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Abstract 

The statistical analysis provided by quantile regression of the links between random variables is more in-

depth. The economic field has made considerable use of quantile regression techniques to study the 

factors that affect wages, the results of discrimination, and the development of income inequality. Using 

the Bayesian lasso penalty technique, this article estimates and selects variables in quantile regression 

models. The Laplace prior distribution of the vector of parameters will be represented by a scale mixture 

of normal distributions mixing Rayleigh density, and a Bayesian hierarchical model will be constructed to 

estimate its parameters. Simulation examples and real-world data are taken into account to assess the 

suggested method's effectiveness and to compare it to other current approaches.  

Keywords: Bayesian Inference, prior distribution, quantile regression, Lasso, MCMC.   

1. INTRODUCTION 

Quantile regression is a statistical method for 

estimating and inferring conditional quantile 

functions. Conditional mean function models 

may be estimated in the same way as ordinary 

linear regression methods can, by minimizing 

sums of squared residuals. Using quantile 

regression methods, we can estimate models 

for the conditional median function and the 

whole range of conditional quantile functions. 

The estimate of conditional mean functions is 

supplemented by methods for estimating a 

whole family of conditional quantile 

functions. The statistical analysis provided by 

quantile regression of the links between 

random variables is more in-depth. 

Quantile regression has found use in many 

different fields of study. Upper and lower 

quantile reference curves as a function of age, 

sex, and other covariates can be estimated 

using quantile regression methods, which have 

a long history of use in pediatric medicine and 

allow for the estimation of reference growth 

curves without imposing strict parametric 

assumptions. The economic field has made 

considerable use of quantile regression 

techniques to study the factors that affect 

wages, the results of discrimination, and the 

development of income inequality. 

To estimate conditional quantile functions, 

Koenker and Basset (1978) presented quantile 

regression as a generalization of conventional 

least squares estimation of conditional mean 

models. Due to its ability to estimate the 

whole conditional distribution of a response 

variable, quantile regression is a powerful 

statistical study that can find more effects than 

traditional approaches. One of the most 
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important parts of the process is determining 

how accurate the model is by estimating its 

parameters. The two most important 

techniques are the momentum (M) approach 

and the method of least squares (OLS). 

estimate based on the principle of maximum 

likelihood. 

There has been a lot of focus on 

regularization-based subset selection recently.  

For example, for the lasso (least absolute 

shrinkage and selection operator), see 

Tibshirani (1996) and Tibshirani et al. (2005). 

Bayesian variable selection (Fridley, 2009) is 

a flexible method for picking variables in light 

of prior information. Different variable-

selection strategies are used within a Bayesian 

framework. In addition, this research 

contributed to the Bayesian lasso penalty 

method for estimating and selecting variables 

in the quantile regression model. To estimate 

the parameters, we will construct a Bayesian 

hierarchical model based on a representation 

of the scale mixture of normal distribution 

mixing Rayleigh density for the Laplace prior 

distribution of the parameters vector.  

2. Bayesian variable selection quantile 

Regression 

One of the most important parts of building a 

model is deciding which variables to use. It is 

normal in practice to have a high number of 

prospective predictor variables, and these 

variables are often included into the first 

modeling stage to eliminate the possibility of 

modeling bias (Fan and Li, 2001). However, 

including extraneous predictors in the final 

model might lower the model's prediction 

effectiveness and make it harder to 

comprehend. In order to achieve variable 

selection, the regularization framework makes 

use of a wide variety of penalties. Tibshirani 

(1996) introduced the LASSO variable 

selection method, which makes use of the La 

penalty. Nonconcave penalized least squares 

regression, as suggested by Fan and Li (2001), 

combines the processes of variable selection 

and coefficient estimation into a single step. 

This technique creates sparse solutions, 

guarantees the stability of model selection, and 

produces unbiased estimates for high 

coefficients by picking an appropriate 

nonconcave penalty function, thereby 

retaining many of the advantages of the best 

subset selection and ridge regression. 

According to Fan and Li (2001), these are the 

three most important characteristics of a 

deterrent. 

Based on the asymmetric Laplace likelihood 

(ALL), which has a unique relationship with 

the frequentist quantile regression solution 

(Koenker, 2005), the Bayesian quantile 

regression method has become increasingly 

popular since Yu and Moyoed (2001) first 

introduced it. When using priors other than 

non-informative or exponential Laplace, ALL-

based methods generate incorrect posteriors; 

the latter leads to the well-known Bayesian 

Lasso quantile regression (Li et al., 2010; 

Alhamzawi and Yu, 2013; Alhamzawi et al., 

2012; Chen et al., 2013). 

