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Abstract 

The purpose of this research is to simulate and validate a process of separation of the acetonitrile-water 

mixture by extractive distillation in DWSIM, which serves as a basis for the design of the artificial neural 

network (ANN) capable of predicting the mole fractions of acetonitrile, ethylene glycol and water. For the 

elaboration of the neural network, a database was generated from the simulation performed in DWSIM, 

and the database was composed of 100 pairs, with 4 inputs, feed flow temperature, acetonitrile mole 

fraction at feed, pre-concentration column pressure (C1) and ethylene glycol mole fraction. The artificial 

neural network was designed in MATLAB software using 9 hidden neurons and a Bayesian 

Regularization algorithm for training, with an MSE value of 3.0723e-05 and a total regression coefficient 

of 0.99996. The network was validated by developing a comparative statistical analysis, obtaining 95% 

reliability. The simulation allowed obtaining 0.9830 of acetonitrile in the distillate of column 2 (extraction 

column), in column 3 (recovery) 0.9016 of water in the distillate and 0.9737 of ethylene glycol in the 

bottom. In addition, it should be mentioned that there was no recirculation of the products from the 

bottom of column 3 to column 2. This proposal allowed obtaining results close to the reference research. 

It should be mentioned that the percentage of errors is less than 10%, giving efficient results in the 

investigation. It is recommended to normalize the input values to the ANN that are greater than 1. 



Journal of Survey in Fisheries Sciences              10(3S) 5501-5518 2023 

5502 
 

Keywords: <EXTRACTIVE DISTILLATION> <AZEOTROPE> <DWSIM> <ACETONITRYL> 

<ETHYLENGLICOL> <MATLAB> <ARTIFICIAL NEURON NETWORK> <NEURONS>.  

1. INTRODUCTION 

Azeotropic compounds have posed a problem 

for chemical industries in achieving their 

separation, as they are mixtures with close 

boiling temperatures in which the 

compositions of liquid and vapor are equal 

under an arranged pressure (1). Azeotropes are 

caused by a strong deviation from ideal 

mixture behavior (described by Raoult’s law) 

and pose great challenges for separation 

processes. Ideal or near-ideal mixtures can be 

clearly differentiated on the basis of their 

volatility, according to which separation in the 

VLE (Vapor - Liquid in Equilibrium) states 

can be efficiently achieved by simple 

distillation. However, this no longer applies to 

azeotropes where the volatilities of the 

components are equal. The design of an 

azeotrope separation process always starts 

with VLE data and a phase diagram, which 

can be obtained by experimentation, 

thermodynamic models and equations of state. 

The mixture of acetonitrile and water can be 

found in some chemical industries, like 

Mallinckrodt Chemicals, that is a mixture of 

azeotropes as a waste stream. This company 

purifies seventy peptide drugs with acetonitrile 

(2). However, with technological advances, it 

has been possible to perform several studies to 

achieve its separation. Some require the 

addition of a third component known as a 

solvent. This changes the boiling temperatures 

of a component, and with extractive 

distillation, the decomposition of the 

azeotrope is achieved (3). The cost of 

removing this residual solvent and purchasing 

fresh acetonitrile increases as the capacity of 

the process expands. However, laboratory 

experiments in extractive distillation are time-

consuming and expensive due to the many 

parameters involved. Therefore, it is 

convenient to predict experimental data with 

the help of available simulation programs (4). 

Extractive distillation could be used to 

separate azeotropic or near-boiling-point 

homogeneous mixtures. A low-volatile liquid 

is added to the mixture as a carrier to increase 

the volatility throughout the concentration 

region by decreasing a component’s partial 

pressure or volatility. The entraining agent has 

to meet many different properties. The boiling 

point of the trainer must be much higher than 

the boiling points of the other components, 

and it must be thermostable, inexpensive, and 

non-toxic, to mention only the main 

characteristics (5). If the mixture has a non-

ideal vapor-liquid equilibrium behavior, it can 

form an azeotrope, a mixture of chemical 

components with identical compositions of 

liquid and vapor phases in equilibrium (6). For 

overcoming this difficulty, some special 

distillation processes have been applied, such 

as pressure swing distillation (PSD), extractive 

distillation (ED), and azeotropic distillation 

(AD) (7). 

