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Abstract 

The discharge-depth relationships in regular channels have been rarely investigated to make it more useful 

flow measuring devices. The authors, for the first time, have proposed a theoretical investigation on the flow 

in open rectangular channel and it is found that even in rectangular channel, it is possible to get a near linear 

depth-discharge relationship. In this paper, the flow parameters are determined through a new general 

optimization procedure presented. It is found that the near linear depth-discharge relationship is valid from 

YA(b) to YB(b), within a deviation of ±2 percent error, where b is the half base width of the channel. The 

proposed linear equation is given by 𝑞𝐿 = 𝑚 (𝑦 − 𝑄𝑐)𝐶√𝑆𝑏
3

2⁄ , where 𝑞𝐿is the discharge in the channel, y is 

the flow depth, C is Chezzy’s Constant and S is the channel bed slope. Chezzy’s C can also be substituted by 

Manning’s n by the simple equation 𝐶 =
1

𝑛
𝑅

1
6⁄ , where R the Hydraulic mean radius could be computed as 

𝑅 =
𝑎

𝑃
 , a being the cross-sectional area of flow and P the wetted perimeter. 

The significance of proposed research is that, the shift is from measurement of discharge through computations 

to direct reading of the discharge with a piezometer. 

 

1. INTRODUCTION 

Flow measurement is a field in engineering 

which, of late, has assumed extreme 

importance, due to the improved awareness 

about water management. In most of the cases, 

for a predetermined discharge, the channel 

dimensions are designed.  

Least investigative work is done on the reverse 

process of determining discharge from the 

known channel dimensions. The discharge 

measurement is a much unpredictable task 

which depends on multiple factors. The major 

factor hindering the measurement is being the 

induced loss of head. Generally, the measuring 

flumes are designed by introducing a head loss 

between two sections. The cross-section of a 

channel may be closed or open at the top. The 

channels that have an open top are referred to 

as open channels while those with a closed top 

are referred to as closed conduits [9]. 

 

The term natural channel denotes to all 

channels which have been developed by 

natural processes (also referred to as 

drainages) and have not been significantly 

improved by humans. Free surface at 

atmospheric pressure is an important 

characteristic of flow in open channel [1, 3, 4, 

12]. 

 

Discharge Measurement in open channels is 

the main concerns in irrigation, environmental 

and hydraulic engineering field. Flow 

measuring structures, which are typically used 

to operate as a control in the channel, provide 

a special link between the flow discharge and 

up-stream head [1, 6, 10, 11]. 

 

In this paper, a theoretical investigation on the 

flow in open rectangular channel has been 

done; it is found that even in rectangular 

channel it is possible to get a near linear depth-

discharge relationship. The major thrust in the 

paper is that, the shift is from measurement to 

direct reading of the discharge. Something 

similar to reading the head value we can read 

mailto:vp.vviet@gmail.com
mailto:vp.vviet@gmail.com


Mathematical Modeling For Fluid Flow In Open Rectangular Channel 
 

3070 

the discharge value (similar to rotameters in 

closed conduits). 

 

2. LITERATURE SURVEY 

For the purpose of Optimization technique, it 

is attempted to look into certain available 

research work on the above technique. It was 

Allen P. Cowgill (1944) [2] who attempted on 

this technique to build a relationship between 

the weir profile and the head-discharge 

relationship. Later Keshava Murthy and 

Shesha Prakash (1995) [7,8] improved and 

found new faster and better methods to get the 

linear, quadratic, logarithmic, exponential and 

any given power, thereby mastering the 

technique of optimization. They developed a 

new numerical and algebraic optimization 

procedures to obtain the flow and weir 

parameters. 

 

3. FORMULATION OF THE PROBLEM 

Cowgill and Banks (Cowgill, 1944) [2] 

proposed the relationship between the weir 

profile and the discharge-head relationship as 

given in Figs. 1 and 2 where the equations used 

are as below: 

𝑦 = 𝑓(𝑥) (Weir geometry) 

𝑄 = 𝐵 ∗ ℎ𝑚 (Flow relationship) 

Q being the discharge, B a proportionality 

constant and h head above the weir crest. 

 
Fig 3: Definition Sketch 

 

In the proposed research, the weir is 

considered to be kept at zero crest height and 

extending to the entire geometry of the 

channel. With this assumption, the theory of 

sharp-crested weirs can be extended to the 

channel. 