𝑦𝑖 = 𝑥𝑖
′𝛽𝜏 + 𝑢𝑖 ,     𝑖 = 1,2, … , 𝑛 … … . . (1) 

𝑢𝑖 is random variables from skewed Laplace 

distribution, 

𝑓(𝜃) = 𝜏(1 − 𝜏)𝜃𝑒𝑥𝑝{−𝜃𝜌𝜏(𝑢𝑖)} … … . (2) 

Then the likelihood function of  

𝑦 =(𝑦1,…, 𝑦𝑛) given  𝑥 = (𝑥1,…, 𝑥𝑛)’ is 
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𝑓(𝑥, 𝛽𝜏, 𝜃) = 𝜏𝑛(1

− 𝜏)𝑛𝜃𝑛𝑒𝑥𝑝 {−𝜃 ∑

𝑛

𝑖=1

𝜌𝜏(𝑦𝑖

− 𝑥𝑖
′𝛽𝜏)} … . (3) 

According to Kozumi and Kobayashi (2009), 

the Skew Laplace distribution may be seen as 

a combination of an exponential and scaled 

normal distribution. Then, we can rewrite the 

error term as 𝑢 = 𝛿1𝑣 + 𝛿2√𝑣  𝑧, whereas 𝑣 is 

standard exponential random variable and  𝑧 is 

a standard and 

𝛿1 =
1−2𝜏

𝜏(1−𝜏)
   ,  and     𝛿2 = √

   2   

𝜏(1−𝜏)
 

Therefore the model can be written: 

𝑦𝑖 = 𝑥𝑖
′𝛽𝜏 + 𝜃−1𝛿1𝑣𝑖

+ 𝜃−1𝛿2√𝑣𝑖  𝑧𝑖  … … … (4) 

follow Li et al. (2010), Let  𝑣̃𝑖 = 𝜃−1𝑣𝑖, then 

𝑣̃𝑖 distributed as exponential 𝑒𝑥𝑝 (𝜃−1). 

Lasso quantile regression model can be shown 

as : 

∑

𝑛

𝑖=1

𝜌𝜏(𝑦𝑖 − 𝑥𝑖
′𝛽𝜏)

+  𝜆 ∑

𝑝

𝑘=1

|𝛽𝜏𝑘|    … … … . (5)  

Laplace distribution set as a prior distribution 

for the parameters 𝛽𝜏. 

𝜋(𝜃, 𝜆)

= (
𝜃𝜆

2
)𝑝𝑒𝑥𝑝 {−𝜃𝜆 ∑

𝑝

𝑘=1

|𝛽𝜏𝑘| } … … … . . (6) 

new hierarchical model representation for 

Lasso quantile based on (Flaih et al. (2020)), 

Scale mixture of normal distribution and 

Rayleigh distribution 

1

2𝑎
𝑒𝑥𝑝 {−

|𝑧|

𝑎
}

= ∫
∞

0

1

√2𝜋𝑠2
𝑒𝑥𝑝 {−

𝑧2

2𝑠2
}.  

𝑠

𝑎
 𝑒𝑥𝑝 {−

𝑠2

2𝑎
}   𝑑𝑠 

 

 Let 𝜂 = 𝜃𝜆, 𝑎 =
1

𝜂
, then we can rewrite the 

Laplace distribution: 

𝜂

2
𝑒𝑥𝑝{−𝜂|𝛽𝜏|}

= ∫
∞

0

1

√2𝜋𝑠𝑘
2 𝑒𝑥𝑝 {−

 𝛽𝜏
2

2𝑠𝑘
2} .  𝜂𝑠 𝑒𝑥𝑝 {−

𝜂𝑠2

2 
}   𝑑𝑠 

3. Hierarchical model and MCMC sampler 

Based on what is mentioned above in section 

2, the hierarchical model for the new Bayesian 

variable selection for quantile regression can 

be shown as follows: 