Neural network techniques are becoming more 

relevant due to the efficient performance and 

diversity of their applications in the chemical 

industry sectors, employing several resolution 

methods (8). 

As a result of good modeling capabilities, 

neural networks have been widely used for 

several chemical engineering applications, 

such as sensor data analysis, fault detection, 

and identification of nonlinear processes. 

However, there are very few reported works 

evaluating the ability of artificial neural 

networks (ANNs) to model processes, 

including extractive distillation (ED) (9). 
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Azeotrope separation is an important and 

challenging problem in the chemical process 

industry. Several methods can be used for this 

purpose, including pressure swing distillation 

(PSD), heterogeneous azeotropic distillation 

(HAD), and extractive distillation (ED) (10). 

A study of great interest for developing cell 

integration work is titled “A new model for 

predicting binary mixture of ionic liquids plus 

water density using artificial neural networks.” 

The most important part of this study is the 

application of Artificial Neural Networks 

whose main purpose is predicting density 

values in a binary mixture of water and ionic 

liquids at different temperatures for different 

imidazolium-based ionic liquids. Two 

intelligent models, the multilayer perceptron 

and radial basis function models, were 

developed (11). 

The development of predictive models in the 

properties of azeotropic mixtures places as a 

reference the following technological research 

topic “Prediction of thermodynamic properties 

of azeotropic mixtures of ANN.” In this study, 

the coefficients of activity and relative 

volatility were used to determine the 

azeotropic properties proposing two different 

modeling approaches, such as predicting 

azeotropic variables and correlating 

experimental data. The first modeling 

calculates the azeotropic position in ANN 

mixtures using numerical methods using 

experimental variables such as relative 

volatility and activity coefficient. Then, 

knowing the NRTL and Wilson parameters in 

each temperature range, the azeotropic 

composition of the ANN mixtures and their 

binary systems can be evaluated by solving the 

nonlinear equations with Newton’s method. If 

a root is between 0 and 1, this indicates the 

existence of the azeotrope in the mixture; 

otherwise, the mixture is azeotropic (12). 

Based on the work done by Zhao, its authors 

conclude that the ability to observe that each 

ANN mixture contains two azeotropic binary 

systems also makes the ANN mixture an 

azeotrope. 

Artificial neural networks mimic the human 

brain in processing input signals and transform 

them into output signals. It provides a 

powerful nonlinear modeling algorithm 

between feature variables and output signals. 

ANN is a kind of nonparametric modeling 

technique that is suitable for complex 

phenomena whose underlying functions are 

not known to researchers. In other words, 

ANN can learn from the data without 

assumptions of specific functions. (13).  

Artificial neural networks can be single or 

multi-layered and consist of processing units 

(nodes or neurons) interconnected by 

adjustable weights that allow signals to travel 

through the network consecutively. Generally, 

the ANN can be divided into three layers of 

neurons: input (receives information), hidden 

(responsible for extracting patterns and 

performing most of the internal processing) 

and output (produces and presents final 

network outputs). The transfer functions, 

learning algorithm and architecture determine 

the overall behavior of the artificial neural 

network (14). Artificial neural networks 

consist of highly interconnected layers of 

single nodes, where neurons act as nonlinear 

processing elements within the neural network 

(15). 

The accuracy of both models was examined 

using different graphical and statistical 

methods. The input parameters were 

temperature, water/ionic liquid ratio, 

molecular weight, critical temperature, critical 

pressure and boiling point temperature of ionic 

liquids, and the model output was density. 
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Molecular weight, critical temperature, critical 

pressure, and boiling point temperature were 

used to discriminate between ionic liquids 

(16). 

In another study for neural network 

construction, temperature, water ratio, 

molecular weight, boiling temperature, critical 

temperature and pressure of the ionic liquid 

were defined as input data, while the output 

parameter was the density of the ionic liquid. 