 

Assuming that the area of flow in the shaded 

portion A1 is the additional flow area being 

substituted by the flow area that is represented 

by the shaded portions A2. This assumption is 

similar to Stouts and Sutro weirs [13, 15, 16] 

wherein the infinite crest width was 

substituted with the rectangular weir to match 

the flows between the two weirs. 

 

For the first time, it was found that even in 

rectangular flume it is possible to get a near 

linear depth-discharge relationship. The flume 

can be considered to be similar to that of a 

compound proportional weir wherein the flow 

with desired head-discharge relationship is 

valid only in the complementary weir portion 

and in case of base weir flow the regular 

discharge equation is to valid. Extending the 

same argument for flumes, beyond a small 

portion of depth of flow from the bed of the 

channel the near linear depth-discharge 

equation will be valid. The initial depth where 

the proposed equation being not valid is 

threshold depth. For flow in that portion of the 

threshold depth, normal rectangular flume 

depth-discharge equation is valid. An 

algebraic optimization procedure on the lines 

of that developed by Shesha Prakash is derived 

and the same is proposed in the present 

research work. 

 

 
Fig 4: Definition Sketch of Rectangular Flume 

Consider the flow through the rectangular 

channel. 

cross − sectional area of flow =  𝑎 = 𝑏 × 𝑦 

wetted perimeter =  𝑝 = 𝑏 + 2𝑦 

 

y 

b 
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Hydraulic mean radius =  𝑅 =
𝑎

𝑝

=
𝑏𝑦

(𝑏 + 2𝑦)
 

From Chezy′sequation, Discharge =  𝑞 =

𝑎𝐶√𝑅𝑆   

𝑞 = 𝐶√𝑆
𝑎

3

2

𝑝
1

2

= 𝐶√𝑆
(𝑏𝑦)

3

2

(𝑏 + 2𝑦)
1

2

 

𝑞 = 𝐶√𝑆
𝑏

3

2 (𝑏
𝑦

𝑏
)

3

2

𝑏
1

2 (1 + 2
𝑦

𝑏
)

1

2

= 𝐶√𝑆
𝑏3 (

𝑦

𝑏
)

3

2

𝑏
1

2 (1 + 2
𝑦

𝑏
)

1

2

 

Non − dimensionalising with 𝑌 = (
𝑦

𝑏
) ; 

 𝑞 = 𝐶√𝑆
𝑏

5

2𝑌
3

2

√1 + 2𝑌
;  

𝑄 =
𝑞

𝐶√𝑆𝑏
5

2

=
𝑌

3

2

√(1 + 2𝑌)
 

 

4. OPTIMIZATION PROCEDURE 

 
Fig 5: Optimization Procedure 

 

To obtain a maximum straight-line between 

two bound curves for an ever increasing 

function between two parameters. 

Let 

𝑸𝑳 = 𝒎𝒀 + 𝑸𝒄 … (4.01) 

 

Be the proposed optimal linear head-discharge 

relationship (where, m is the constant of 

proportionality and Qc is the discharge 

intercept) to substitute the theoretical head-

discharge relationship. 

𝑸 = 𝒇(𝒀) …. (4.02) 

 

In a certain range. Letting 𝐾𝑢 = (1 +
𝐸

100 
) and 

 𝐾𝑑 = (1 −
𝐸

100 
) where E is the prefixed 

maximum permissible relative deviation of the 

proposed linear function and the theoretical 

head-discharge function. These defined two 

explicit curves  𝑓1(𝑌) and 𝑓2(𝑌) forming the 

lower and upper bounds for the linear function 

as shown in figure 5. 

 

𝒇𝟏(𝒀) = 𝑲𝒖𝒇(𝒀)… (4.03) 

𝒇𝟐(𝒀) = 𝑲𝒅𝒇(𝒀) … (4.04) 

 

Following from 4.04, the solution can be 

obtained using the algorithm below. 

• Obtain the point of inflection on the curve 

for the discharge head 

• Run linear regression between the two 

curves at positive and negative errors 

• Obtain a common tangent to the straight-

line section of the curves 

• The limits of the tangent segment will be 

the linear operation region for the weir 

 

Step 1: Find the point of inflection of the curve 

𝑄 = 𝑓(𝑌) given by Eq.(4.02)  

i.e 𝑸" = 𝒇"(𝒀) = 𝟎 

This procedure is valid only when there is one 

point of inflection and the function is 

continuously increasing in 0 ≤ H ≤ ∞ which is 

always true for any discharge-head function. 

No real roots existing, hence no point of 

inflection. This means H is a continuously 

increasing curve. 

 

Step 2: Now the objective is to find the 

maximum straight-line relationship within the 

error bound curves, Eqs. (4.03) and (4.04). 