𝑦𝑖 = 𝑥′𝑖𝛽 + 𝛿1𝑣˜𝑖 + 𝜃−1/2𝛿2√𝑣˜𝑖𝑧𝑖 

𝑣˜𝑖/𝜃 ∼ ∏

𝑛

𝑖=1

  𝜃𝑒𝑥𝑝 {−𝜃𝑣˜𝑖} 

𝑧𝑖 ∼ ∏

𝑛

𝑖=1

  
1

√2𝜋
𝑒𝑥𝑝 {−

1

2
𝑧𝑖

2} 

𝛽, 𝑠/𝜂 ∼ ∏

𝑝

𝑘=1

  
1

√2𝜋𝑠𝑘
2

𝑒−𝛽2/2𝑠2

⋅ 𝜂𝑠𝑒−𝜂𝑠2/2𝑑𝑠 

𝜃 ∼ 𝜃𝑎−1𝑒𝑥𝑝 {−𝑏𝜃) 

𝜂 ∼ (𝜂)𝑐−1𝑒𝑥𝑝 {−𝑑𝜂} 

For all parameters the fall condition posterior 

will be given as: 



Journal of Survey in Fisheries Sciences              10(3S) 5435-5446 2023 

5438 
 

𝜋(𝑥, 𝑣, ˜𝛽𝜏, 𝜃, 𝑠, 𝜂|𝑦)

= ∏

𝑛

𝑖=1

 
1

√2𝜋𝜃−1𝛿2
2𝑣˜𝑖

𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑥𝑖

′𝛽𝜏 − 𝛿1𝑣˜𝑖)2

2𝜃−1𝛿2
2𝑣˜𝑖

   } × ∏

𝑛

𝑖=1

  𝜃𝑒𝑥{−𝜃𝑣˜𝑖}  

× ∏

𝑛

𝑖=1

  
1

√2𝜋
𝑒𝑥𝑝 𝑒𝑥𝑝 {−

1

2
𝑧𝑖

2}  × ∏

𝑝

𝑘=1

  
1

√2𝜋𝑠𝑘
2

𝑒
−

 𝛽𝜏
2

2𝑠2 ⋅ 𝜂𝑠𝑒−
𝜂𝑠2

2 𝑑𝑠 × 𝜃𝑎−1

𝑒𝑥𝑝 𝑒𝑥𝑝 {−𝑏𝜃)  × (𝜂)𝑐−1𝑒𝑥𝑝 {−𝑑𝜂}

 

Where a,b,c and d are hyperparameters. 

Sampling 𝑣˜𝑖 

The conditional distribution 

𝜋(𝑣˜𝑖/𝑥, 𝛽𝜏, 𝜃, 𝑠, 𝜂, 𝑣˜−𝑖)

∝   𝑓(𝑦/𝑥, 𝑣˜𝑖 , 𝛽𝜏, 𝜃, 𝑠, 𝜂)

⋅ 𝜋(𝑣˜𝑖 , 𝜃) 

∝
1

√𝑣˜𝑖

𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑥′𝛽𝜏 − 𝛿1𝑢˜𝑖)2

2𝜃−1𝛿2
2𝑣˜𝑖

}

⋅ 𝑒𝑥𝑝 {−𝜃𝑣˜𝑖} 

∝
1

√𝑣˜𝑖

𝑒𝑥𝑝 {−
1

2
[(

𝜃𝛿1
2

𝛿2
2 − 2𝜃) 𝑣˜𝑖

+
𝜃(𝑦𝑖 − 𝑥′𝛽)2

𝛿2
2 𝑣˜𝑖

−1] 

Generalized inverse Gaussian is the fall 

conditional distribution of  𝑣˜𝑖 

Sampling 𝛽𝜏𝑘 

The posterior distribution is 

𝜋(𝛽𝑗/𝑥, 𝜃, 𝛽−𝑗, 𝑠, 𝜂,, 𝑣˜𝑖)   

∝  𝑓(𝑦/𝑥, 𝑣˜, 𝛽𝜏, 𝑠, 𝜃, 𝜂)
⋅ 𝜋(𝛽, 𝑠) 