In this study, two commonly used smart ANN 

models, Multilayer Perceptron ANN (MLP-

ANN) and Radial Basis Function ANN (RBF-

ANN), were applied to predict the 

experimental density data based on input 

parameters. For determining the optimal 

performance of the ANN models, the data 

points were divided into three subsets called 

training, validation, and test data points. The 

train set, including 70% of the data points, was 

used to train and build the models. The 

validation data (15% of all data) was used to 

test the globalization and generalization 

capability of the ANN models during the 

training phase. The test data (15% of all data) 

were used to determine the quality of the ANN 

models for predicting the pattern of invisible 

data (17). 

2. Materials and methods  

2.1. Description of the process 

Figure 1 illustrates the extractive distillation 

process for separating acetonitrile-water from 

Cui and Sun. The process comprises three 

columns: 1) the Pre-concentration column, 2) 

the Acetonitrile extraction column, and 3) the 

Ethylene glycol recovery column. 

In the pre-concentration column, the bottom 

product has a molar flux of 99.43% water. In 

the extraction column, ethylene glycol is fed 

as a solvent to obtain as head product 

acetonitrile in greater quantity and the 

recovery column, water and ethylene glycol 

are obtained in the head and bottom products, 

respectively. 

For the analysis and simulation of the process, 

the feed basis is 500 Kmol/h with a molar 

composition of 80% water and 20% 

acetonitrile at a temperature of 50 °C. 

2.1.1. General information about the process 

Table 1 summarizes the composition of the 

process feed taken from Cui and Sun that 

enters the pre-concentration column. 

Following tables list the operating conditions 

of the pre-concentration, extraction and 

recovery column. 

Unlike the process used by Cui and Sun, no 

recirculation of the bottom product from the 

recovery column to the extraction column was 

used. In the extraction column, 116.72 Kmol/h 

of ethylene glycol was fed to obtain 

acetonitrile in the head product with a molar 

concentration of 98.39% and in the bottom 

products, a mixture of ethylene glycol, water 

and traces of acetonitrile. In the recovery 

column, water was obtained in the head 

product with a molar concentration of 90.16% 

and ethylene glycol was recovered in the 

bottom product. 
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Figure 1. Simulation of the distillation system for separating the acetonitrile-water in 

DWSIM. 

 

Table 1. Feeding conditions 

Parameter Quantity Unit 

Absolute pressure 1 atm 

Temperature 50 °C 

Molar feed flow 500 Kmol/h 

Initial molar 

composition of 

acetonitrile 

0,2 --- 

Initial molar 

composition of water 

0,8 --- 

   

Table 2. Operating conditions of the pre-

concentration column. 

Parameter Quantity Unit 

Absolute pressure 0,83 atm 

Number of total 

plates in the column 

16 -- 

Number of inlet feed 

plate 

11 -- 

Acetonitrile 

production 

(distillate) 

65,3 % 

Water production 

(distillate) 

34,7 % 

Distillate molar flux 152,97 Kmol/h 

Bottom molar flux 347,02 Kmol/h 

Thermal load on the 

condenser  

1577 kW 

Thermal load on the 

reboiler  

1963 kW 

Table 3. Operating conditions of the 

extraction column 

Parameter Quantity Unit 

Absolute pressure 0,38 atm 

Number of column 

plates 

42 -- 

Number of feed plate 31 -- 

Solvent inlet plate 

number. 

9 -- 

Solvent flow 116,72 Kmol/h 

Acetonitrile 

Production 

(distillate) 

99,99 % 
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Water production 

(distillate) 

0,01 % 

Ethylene glycol 

production 

(distillate) 

Traces % 

Distillate molar flux 99,97 Kmol/h 

Background molar 

flow 

169,72 Kmol/h 

Thermal load on the 

condenser  

1291 kW 

Thermal load on the 

reboiler 

1495 kW 

Table 4. Operating conditions of the 

recovery column 

Parameter Quantity Unit 

Absolute pressure 0,1 atm 

Number of column 

plates 

12 -- 

Number of feed plate 6 -- 

Water production 

(distillate) 

99,99 % 

Ethylene glycol 

production 

(background) 

99,99 % 

Distillate molar flux 53,01 Kmol/h 

Bottom molar flux 116,72 Kmol/h 

Thermal load on the 

condenser 

714 kW 

Thermal load on the 

rebolier 

798 kW 

2.2. Simulation in DWSIM 

DWSIM is an open-source CAPE-OPEN-

compliant chemical process simulator for 

Windows, Linux and macOS systems. 

