 0.131676 0.039449 0.025236 0.023268 0.016947 

ORR 0.160257 0.033203 0.011904 0.008385 0.007921 0.006528 

LU 4.918887 4.918887 4.918887 4.918887 4.918887 4.918887 

AURE 0.419968 0.056175 0.021858 0.01472 0.013744 0.010609 

MUORE 0.069336 0.024296 0.00825 0.005842 0.005505 0.00444 

MUOLE 0.685251 0.108755 0.033292 0.021498 0.019855 0.014552 

MUAURE 0.107063 0.036408 0.011943 0.008171 0.007642 0.005891 

Table 4: The mse for different estimators with proposed estimators when  σ^2=5 

𝜎2 
d=0.01 

k 0.01 0.1 0.5 0.9 1 1.5 

5 

OLS 33.70795 33.70795 33.70795 33.70795 33.70795 33.70795 

URR 4.680854 0.731536 0.219159 0.140198 0.129266 0.094152 

ORR 0.885114 0.177195 0.056258 0.034993 0.032034 0.022574 

LU 0.037327 0.037327 0.037327 0.037327 0.037327 0.037327 

AURE 2.329232 0.305547 0.113351 0.072726 0.0671 0.048786 

MUORE 0.37806 0.124992 0.034234 0.020182 0.018199 0.011922 

MUOLE 0.033504 0.029562 0.022637 0.019107 0.018432 0.015779 

MUAURE 0.590197 0.194477 0.057239 0.035606 0.032537 0.022262 

d=0.5 

OLS 33.70795 33.70795 33.70795 33.70795 33.70795 33.70795 

URR 4.680854 0.731536 0.219159 0.140198 0.129266 0.094152 

ORR 0.885114 0.177195 0.056258 0.034993 0.032034 0.022574 

LU 8.499629 8.499629 8.499629 8.499629 8.499629 8.499629 

AURE 2.329232 0.305547 0.113351 0.072726 0.0671 0.048786 

MUORE 0.37806 0.124992 0.034234 0.020182 0.018199 0.011922 

MUOLE 1.219865 0.221265 0.080046 0.055205 0.051569 0.039401 

MUAURE 0.590197 0.194477 0.057239 0.035606 0.032537 0.022262 

d=0.9 

OLS 33.70795 33.70795 33.70795 33.70795 33.70795 33.70795 

URR 4.680854 0.731536 0.219159 0.140198 0.129266 0.094152 

ORR 0.885114 0.177195 0.056258 0.034993 0.032034 0.022574 

LU 27.32703 27.32703 27.32703 27.32703 27.32703 27.32703 

AURE 2.329232 0.305547 0.113351 0.072726 0.0671 0.048786 

MUORE 0.37806 0.124992 0.034234 0.020182 0.018199 0.011922 

MUOLE 3.806805 0.604055 0.184828 0.119308 0.110181 0.080725 

MUAURE 0.590197 0.194477 0.057239 0.035606 0.032537 0.022262 

 

Through Table 1, when the value of d = 0.01 

and for all values of k and σ^2  is 0.05 and 

0.1,  the performance of the proposed 

estimators was not good compared with the 

estimators within the limits of this paper. It 

can also be noted that the proposed estimators 

began to improve when the value of d was 

increased, as the MUOLE estimator was the 
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best in most of the k values. Also, there is an 

obvious  effect of the value of σ^2   on the 

performance of the proposed estimators, 

where when  σ^2 is increased, the estimated 

mse of  MUORE, MUOLE and  MUAURE 

will be less. If we like to check the 

performance of the proposed estimators 

between the, the MUORE is best when d  is 

closed to 1 and  σ^2 has an high values and 

that can be observed for Tables 1-4. 

5. Conclusions  

In this paper, new biased estimators depending 

on unbiased ridge regression estimator (URR)  

in a multiple linear regression when there 

exists multicollinearity problem are proposed. 

These estimators are superior to other exists 

estimators which are based on sample 

information. Based on Tables 1-4, we can say 

that the proposed estimators has smallest mse 

values compared with OLS,URR,ORR,LU and 

AURE. We can also suggest that MUORE is 

the best estimator with compared to other 

proposed estimators. 
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