∝ 𝑒𝑥𝑝 {− ∑   
(𝑦𝑖 − 𝑥′𝛽𝜏 − 𝛿1𝑣˜𝑖)2

2𝜃−1𝛿2𝑣˜𝑖
}  𝑒𝑥𝑝 {−

𝛽𝜏𝑗
2

2𝑠𝑗
} 

The full conditional distribution for 𝛽𝜏 ∼

𝑁(𝜇, 𝜎2) where 

𝜎𝑗
2 = ∑  

𝑥𝑖
2

𝜃𝛿2
2𝑣𝑖

+
1

𝑠𝑗
, 𝜇𝑗

= 𝜎𝑗
2 ∑

𝑛

𝑗=1

  
𝑦˜𝑖𝑗𝑥𝑖𝑗𝑢˜𝑖

−1

𝜃𝛿2
2  

𝑦˜𝑖𝑗 = 𝑦𝑖 − 𝛿1𝑣˜𝑖 − ∑

𝑝

𝑗=1

  𝑥𝑖𝛽𝑗 

● sampling 𝜂 

𝜋(𝜂/𝑥, 𝛽, 𝜃, 𝑣˜𝑖 , 𝑠)𝛼𝜋(𝑠/𝜂) ⋅ 𝜋(𝜂) 

∝ ∏

𝑛

𝑖=1

  𝜂𝑠 𝑒−𝜂𝑠2/2 ⋅ 𝜂𝑐−1𝑒𝑥𝑝 (−𝑑𝜂) 

𝜂𝑛+𝑐−1𝑒𝑥𝑝 {(∑  
𝑠𝑗

2

2
  − 𝑑) 𝜂} 

Gamma distribution is the Conditioned 

posterior for 𝜂. 

● Sampling Sk 

𝜋(𝑠𝑗/𝑥, 𝛽, 𝜃, 𝑠−𝑗, 𝜂)𝛼𝜋(𝛽/𝑠𝑗)𝜋(𝑠𝑗/𝜂) 

∝
1

√ 𝑠𝑗

𝑒𝑥𝑝 {−
−𝛽2

2 𝑠𝑗
2 } ⋅   𝑠𝑗  𝑒𝑥𝑝 {−

𝜂𝑠𝑗
2

2
} 

 ∝    √ 𝑠𝑗  𝑒𝑥𝑝 {− [
𝛽2

2𝑠𝑗
2 +

𝜂𝑠𝑗
2

2
]} 

The posterior distribution fir 𝑆  ar GIG 

(
3

2
,

𝛽2

2
,

𝑛

2
) 
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Sampling 𝜃 

𝜋(𝜃/𝑥, 𝛽, 𝑣˜, 𝑠, 𝜂) ∝ 𝜋(𝑦/𝑥, 𝜃, 𝛽, 𝑠, 𝑣˜, 𝜂) ⋅ 𝜋(𝑣˜/𝜃) ⋅ 𝜋(𝜃)  

∝    𝜃𝑛/2𝑒𝑥𝑝 {−
1

2
∑  

(𝑦𝑖 − 𝑥𝑖
′𝛽 − 𝛿1𝑣˜𝑖)2

𝜃−1𝛿2
2𝑣˜𝑖

} 𝜃𝑛𝑒𝑥𝑝 {𝜃 ∑  𝑣˜𝑖}

⋅ 𝜃𝑎−1𝑒𝑥𝑝{−𝑏𝜃}  

∝    𝜃3𝑛/2+𝑎−1𝑒𝑥𝑝 {− [∑  
(𝑦𝑖 − 𝑥𝑖

′𝛽 − 𝛿1𝑣˜𝑖)2

2𝛿2
2𝑣˜𝑖

+ ∑  𝑣˜𝑖 + 𝑏] 𝜃]}  

The posterior distribution of θ is gamma 

distribution. 

Our proposed posterior distributions offer 

efficient algorithms that can provide us with 

precise estimates. In simulation and real-world 

dataset scenarios, the proposed method 

algorithm was executed 13,000 times, with the 

initial 3000 iterations omitted as burn-in. 

4. Simulation examples:  

The effectiveness of the offered approaches is 

examined here using simulated situations. This 

model was used to evaluate the suggested 

strategy against both Bayesian and non-

Bayesian alternatives. The alternative to 

Bayesian analysis is a conventional quantile 

regression model implemented in the R 

programming environment through the rq 

function in the package quantreg. Bayesian 

quantile regression is the R package 

MCMCpack's MCMCquantreg function that 

implements the Bayesian approach. In the 

present investigation, we evaluate the effects 

of using quantiles of =0.15, =0.35, =0.55, 

=0.75, and =0.95. Using root mean square 

error (MSE) and mean absolute deviations 

(MAD), we compare four different 

distributions for the random error terms i used 

in our simulation examples: the normal 

distribution with mean 0 and variance 1 

(iN(0,1)), the normal distribution with mean 3 

and variance 4 (iN(3,4)), a mixture of normal 

distributions (i0.5N1,1+0.5N2,1), and the t4 

distribution with 4 degrees of freedom it(4). 