DWSIM features a complete set of unit 

operations, advanced thermodynamic models, 

support for reaction systems, oil 

characterization tools and a full-featured 

graphical interface. 

The distillation columns used for the 

simulation in Figure 1 correspond to the 

“ChemSep Colum” model. In addition, a 

thermodynamic NRTL model was used based 

on the research conducted by Cui and Sun 

(18). The tables above show the operating 

conditions for the process simulation. 

ChemSep columns require the specification of 

two operating parameters and the pressure 

value. 

The mathematical method used by the 

simulator in this process corresponds to 

Newton’s method, and the number of 

iterations can be modified according to the 

system’s operation. 

2.3. Sensitivity analysis  

Table 5 shows 4 inputs for the Artificial 

Neural Network, which are considered 

significant in the process: Feed temperature, 

Fraction of acetonitrile, Pressure of the pre-

concentration column (Column 1) and the 

fraction of ethylene glycol. 

Table 5. Sensitivity analysis results. 

Tickets Exits 

Variable Range 
Acetonitrile 

Fraction 
Water Fraction 

Ethylene 

glycol 

fraction 
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Supply temperature (°C) 

40-60 
0,983043-

0,983018 

0,901602-

0,901606 

0,973719-

0,973718 

Water Fraction (Feed) 

0,7-0,9 1-0,902538 
0,754301-

0,911440 

0,986079-

0,963424 

Acetonitrile Fraction (Feed) 

0,1-0,3 0,57281-1 
0,947599-

0,631066 

0,921754-

0,994762 

Column 1 pressure (atm) 

0,1-1 
0,998885-

0,978195 

0,895595-

0,903170 

0,973716-

0,972718 

Ethylene glycol temperature 

(°C) 
50-80 

0,983280-

0,982713 

0,902030-

0,901062 

0,973719-

0,973719 

Ethylene glycol fraction  

0,7-0,99 
0,999980-

0,983030 

0,715818-

0,901604 

0,748254-

0,973719 

 

• Of the 6 variables analyzed, 4 were taken 

because they have the greatest significance in 

the acetonitrile separation process. 

• The ethylene glycol fraction was chosen 

because recirculation was eliminated, and the 

composition at the end of the process was not 

pure. 

2.4. Artificial Neural Network (ANN) design 

and training 

The ANN design (Figure 2) is based on four 

input parameters: pre-concentration column 

pressure, feed stream temperature, molar 

composition of acetonitrile in the feed stream 

and molar composition of the ethylene glycol 

solvent. With 3 output parameters 

corresponding to the molar concentrations of 

water, acetonitrile and ethylene glycol.  

 

The ANN design employs 9 hidden neurons; 

the present value was chosen by comparing 

the different numbers of neurons, as shown in 

Table 6. 

Table 6. Error values with different numbers of neurons 

Artificial neural network validation values 

  Levenberg-

Marquardt 

Bayesian 

Regularization 

Scaled Conjugate 

Gradient 

NUMBER OF 

NEURONS 

SAMP

LES 
MSE R MSE R MSE R 

5 Training 70 2,69e-5 9,99e-1 9,71e-6 9,99e-1 3,38e-3 9,85e-1 
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Validation 5 5,03e-5 9,99e-1 0,00e-0 0,00e-0 1,90e-3 9,91e-1 

Testing 25 4,47e-5 9,99e-1 7,75e-6 9,99e-1 3,47e-3 9,84e-1 

6 

Training 70 2,06e-5 9,99e-1 3,88e-6 9,99e-1 6,39e-4 9,97e-1 

Validation 5 2,98e-5 9,99e-1 0,00e-0 0,00e-0 8,02e-4 9,96e-1 

Testing 25 1,58e-5 9,99e-1 2,47e-5 9,99e-1 1,04e-3 9,95e-1 

7 

 

