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Abstract 

We introduce a *-module extension Banach algebras to generalized the results of Essaleh and Peralta. 

Precisely, let g,t and h are bounded homomorphism maps on an unital *-module extension Banach 

algebra, if a bounded linear map D on an unital *-module extension Banach algebra is (g,t,h)-ternary 

derivation at the unit element, then the next statements are hold:  

1) D is (g,h)-generalized derivation; 

2) D is *-(g,h)-derivation and (g,t,h)-triple (ternary) derivation, whenever D(1,0)=(0,0);  

3) D is (g,t,h)-ternary derivation. 

In addition, we prove that a bounded linear map on *-module extension Banach algebra which is (g,h)-

derivation or (g,t,h)-ternary derivation at the zero element is (g,h)-generalized derivation.  

Keywords: *-module extension Banach algebras, (g,h)-derivations, triple (ternary) derivations, (g,h)-

generalized derivation, derivable mapping at a point. 

1. Introduction 

    One of the studied types of operators that 

received the greatest attention is derivations 

on Banach algebras.  Modern studies are 

attentive to the problem to find weaker 

conditions for the description of these maps. 

Derivation at a certain point considers one of 

the studies of the fruitful maps. Let 𝐴  be a 

Banach algebra, and let 𝑋  be a Banach 𝐴 -

bimodule. The 𝑙1 - direct sum of a Banach 

algebra 𝐴 and a nonzero Banach 𝐴-bimodule 

𝑋, is the module extension with the algebraic 

operations which are defined as 

follows:  (ᶊ, ᶇ) + (ᶉ, ᶆ) =  (ᶊ + ᶉ, ᶇ + ᶆ),

ᶉ(ᶊ, ᶇ) = (ᶉ ᶊ, ᶉ ᶇ), (ᶊ, ᶇ)ᶉ =

(ᶊ ᶉ, ᶇ ᶉ), (ᶊ, ᶇ )(ᶉ, ᶆ) =  (ᶊ ᶉ, ᶊ ᶆ + ᶇ ᶉ),  for 

all  ᶊ, ᶉ ∈ 𝐴, ᶇ, ᶆ ∈ 𝑋.  And it is obvious that 

𝐴⊕𝑋 is a Banach algebra with the following 

norm; ∥ (ᶊ, ᶇ) ∥= ∥ ᶊ ∥ + ∥ ᶇ ∥, for all ᶊ ∈ 𝐴,

ᶇ ∈ 𝑋.  There are many researchers who 

studied this type of Banach algebras from 

different sides; see for example [19, 26]. A ∗ - 

module extension Banach algebra is a module 

extension Banach algebra 𝐴 ⊕ 𝑋  with an 

involution mapping ∗ : 𝐴 ⊕ 𝑋 →  𝐴 ⊕ 𝑋 , 

denoted by ∗-𝐴⊕𝑋, such that the mapping ∗ 
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satisfying the properties:  ((ᶊ, ᶇ) + (ᶉ, ᶆ))
∗

=

(ᶊ, ᶇ)∗ + (ᶉ, ᶆ)∗, (1,0)∗ =

(1,0),  ((ᶊ, ᶇ) (ᶉ, ᶆ))
∗

=

 (ᶉ, ᶆ)∗(ᶊ, ᶇ)∗, ((ᶊ, ᶇ)∗)∗  = (ᶊ, ᶇ),  for all  

(ᶊ, ᶇ), (ᶉ, ᶆ)  in  ∗-𝐴⊕𝑋, and (1,0) is the unit 

element of  ∗-𝐴⊕𝑋. Let 𝑈  be a (∗-𝐴⊕𝑋)-

bimodule. A linear map 𝐷  : ∗-𝐴⊕𝑋 → 𝑈  is 

called a (𝑔, ℎ)-derivation at a point (ç, ᶎ) in ∗-

𝐴 ⊕ 𝑋  (is also say that derivable at  (ç, ᶎ) ) 