 

The flow parameters for flow through 

rectangular flume such as starting point (A) of 

the near linear flow equation (can be the 

threshold depth, below which the proposed 

equation is not valid), Ending point (B), 

beyond which the proposed equation is invalid 

and the linear flow equation itself in the form 

of Eq. (4.01) (for which m and Qc are to be 

evaluated). 

Following are the two considerations for an 

existing rectangular channel: 

1. Pre-fix the threshold depth, only beyond 

which the flow equation will be valid. It can 

be fixed in terms of percentage of total non-

dimensional depth with which the starting 

point A will be known and be can be 

computed. 

C A 

T 

B 

L

f1(Y)

) 

f(Y) 

f2(Y)) 

QL = mY+QC 
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2. With the existing channel height being 

known point B could be pre fixed from 

which point A can be computed. 

3. The range in which the linear flow equation 

is valid will be between A and B 

 

This straight line to be maximum, it is 

proposed to be tangential to upper bound curve 

f1(Y) at point T. Let us assume that with a 

slight variation of ‘m’ we get a straight line 

longer than the one given by given by 

Eq.(4.01). 

 

𝑸𝑳 = (𝒎 ± 𝜟𝒎)𝒀 + 𝑸𝒄 … (4.05) 

 

But (𝑚 + 𝛥𝑚) shifts the line beyond the 

boundary 𝑓1(𝑌) at 𝑇 and (𝑚 − 𝛥𝑚) for 𝑓2(𝑌) 

the end point will be shortened because the 

straight line intersects the bottom curve earlier 

due to the reduction in slope. Hence, the value 

of m is the optimum which yields the straight 

line of maximum length. 

Now let us consider a small variation in “Qc” 

as (𝑄𝑐 ± 𝛥𝑄𝑐) with which we get a longer 

straight line than the one given by Eq. (1.01). 

 

i.e 𝑸𝑳 = 𝒎𝒀 + (𝑸𝒄 ± 𝜟𝑸𝒄) ….(4.06) 

 

But (𝑄𝑐 + 𝛥𝑄𝑐) shifts the line beyond the 

boundary 𝑓1(𝑌) at T and (𝑄𝑐 − 𝛥𝑄𝑐) for 𝑓2(𝑌) 

at 𝐵. Hence the value of 𝑄𝑐 is the optimum 

value along with m which yields the straight 

line of maximum length. Thus Eq. (4.01), 

gives us the straight line of maximum length 

hence the maximum linearity range. 

To obtain the flow parameters for the present 

model, 

 

Step 3: The non-dimensional flow equation 

through the rectangular channel is given by 

𝑸 =
𝒀𝟑/𝟐

√𝟐𝒀+𝟏
 … (4.07) 

Differentiating, w.r.t. Y 

𝑸′ =
𝒅𝑸

𝒅𝒚
=

√𝒀(𝟒𝒀+𝟑)

𝟐(𝟐𝒀+𝟏)𝟑/𝟐 … (4.08) 

𝐸 =
𝑒

100 
=  the maximum permissible and prefixed  

percentage error 

 

At ‘A’ starting point 

Point A can be found as explained in the 

previous steps. 

(𝑸𝑳)𝑨 = 𝒎𝒀𝑨 + 𝑸𝒄 … (4.09a) 

(𝑸𝑫)𝑨 = (𝟏 − 𝑬)
𝒀𝑨

𝟑/𝟐

√𝟐𝒀𝑨+𝟏
 … (4.10a) 

(𝑸𝑳)𝑨 =  (𝑸𝑫)𝑨 𝒐𝒓 𝒎𝒀𝑨 + 𝑸𝒄 =  (𝟏 −

𝑬)
𝒀𝑨

𝟑/𝟐

√𝟐𝒀𝑨+𝟏
 (4.11a) 

 

At ‘B’ starting point 

Point B can be found as explained in the 

previous steps. 