Training 70 1,22e-4 9,99e-1 8,24e-6 9,99e-1 3,61e-4 9,98e-1 

Validation 5 1,46e-4 9,99e-1 0,00e-0 0,00e-0 2,21e-4 9,99e-1 

Testing 25 4,97e-4 9,98e-1 5,38e-6 9,99e-1 5,27e-4 9,97e-1 

8 

Training 70 1,36e-4 9,99e-1 6,95e-6 9,99e-1 3,64e-4 9,98e-1 

Validation 5 2,78e-4 9,98e-1 0,00e-0 0,00e-0 4,49e-4 9,97e-1 

Testing 25 3,48e-4 9,98e-1 9,33e-6 9,99e-1 4,64e-4 9,98e-1 

9 

Training 70 4,81e-5 9,99e-1 6,91e-6 9,99e-1 1,77e-3 9,92e-1 

Validation 5 5,27e-5 9,99e-1 0,00e-0 0,00e-0 2,86e-3 9,85e-1 

Testing 25 1,61e-4 9,99e-1 6,28e-6 9,99e-1 2,16e-3 9,90e-1 

10 

Training 70 3,40e-5 9,99e-1 7,67e-7 9,99e-1 5,98e-3 9,74e-1 

Validation 5 2,88e-5 9,99e-1 0,00e-0 0,00e-0 5,58e-3 9,78e-1 

Testing 25 7,67e-5 9,99e-1 2,15e-5 9,99e-1 8,02e-3 9,64e-1 

15 

Training 70 2,02e-4 9,99e-1 1,97e-6 9,99e-1 2,87e-3 9,86e-1 

Validation 5 1,40e-3 9,92e-1 0,00e-0 0,00e-0 3,34e-3 9,90e-1 

Testing 25 6,02e-4 9,97e-1 3,22e-5 9,99e-1 8,06e-3 9,70e-1 

20 

Training 70 1,22e-4 9,99e-1 6,00e-7 9,99e-1 1,09e-2 9,50e-1 

Validation 5 5,33e-4 9,94e-1 0,00e-0 0,00e-0 8,49e-3 9,68e-1 

Testing 25 1,32e-3 9,95e-1 1,19e-4 9,99e-1 1,88e-2 9,19e-1 

25 

Training 70 1,82e-6 9,99e-1 1,44e-7 9,99e-1 7,11e-2 7,55e-1 

Validation 5 6,59e-4 9,97e-1 0,00e-0 0,00e-0 5,56e-2 7,99e-1 

Testing 25 1,07e-3 9,95e-1 1,59e-4 9,99e-1 1,01e-1 6,7911e-1 

30 

Training 70 4,71e-4 9,98e-1 4,66e-9 9,99e-1 5,98e-3 9,72e-1 

Validation 5 2,97e-3 9,87e-1 0,00e-0 0,00e-0 5,22e-3 9,82e-1 

Testing 25 3,31e-3 9,79e-1 1,80e-4 9,99e-1 2,01e-3 9,17e-1 

40 

Training 70 1,49e-5 9,99e-1 8,54e-13 9,99e-1 6,91e-4 9,96e-1 

Validation 5 2,08e-3 9,84e-1 0,00e-0 0,00e-0 7,78e-3 9,77e-1 

Testing 25 5,74e-3 9,74e-1 1,12e-4 9,99e-1 1,71e-2 9,35e-1 

50 

Training 70 2,12e-3 9,90e-1 4,24e-10 9,99e-1 3,55e-3 9,83e-1 

Validation 5 1,41e-2 9,26e-1 0,00e-0 0,00e-0 3,28e-2 8,81e-1 

Testing 25 1,21e-2 9,59e-1 2,59e-4 9,98e-1 4,60e-2 8,39e-1 

60 

Training 70 2,86e-4 9,98e-1 3,62e-10 9,99e-1 1,05e-2 9,55e-1 

Validation 5 2,60e-2 8,72e-1 0,00e-0 0,00e-0 3,96e-2 9,25e-1 

Testing 25 2,40e-2 8,85e-1 7,22e-5 9,99e-1 5,16e-2 7,87e-1 

70 

Training 70 3,68e-5 9,99e-1 1,30e-13 9,99e-1 5,79e-2 7,96e-1 

Validation 5 2,68e-2 9,21e-1 0,00e-0 0,00e-0 1,70e-1 5,17e-1 

Testing 25 2,97e-2 8,92e-1 2,03e-1 9,99e-1 2,53e-1 4,03e-1 

80 

Training 70 1,32e-4 9,99e-1 1,83e-12 9,99e-1 9,15e-4 9,96e-1 

Validation 5 5,26e-2 8,55e-1 0,00e-0 0,00e-0 9,55e-2 8,20e-1 

Testing 25 6,45e-2 7,69e-1 3,77e-4 9,98e-1 1,00e-1 7,26e-1 

90 

Training 70 1,08e-5 9,99e-1 4,72e-13 4,72e-13 6,75e-4 9,97e-1 

Validation 5 5,05e-2 8,89e-1 0,00e-0 0,00e-0 8,23e-2 8,85e-1 

Testing 25 8,66e-2 7,80e-1 8,03e-5 9,99e-1 1,37e-1 6,39e-1 

10

0 

Training 70 5,32e-4 9,97e-1 2,28e-12 9,99e-1 1,90e-2 9,24e-1 

Validation 5 5,47e-2 8,07e-1 0,00e-0 0,00e-0 1,46e-1 8,13e-1 

Testing 25 1,81e-1 6,68e-1 8,41e-4 9,97e-1 1,63e-1 6,14e-1 