where 𝑔, ℎ: ∗-𝐴⊕𝑋 → 𝑈  are linear maps, if 

the identity: 𝐷((ᶊ, ᶇ)(ᶉ, ᶆ)) =

𝐷(ᶊ, ᶇ) ℎ(ᶉ, ᶆ) + 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) , holds for 

all (ᶊ, ᶇ),  (ᶉ, ᶆ)  in ∗ - 𝐴 ⊕ 𝑋  such that 

(ᶊ, ᶇ) (ᶉ, ᶆ) = (ç, ᶎ) [21]. There exists a linear 

map is (𝑔, ℎ)-derivation at a certain point, but 

not necessary to be (𝑔, ℎ) -derivation. 

Following to ([2], [17] and [21]), we will say 

that a linear map 𝐷 ∶ ∗-𝐴⊕𝑋 → 𝑈 is said to be 

a (𝑔, ℎ)-generalized derivation, where 𝑔, ℎ ∶ ∗-

𝐴⊕𝑋 → 𝑈 are linear maps, if there exists 𝜁 in 

𝑈∗∗  satisfying: 𝐷((ᶊ, ᶇ)(ᶉ, ᶆ)) =

𝐷(ᶊ, ᶇ) ℎ(ᶉ, ᶆ)  +

 𝑔(ᶊ, ᶇ)  𝐷(ᶉ, ᶆ) –  𝑔(ᶊ, ᶇ)  𝐷(𝜁)  ℎ(ᶉ, ᶆ) , for 

all (ᶊ, ᶇ), (ᶉ, ᶆ) in ∗-𝐴⊕𝑋. It is well known 

that each (𝑔, ℎ) -derivation is a (𝑔, ℎ) -

generalized derivation, but the converse is not 

true. This idea is more helpful whenever 

describing (generalized) derivations of the 

annihilation of specific products of 

perpendicular elements [3, Theorem 2.11]. A ∗

 - module extension Banach algebra ∗-𝐴⊕𝑋 is 

a JB*-ternary with respect to the ternary 

product defined by: {(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)}  =

  
1

2
 ((ᶊ, ᶇ) (ᶉ, ᶆ)∗ (ç, ᶎ) +

 (ç, ᶎ) (ᶉ, ᶆ)∗ (ᶊ, ᶇ)) . This is the normal 

ternary product that appears in ([4], [9], [10], 

[11], [20] and [25]). A linear map 𝐷: ∗-𝐴 ⊕

𝑋 →  𝑈  is called (𝑔, 𝑡, ℎ) -ternary derivation 

where 𝑔, 𝑡, ℎ:∗-𝐴⊕𝑋 → 𝑈 are linear maps, if 

the identity: 𝐷 {(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)} =

 {𝐷(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), ℎ (ç, ᶎ)}  +

 {𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ(ç, ᶎ)} +

{𝑔(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), 𝐷 (ç, ᶎ)} , holds for every 

(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)  in ∗ - 𝐴 ⊕ 𝑋  [6]. 