(𝑸𝑳)𝑩 = 𝒎𝒀𝑩 + 𝑸𝒄 …(4.09b) 

(𝑸𝑫)𝑩 = (𝟏 − 𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩+𝟏
 ….(4.10b) 

(𝑸𝑳)𝑩 =  (𝑸𝑫)𝑩 𝒐𝒓 𝒎𝒀𝑩 + 𝑸𝒄 =  (𝟏 −

𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩+𝟏
 (4.11b) 

 

At ‘T’ Tangent to upper curve 

(𝑸𝑳)𝑻 =  𝒎𝒀𝑻 + 𝑸𝒄 …(4.12) 

(𝑸𝑼)𝑻 =  (𝟏 + 𝑬)
𝒀𝑻

𝟑/𝟐

√𝟐𝒀𝑻+𝟏
 … (4.13) 

 

Differentiating, Eqs. (4.12) and (4.13) w.r.t. Y 

and from Eq. (4.08) 

(
𝒅𝑸𝑳

𝒅𝒀
)

𝑻
=   𝒎 = (𝟏 + 𝑬)

√𝒀𝑻(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)𝟑/𝟐 … (4.14) 

 

Substituting for ‘m’ in Eqs. (4.12) and (4.13) 

(𝟏 + 𝑬)
𝒀𝑻

𝟑/𝟐
(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)𝟑/𝟐 + 𝑸𝒄 = (𝟏 + 𝑬)
𝒀𝑻

𝟑/𝟐

√𝟐𝒀𝑻+𝟏
 

..(4.15) 

 

Stage 1 (By knowing YA) 

Substituting for ‘m’ in Eq. 4.11a 

(1 + 𝐸)
√𝑌𝑇(4𝑌𝑇 + 3)

2(2𝑌𝑇 + 1)3/2
𝑌𝐴 + 𝑄𝑐 = (1 − 𝐸)

𝑌𝐴
3/2

√2𝑌𝐴 + 1
 

𝑸𝒄 = (𝟏 − 𝑬)
𝒀𝑨

𝟑/𝟐

√𝟐𝒀𝑨+𝟏
− (𝟏 +

𝑬)
√𝒀𝑻(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)𝟑/𝟐 𝒀𝑨 (4.16a) 

Substituting for 𝑄𝑐, from Eq. (4.16a) into 

(4.15) we get,  

(𝟏 + 𝑬)
𝒀𝑻

𝟑
𝟐(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)
𝟑
𝟐

+ (𝟏 − 𝑬)
𝒀𝑨

𝟑
𝟐

√𝟐𝒀𝑨+𝟏
− (𝟏 +

𝑬)
√𝒀𝑻(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)
𝟑
𝟐

𝒀𝑨 − (𝟏 + 𝑬)
𝒀𝑻

𝟑
𝟐

√𝟐𝒀𝑻+𝟏
 =0 (4.17a) 

 

Stage 2 (By knowing YB) 

Substituting for ‘m’ in Eq. 4.11b 

(𝟏 + 𝑬)
√𝒀𝑻(𝟒𝒀𝑻 + 𝟑)

𝟐(𝟐𝒀𝑻 + 𝟏)𝟑/𝟐
𝒀𝑩 + 𝑸𝒄

= (𝟏 − 𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩 + 𝟏
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𝑸𝒄 = (𝟏 − 𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩+𝟏
− (𝟏 + 𝑬)

√𝒀𝑻(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)𝟑/𝟐 𝒀𝑩 

(4.16b) 

Substituting for 𝑄𝑐, from Eq. (4.16b) into 

(4.15) we get,  

(𝟏 + 𝑬)
𝒀𝑻

𝟑
𝟐(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)
𝟑
𝟐

+ (𝟏 − 𝑬)
𝒀𝑨

𝟑
𝟐

√𝟐𝒀𝑨+𝟏
−

(𝟏 + 𝑬)
√𝒀𝑻(𝟒𝒀𝑻+𝟑)

𝟐(𝟐𝒀𝑻+𝟏)
𝟑
𝟐

𝒀𝑨 − (𝟏 + 𝑬)
𝒀𝑻

𝟑
𝟐

√𝟐𝒀𝑻+𝟏
 =0 

(4.17b) 

Solving for YT from Eqs. (4.17a and 4.17b) and 

substituting in Eqs. (4.14) and (4.16), we can 

evaluate m and Qc to get the linear depth-

discharge equation for flow in rectangular 

channel. This equation is valid for flow depths 

YA to YB. 
(𝑸𝑳)𝑩 =  (𝑸𝑫)𝑩𝒐𝒓 𝒎𝒀𝑩 + 𝑸𝒄 =  (𝟏 −

𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩+𝟏
 (4.18) and 

(𝑸𝑳)𝑨 =  (𝑸𝑫)𝑨𝒐𝒓 𝒎𝒀𝑨 + 𝑸𝒄 =  (𝟏 −

𝑬)
𝒀𝑩

𝟑/𝟐

√𝟐𝒀𝑩+𝟏
 (4.19) 

𝑸𝑳 = 𝒎𝒀 + 𝑸𝒄 …...YA≤ Y ≤ YB..... (4.20) 

 

The above is the developed theorem to obtain 

the linear relationship, figure 6 depicts the plot 

showing values from known A to B, figure 7 

depicts the plot showing values from known B 

to A. 