The Bayesian Regularization model omits the 

validation of the values, and it should be 

emphasized that the mean square errors must 

be close to zero for the proposed artificial 

neural network to be effective. 
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The Bayesian Regularization training 

algorithm performs better than the Levenberg-

Marquardt algorithm in a predictive capacity. 

The study found that the network training 

execution time is longer than both algorithms 

(Levenberg-Marquardt and Scaled Conjugate 

Gradient); the greater the number of hidden 

neurons, the longer the training time. 

Once the simulation was validated in DWSIM, 

a database of 120 data sets (with 4 inputs and 

3 outputs) was generated from the variation of 

operating parameters. Table 7 shows the range 

of variation of the inputs.  

Table 7. Restrictions for ANN entries 

Restrictions 

Parameter Pressure Temperature Feeding 

fraction 

Solvent fraction 

Details Atm 

[in the pre-

concentration 

column] [in the 

pre-concentration 

column]. 

°C 

[Feed molar 

flow] [Feed 

molar flow] 

[Feed molar 

flow] [Feed 

molar flow] 

[Feed molar 

flow 

Adimensional 

[Molar 

composition of 

acetonitrile]. 

Adimensional 

[Molar 

composition of 

ethylene 

glycol]. 

Range 0,1-1 40-60 0,1-0,3 0,7-0,99 

From the total set of data generated, the first 

100 are selected for the design of the ANN in 

MATLAB, while 20 different pairs are used to 

perform additional validation through the 

corresponding statistical analysis to 

corroborate the performance of the ANN and 

evaluate its level of learning. 

2.5. Description of the methodology 

The first part of this study consists of 

simulating the process of Figure 1, considering 

the operating conditions of the distillation 

columns. The next step is to validate the 

results obtained and proceed with the neural 

network design considering the inputs and 

outputs determined for the process prediction 

and the restrictions imposed by the simulation. 

Subsequently, training and validation of the 

ANN are performed by means of a statistical 

graphical analysis to evaluate the predictive 

capacity of the neural network. Figure 3 

illustrates the flow diagram of the 

methodology. 
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Figure 2. Schematic of the designed ANN 

 

3. Results and Discussion 

3.1. Simulation validation 

Before the design of the ANN, it is essential to 

compare the simulation developed in DWSIM 

with results from the literature. The study 

developed by (18) was used for validation. 

The process in DWSIM was adapted 

according to the simulation developed in 

ASPEN PLUS. Table 8 details the comparison 

of the results. As can be seen, the percentage 

errors of the mole fractions of interest in their 

respective distillation columns do not exceed 

10%. 