4.1 Simulation First Example  

In this simulation example, we focus on very 

sparse model, that take the following formula: 

𝑦𝑖 = 5𝑥𝑖1 + 𝜖𝑖                                      

Where 𝑖 = 1,2,3 … . . 𝑛       , 𝑛 = 100  , with 

true parameters 𝛽 = (5,0,0,0,0,0,0,0)𝑡. 

We generate eight explanatory variables from 

multivariate normal distribution with mean 

(  0 ) and variance- covariance (𝛴𝑥)𝑖𝑗 =

(
1

2
)

|𝑖+𝑗|

 . 

Table 1: Mean square error (MSE) for the first simulation example. mean absolute 

deviation (MAD) displayed in parentheses. The results are averaged over 100 independent 

simulations. 

Methods 𝜀𝑖~𝑁(0,1)                          𝜖𝑖~𝑁(3,4)                                    𝜖𝑖~0.5𝑁(1,1)  

+0.5𝑁(2,1)       

𝜀𝑖~𝑡(5) 

𝑟𝑞0.15 1.137 (0.879) 1.262 (0.953) 1.122 (0.845) 1.013 (0.828) 
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𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.15 

 

0.942 (0.507) 0.844 (0.264) 0.782 (0.386) 0.921 (0.562) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.15 

 

0.727 (0.256) 0.572 (0.183) 0.581 (0.117) 0.513 (0.105) 

𝑟𝑞0.35 1.231 (0.925) 1.102 (0.781) 1.022 (0.791) 0.943 (0.905) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.35 

 

0.826 (0.461) 0.782 (0.351) 0.891 (0.461) 0.651 (0.361) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.35 

 

0.681 (0.176) 0.573 (0.102) 0.517 (0.281) 0.414 (0.132) 

𝑟𝑞0.55 1.453 (0.952) 1.264 (0.934) 1.344 (0.862) 0.709 (0.361) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.55 

 

0.936 (0.572) 0.838 (0.573) 0.854 (0.475) 0.816 (0.672) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.55 

 

0.682 (0.254) 0.482 (0.184) 0.491 (0.262) 0.411 (0.156) 

𝑟𝑞075 1.274 (0.892) 1.107 (0.738) 1.074 (0.693) 1.341 (0.851) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.75 

 

0.681 (0.186) 0.764 (0.176) 0.727 (0.375) 0.917 (0.534) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.75 

 

0.439 (0.101) 0.381 (0.071) 0.363 (0.228) 0.331 (0.191) 

𝑟𝑞0.95 1.064 (0.761) 1.096 (0.734) 1.124 (0.892) 1.122 (0.845) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.95 

 

0.739 (0.268) 0.679 (0.361) 0.617 (0.316) 0.782 (0.486) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.95 

 

0.563 (0.112) 0.428 (0.203) 0.406 (0.174) 0.381 (0.217) 

Note: In the parentheses are MAD. 

Table (1) shows that the suggested technique 

(NBRQReg) outperforms Bayesian and non-

Bayesian alternatives across all error 

distributions and quantile levels studied. In 

contrast, both the mean square error (MSE) 

and the mean absolute deviation (MAD) 

obtained by the suggested technique 

(NBRQReg) are much lower than those 

generated by the other two methods, rq and 

MCMCpack. We will build a trace map for the 

model parameters at a low quantile level 

(=0.15) to learn more about the consistency of 

our technique. 
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Figure 1- show trace plot of first simulation example at quantile level 𝜽 = 𝟎. 𝟏𝟓. 

 

From Figure (1), we readily observed that the 

algorithm belonging to our proposed method 

is very stationary through 10000 iterations.  

In figure 2- we see closed the posterior 

parameters estimate from the normal 

distribution: 

Figure 2. Histograms based on posterior distribution of the parameters for Simulation 1 at 

quantile level 𝜽 = 𝟎. 𝟏𝟓 
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4.2 Simulation second Example  

In this simulation example, we focus on dense 

model, that  take the following formula: 

𝑦𝑖 = 0.85𝑥𝑖1 + 0.85𝑥𝑖2 + 0.85𝑥𝑖3 + 0.85𝑥𝑖4

+ 0.85𝑥𝑖5 + 0.85𝑥𝑖6 + 0.85𝑥𝑖7

+ 0.85𝑥𝑖8 + 𝜖𝑖                                      

Where 𝑖 = 1,2,3 … . . 𝑛       , 𝑛 = 100  , with 

true parameters 𝛽 = (5,0,0,0,0,0,0,0)𝑡 

We generate  eight explanatory variables from 

multivariate normal distribution with mean 

(  0 ) and variance- covariance (𝛴𝑥)𝑖𝑗 =

(
1

2
)

|𝑖+𝑗|

 

Table 2: Mean square error (MSE) for first simulation example. mean absolute deviation 

(MAD) displayed in parentheses. The results are averaged over 100 independent 

simulations. 