 

 

4.1 Validation through Graphical Method 

 
Fig 6: Plot showing values from known A to B 

 

 
Fig 7: Plot showing values from known B to A 

4.2 Analysis 

The below 2 tables will provide the flow 

parameters based on the two conditions, viz. 

known threshold depth (A) and known channel 

depth (B) 

 

Table 1: Flow parameters for known threshold 

depth (YA) 
YA YB m Qc 

0.1 0.281129 0.48797 -0.02051 

0.2 0.596683 0.579696 -0.04186 

0.3 1.372236 0.640304 -0.06479 

0.4 3.063444 0.669643 -0.08307 

0.5 13.45666 0.68779 -0.0989 

0.6 Infinity 0.698877 -0.11225 

0.7 Infinity 0.706657 -0.12418 

0.8 Infinity 0.711934 -0.13466 

0.9 Infinity 0.71541 -0.14382 

1 Infinity 0.718002 -0.1522 
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Table 2: Flow parameters for known End point 

(Height of the channel or known flow-depth 

(YB)) 
YA YB m Qc 

2 0.344804 0.656933 -0.07425 

1.9 0.346529 0.655276 -0.07354 

1.8 0.333 0.653172 -0.07225 

1.7 0.331385 0.65084 -0.07087 

1.6 0.324363 0.648226 -0.06937 

1.5 0.316533 0.645276 -0.06773 

1.4 0.3 0.641925 -0.06592 

1.3 0.3 0.638085 -0.06393 

1.2 0.297 0.633645 -0.06173 

1.1 0.272751 0.628453 -0.05927 

 

Where QL= mY + Qc……… (YA ≤ Y ≤ YB) 

 

5. CONCLUSION 

The Flow measurement has taken an all-

important and significant stage in the present 

day of severe water shortage. Measurement of 

flow with least interference is the best suited 

device for minimizing head losses. Sharp and 

Broad crested weirs, which are the most popular 

and accurate flow measuring structures have a 

coefficient of discharge of about 0.6 which 

accounts for about 40% head loss relative to the 

theoretical discharge. Further the accuracy of 

measurement and computations are also under 

scanner and questionable. The accuracy of flow 

measurement through Venturi flume and 

Standing wave flume are depending on the 

accuracy of fabrication as per the design. Hence, 

the proposed linear discharge-depth relationship 

in rectangular channel, with its geometrically 

simple device, with least flow interference and 

near accurate measurement can be best 

alternative. In addition, no computations are 

required for measurement of discharges as it can 

be directly read on a scale which prompts even 

illiterate farmers to install such devices. 

The simple linear discharge-depth equation that 

is proposed deviates less than 2% with the 

theoretical discharge. In addition, the threshold 

depth, beyond which the proposed linear depth-

discharge relationship is valid can be suitably 

designed as per the requirements. The linear 

relationship can be valid for either known or 

prefixed threshold depth or by knowing the 

height of the channel, the threshold depth can be 

fixed. 

Further, the near linear depth-discharge 

relationship is valid from YA(b) to YB(b), within 

a deviation of ±2 percent error, where b is the 

half base width of the channel. The proposed 

linear equation is given by 𝑞𝐿 = 𝑚 (𝑦 −

𝑄𝑐)𝐶√𝑆𝑏
3

2⁄ , where 𝑞𝐿is the discharge in the 

channel, y is the flow depth, C is Chezzy’s 

Constant and S is the channel bed slope. 

Chezzy’s C can also be substituted by 

Manning’s n by the simple equation 𝐶 =
1

𝑛
𝑅

1
6⁄ , 

where R the Hydraulic mean radius could be 

computed as 𝑅 =
𝑎

𝑃
.  

a being the cross-sectional area of flow and P 

the wetted perimeter. 

Further, as the discharge is linearly varying with 

the depth of flow, the discharges for various 

depths could be computed and the converted 

values of discharge printed on a linear scale 

could be printed on the piezometer attached in 

required units as litres per second or minute. The 

least count of the measurement decreases, 

increasing the sensitivity. The proposed 

measurement through the existing rectangular 

channels will be highly useful in practice in 

Irrigation, chemical and Hydraulic engineering, 

by providing least interference in flow. The 

experimental verification and the design 

characteristics will be done as future scope of 

the present research work. 
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