Table 8. Simulation validation 

UNIT PARAMETER 
ASPEN PLUS 

[Cui and Sun., 2019] 
DWSIM ERROR (%) 

Pre-concentration 

(1) 

X -

backgroundH20 
0,999 0,994 0.56% 

XACN - distilled 0,653 0,642 1.57% 

Extraction (2)  XACN - distilled 0,999 0,983 1.69% 

INICIO

Establecimiento de los 
parámetros de 

funcionamiento 

Simulación en DWSIM

Validación de los resultados 

Procesamiento de datos

Diseño de la red neuronal 
artificial en MATLAB

Entrenamiento de datos

Validación de los resultados 
de la ANN

Análiss estadístico

FIN
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X -

backgroundEG 
0,687 0,666 3.02% 

Recovery (C3) 

X -distilledH2O 0,999 0,901 9.83% 

X -

backgroundEG 
0,999 0,973 2.62% 

Table 9. Simulation results in DWSIM 

 Pre-concentration Extraction Recovery  

Objects 
Distillate 

C1 

Fund 

C1 

Distillate 

C2 

Fund 

C2 

Distillate 

C3 

Fund 

C3 
Units 

Temperature 95,042 82,084 100,763 53,220 155,199 42,484 °C 

Pressure 0,851 0,851 0,385 0,385 0,385 0,101 Atm 

Mass flow 6305,15 5006,16 8419,35 3831,36 7301,35 1118 Kg/h 

Mole fraction 

of 

acetonitrile 

0,0056 0,6429 0,0310 0,9830 1,51E-05 0,0983 - 

Water mole 

fraction 
0,9943 0,3570 0,3019 0,0169 0,0262 0,9016 - 

Mole fraction 

of ethylene 

glycol 

- - 

0,6669 7,39E-21 0,9737 
2,59E-

12 
- 

3.2. Artificial Neural Network  

The ANN designed has 9 hidden neurons and 

was trained with a base of 100 data sets with 4 

inputs and 3 outputs using the Bayesian 

Regularization algorithm. The mean square 

error and Pearson’s correlation coefficient 

were used to validate the model. Table 10 

shows the mean squared error (MSE) values 

for the training phase and test phase of the 

ANN. The Bayesian Regularization algorithm 

is a robust model that eliminates the need for 

validation and leverages the data in training 

and learning the ANN. The MSE values for 

the training and validation phase are 1.08e-6 

and 3.07e-5, respectively. Figure 4 shows the 

evolution of the mean square error during the 

training phase, with a final MSE of 5.732e-6. 

 

 

Figure 3. ANN training performance 

 

As shown in Figure 5, there is a moderate 

dispersion between the output and targets of 

the neural network in the training phase and 

test phase. In addition, the R values for the 

training phase are 1 and 0.99, respectively. 
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Therefore, the overall R-value of 0.99 

indicates that the outputs and targets are 

effectively correlated. 

Table 10. Mean square error of each ANN 

design phase. 

PHASE MSE 

TrainPerformance (Training) 1,0834e-06 

TestPerformance (Test) 3,0723e-05 

ValPerformance (Validation) NaN 

Figure 4. Coefficients of the training 

regression and ANN test. 

 

3.2.1. Prediction model for acetonitrile, water 

and ethylene glycol 

Figures 6 and 7-8 compare the predictions and 

the values defined by the simulation in the 

extraction and recovery column. It can be seen 

that the comparisons obtained in the following 

cases are equal. The neural network prediction 

is efficient since there is a good correlation 

between input and output values. The 

developed model resembles the simulation 

data, proving that the neural network is 

efficient and adequate for predicting 

acetonitrile and water concentration. 

Based on the analysis of Figures 6-8, the 

average percentage error (%E) of the 

predictions is 0.02% (Ethylene glycol in the 

background) and 0.20% (Water in the 

distillate) in the recovery column; 0.09% 

(Acetonitrile in the distillate) in the extraction 

column. 
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Figure 5. Comparison of ANN and DWSIM results in the extraction column distillate 

(acetonitrile mole fraction). 

 

Figure 6. Comparison of ANN and DWSIM results in the recovery column distillate 

(ethylene glycol mole fraction). 
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Figure 7. Comparison of ANN and DWSIM results in the recovery column distillate (water 

mole fraction). 