Methods 𝜀𝑖~𝑁(0,1)                          𝜖𝑖~𝑁(3,4)                                𝜖𝑖~0.5𝑁(1,1)  

+0.5𝑁(2,1)       

𝜀𝑖~𝑡(5) 

𝑟𝑞0.15 1.747 (0.936) 1.591 (0.984) 1.602 (0.957) 1.108 (0.829) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.15 

 

0.984 (0.581) 0.918 (0.603) 0.823 (0.593) 0.956 (0.361) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.15 

 

0.619 (0.318) 0.584 (0.285) 0.692 (0.205) 0.356 (0.089) 

𝑟𝑞0.35 1.471 (0.945) 1.256 (0.879) 1.175 (0.938) 1.022 (0.791) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.35 

 

0.805 (0.491) 0.937 (0.404) 0.857 (0.412) 0.891 (0.461) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.35 

 

0.657 (0.317) 0.725 (0.306) 0.527 (0.203) 0.517 (0.281) 

𝑟𝑞0.55 0.237 (0.102) 0.375 (0.098) 0.293 (0.084) 1.281 (0.795) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.55 

 

1.351 (0.862) 1.241 (0.691) 0.947 (0.481) 0.861 (0.582) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.55 

 

0.648 (0.378) 0.582 (0.380) 0.486 (0.194) 0.578 (0.273) 

𝑟𝑞075 1.526 (0.822) 1.289 (0.982) 0.942 (0.582) 1.074 (0.693) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.75 

 

0.821 (0.372) 0.519 (0.257) 0.482 (0.178) 0.727 (0.375) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.75 

 

0.388 (0.142) 0.292 (0.167) 0.257 (0.074) 0.263 (0.028) 

𝑟𝑞0.95 1.189 (0.735) 1.106 (0.672) 0.835 (0.285) 0.835 (0.285) 

𝑀𝐶𝑀𝐶𝑝𝑎𝑐𝑘0.95 

 

0.573 (0.282) 0.511 (0.204) 0.493 (0.286) 0.493 (0.286) 

𝑁𝐵𝑅𝑄𝑅𝑒𝑔0.95 

 

0.235 (0.083) 0.124 (0.056) 0.104 (0.056) 0.104 (0.056) 

Note: In the parentheses are MAD. 

From results listed in Table (2), we see that 

the proposed method ( NBRQReg) has a good 

performance compared to Bayesian and non-

Bayesian methods  via all error distributions 

and the quantile levels under considerations. 

Because of the mean square error (MSE) and 

mean absolute deviation (MAD) are computed  

by our proposed method (NBRQReg) are 

much smaller than mean square error (MSE) 

and mean absolute deviation (MAD) are 

computed by other two methods rq and 

MCMCpack. To investigate from the stability 
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of our algorithm, we will draw trace plot for 

the model parameters at high quantile level 

(θ=0.95) 

Figure 3- show trace plot of second simulation example at quantile level θ=0.95. 

 

From figure 3-, we readily observed that the 

algorithm belong our proposed method is very 

stationary through 10000 iterations. In figure 

4- we see closed the posterior parameters 

estimate from the normal distribution: 

Figure 4. Histograms based on posterior distribution of the parameters for Simulation 2 at 

quantile level θ=0.95 
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5. Real dataset  

The "bayesQR" R package contains all the 

approaches being considered, and it is used for 

data on prostate cancer. There are 97 rows for 

observations and 8 columns for the different 

factors being studied. Logarithm of cancer 

amount (lcavol) is referred to as (x1), 

logarithm of the weight of the prostate 

(lweight) is referred to as (x2), age is referred 

to as (x3), logarithm of the volume of benign 

enlargement of the prostate (lbph) is referred 

to as (x4), seminal vesicle invasion (SVI) is 

referred to as (x5), and logarithm of Cap 

Similar to the simulation example , here  we 

compare three methods: Our proposed method 

(NBRQReg) ,rq  and MCMCpack . The our 

method and other two methods investigated 

based on standard division (SD) and (MSE) 

for five quantile levels  

θ=(θ=0.15,θ=0.35,θ=0.55,θ=0.75 and θ=0.95  . 