 

3.2.2. ANN model verification  

The performance of the designed neural 

network during training and testing is 

necessary to evaluate the functionality with 

another set of data not known to the neural 

network and to test its predictive capability. 

For this, a set of 20 pairs of data (feed 

temperature, acetonitrile molar composition, 

ethylene glycol molar composition and 

pressure in the pre-concentration column) 

simulated in DWSIM was generated to collect 

new operating conditions. The ANN was 

designed to predict acetonitrile's molar 

composition in the extraction column; the 

molar composition of water and ethylene 

glycol in the recovery column was used to 

verify the prediction capability. 

The comparison between predicted values and 

actual values is shown in Figures 9-11. Again, 

the results show an overlap between these 

values, so it can be said that the designed 

ANN has a good predictive ability for 

predicting the molar compositions of 

acetonitrile, ethylene glycol and water. 
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Figure 8. Comparison between predicted and actual values of acetonitrile molar 

composition in the extraction column. 

Figure 9. Comparison between predicted and actual values of ethylene glycol molar 

composition in the recovery column. 
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Figure 10. Comparison between predicted and actual values of the molar composition of 

water in the recovery column. 

 

3.2.3. ANOVA analysis 

The basic operation of an ANOVA consists of 

calculating the mean of each group and then 

comparing the variance of these means 

(intervariance) versus the average variance 

within the groups (intravariance). Under the 

null hypothesis that the observations in the 

different groups all come from the same 

population (they have the same mean and 

variance) (19). 

The P-value for each output is determined to 

know whether or not the null hypothesis is 

discarded. If this value is less than 0.05, the 

null hypothesis is discarded; if it is more 

significant, it is accepted. 

Consequently, as can be seen in Table 11, all 

the P-values of the outputs are more 

significant than 0.05, so the null hypotheses 

are accepted, and it is concluded that there is 

no significant difference between the means of 

any variable with a confidence level of 95%. 

Table 11. ANOVA analysis 

Source Sum of Squares Gl Medium Square F-Ratio P-Value 

Molar fraction of acetonitrile in the distillate of the extraction column. 

Between 

groups 
5,0645E-04 1 5,0645E-04 0,02 0,9005 

Intra groups 1,21478 38 0,0319679     

Total (Corr.) 1,21529 39       

Molar fraction of ethylene glycol at the bottom of the recovery column 

Between 

groups 
5,0091E-04 1 5,0091E-04 0,07 0,7945 

Intra groups 0,276505 38 7,27646E-03     

Total (Corr.) 0,277006 39       
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Molar fraction of water in the recovery column distillate 

Between 

groups 
4,0704E-06 1 4,0704E-06 0 0,9934 

Intra groups 2,24216 38 5,90043E-02     

Total (Corr.) 2,24217 39       

 

The ANOVA table decomposes the variance 

of the data into two components: a between-

group component and a within-group 

component. The F-ratio for the mole fraction 

of acetonitrile in distillate in column 2 is 

0.0158423, for the mole fraction of ethylene 

glycol in the bottom of column 3 is 

0.0688398, and for the mole fraction of water 

in distillate in column three is 6.89855E-05, 

which is the ratio of the between-group 

estimate to the within-group estimate. Since 

the P-value of the F-ratio is greater than or 

equal to 0.05, there is no statistically 

significant difference between the means of 

the 2 variables at the 95.0% confidence level. 

4. Conclusions 

In the study, an ANN was designed to predict 

products in the separation process of 

acetonitrile-water azeotropes by extractive 

distillation, using a set of 120 data obtained by 

simulation in DWSIM. The inputs and outputs 

of the ANN were determined from a 

sensitivity analysis resulting in 4 inputs and 3 

outputs. 

The ANN was trained with the Bayesian 

Regularization algorithm and several hidden 

neurons of 9. The calculated MSE and R2  

were 1.0834e-06 and 0.99996, respectively. In 

addition, the ANN was validated by ANOVA 

analysis comparing the simulated and 

predicted values; there is no significance 

between the simulated and predicted values. 

Thus, the ANN created is accepted, and its use 

is recommended for acetonitrile-water 

azeotrope separation processes by extractive 

distillation. 
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