Table -3- show the mean square error (MSE) and standard division (SD) for the prostate 

cancer data 

 𝜃 = 0.15 𝜃 = 0.35 𝜃 = 0.55 𝜃 = 0.75 𝜃 = 0.95 

Methods MSE (SD) MSE (SD) MSE (SD) MSE (SD) MSE (SD) 

rq  0.893 (0.542) 0.838 (0.682) 0.676 (0.490) 0.689 (0.505) 0.584 (0.351) 

MCMCpack 0.763 (0.474) 0.742 (0.527) 0.563 (0.374) 0.539 (0.328) 0.427 (0.281) 

NBRQReg 0.433 (0.272) 0.472 (0.362) 0.339 (0.203) 0.313 (0.193) 0.273 (0.151) 

Note: In the parentheses are SD 

From results in Table 3, we see the MSE 

computed by our proposed method 

(NBRQReg) is much smaller than MSE 

computed by other two methods rq and 

MCMCpack. Also the SD computed by our 

proposed method (NBRQReg) is much smaller 

than MSE computed by other two methods rq 

and MCMCpack. Based on  these results, we 

can conclude that the  proposed method has a 

good performance compared with two other 

methods. The coefficients estimate for our 

proposed method via all quantile levels under 

considerations, listed in Table 4 

Table 4- Coefficients estimates for our method via five quantile level for the prostate cancer 

data   

Variables 𝜃 = 0.15 𝜃 = 0.35 𝜃 = 0.55 𝜃 = 0.75 𝜃 = 0.95 

lcavol 1.671 1.515 1.142 0.547 1.687 

lweight 0.851 0.837 0.773 0.067 0.000 

age 0.000 0.000 0.000 0.031 0.000 

lbph -1.023 -0.952 -0.741 0.000 -1.741 

SVI 0.863 0.819 0.397 -0.132 0.471 

lcp 0.918 0.764 0.191 0.655 0.023 
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gleason 1.034 0.000 0.000 0.000 0.000 

pgg45 0.981 0.297 1.281 0.009 0.085 

 

The results listed in Table 4 show coefficients 

estimated in direct way for the proposed 

method based on five quantiles as shown in 

the table above. In quantile level θ=0.15, the 

variables (age)  ineffective on lpsa , but the 

rest independent variables have positive and 

negative effects on lpsa . In quantile level 

θ=0.35 , the variable (age) and (gleason) 

ineffective on lpsa , but the rest independent 

variables have positive and negative effective 

on lpsa. . Also in quantile level θ=0.55 , the 

variable (age) and (gleason) ineffective on 

lpsa , but the rest independent variables have 

positive and negative effective on lpsa. In 

quantile level θ=0.75 , the variable (lbph) and 

(gleason) ineffective on lpsa , but the rest 

independent variables have positive and 

negative effective on lpsa. In quantile level 

θ=0.95 , the variable (lweight) (Age) and 

(gleason) are ineffective on lpsa , but the rest 

independent variables have positive and 

negative effective on lpsa. From the results 

listed in Table 4, we can see that the proposed 

method have get a  good performance for 

coefficients estimate and variable selection in 

quantile regression model. 

6. Conclusion: 

In this paper , we suggested a novel Bayesian 

estimation strategy that makes use of the lasso 

penalty for the purpose of estimating and 

choosing variables for use in the quantile 

regression model. We create a Bayesian 

hierarchical model to estimate the parameters 

based on a new scale of mixture representation 

of normal distribution combining Rayleigh 

density to the Laplace prior distribution of the 

parameters vector. This model is based on a 

new scale of mixture representation of normal 

distribution.  

Simulation examples and actual data are taken 

into account in order to evaluate the 

performance of the suggested approach that 

took into account the scale mixture of normal 

distribution mixing Rayleigh density and to 

evaluate the performance of this method in 

comparison to other methods that are already 

in use.  The results of the simulation and the 

actual data that are provided in the tables and 

figures that are located above have proved that 

the newly suggested approach is superior to 

the other ways that are now being used as 

competitors. 
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