According to [7], suppose ∗-𝐴 ⊕ 𝑋   and ∗-

𝐵 ⊕ 𝑈  are ∗ - module extension Banach 

algebras, and let 𝐷 ∶  ∗-𝐴 ⊕ 𝑋 → ∗-𝐵⊕𝑈 be a 

linear map. Assume that a linear map  𝐷# ∶ ∗-

𝐴 ⊕ 𝑋 →  ∗ - 𝐵 ⊕ 𝑈   defined by  𝐷#(ᶊ, ᶇ) =

𝐷((ᶊ, ᶇ)∗)∗, for all (ᶊ, ᶇ) in ∗-𝐴 ⊕ 𝑋. We say 

that  𝐷  is a symmetric when 𝐷# = 𝐷 . A ∗-

(𝑔, ℎ) -derivation 𝐷  on ∗ - 𝐴 ⊕ 𝑋  is  (𝑔, ℎ) -

derivation on ∗-𝐴 ⊕ 𝑋 and a symmetric map 

(i.e., 𝐷((ᶊ, ᶇ))
∗

=  𝐷((ᶊ, ᶇ)∗), for all (ᶊ, ᶇ) in 

∗-𝐴 ⊕ 𝑋 ). Examples of (𝑔, ℎ)-derivations on 

a ∗-𝐴 ⊕ 𝑋 , we will consider 𝑔, 𝑡, ℎ ∶ ∗-𝐴 ⊕

𝑋 → ∗-𝐴 ⊕ 𝑋  are homomorphism maps and 

we can fix (ᶊ, ᶇ) in ∗ - 𝐴 ⊕ 𝑋  and define a 

linear map 𝐷(ᶊ,ᶇ) : ∗ - 𝐴 ⊕ 𝑋 → ∗ - 𝐴 ⊕ 𝑋  by 

𝐷(ᶊ,ᶇ)(ᶉ, ᶆ) = [(ᶊ, ᶇ), (ᶉ, ᶆ)] =

(ᶊ, ᶇ) 𝑡(ᶉ, ᶆ) − 𝑔(ᶉ, ᶆ) (ᶊ, ᶇ). The fact that all 

∗ - (𝑔, ℎ) -derivation on ∗ - 𝐴 ⊕ 𝑋  is  (𝑔, 𝑡, ℎ) -

ternary derivation as described above. 

Furthermore, there exist (𝑔, ℎ)- derivations on 

∗ - 𝐴 ⊕ 𝑋  that are not  (𝑔, 𝑡, ℎ) -ternary 

derivations see ([12, Proof of Lemma 1] and 

[5, Comments after Lemma 3). According to 

[6], let 𝐷, 𝑔, 𝑡 and ℎ ∶∗-𝐴 ⊕ 𝑋 →∗-𝐴 ⊕ 𝑋  be 

linear maps, and let (𝑎1, 𝑎2) be an element in 

∗ - 𝐴 ⊕ 𝑋 . We will say that 𝐷  is (𝑔, 𝑡, ℎ) - 

ternary derivation at (𝑎1, 𝑎2)  if (𝑎1, 𝑎2) =

{(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)}  in ∗-𝐴 ⊕ 𝑋  implies that 

𝐷(𝑎1, 𝑎2)  =   { 𝐷(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), ℎ (ç, ᶎ) }  +

  { 𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ (ç, ᶎ) }  +

{𝑔(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), 𝐷(ç, ᶎ)} . In the literary, a 

linear map 𝐷  on ∗-𝐴 ⊕ 𝑋  which is (𝑔, 𝑡, ℎ)-

ternary derivation at (𝑎1, 𝑎2)   is also called 

(𝑔, 𝑡, ℎ) -ternary derivable at (𝑎1, 𝑎2) . We 
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recall that, for a 𝐶∗- algebra 𝐴, suppose 𝐷 is a 

bounded linear map defined on unital ∗-𝐴 ⊕

𝑋 , and let 𝑔, 𝑡 and ℎ  be continuous 

homomorphisms on unital ∗-𝐴 ⊕ 𝑋. The self-

adjoint set of ∗-𝐴 ⊕ 𝑋 will be represented by 

the symbol (∗ −𝐴 ⊕ 𝑋)𝑠𝑎. In [6] Essaleh and 

Peralta proved that if a continuous linear map 

𝐷 defined on unital 𝐴 is ternary derivation at 

the unit element of 𝐴 , then 𝐷  is generalized 

derivation. When they suppose that 𝐷(1) = 0, 

then 𝐷 is ∗ -derivation and also ternary 

derivation. In this paper, we generalize the 

previous results by proving that a bounded 

linear map 𝐷  on unital ∗ - 𝐴 ⊕ 𝑋  which is 

(𝑔, 𝑡, ℎ)-ternary derivation at the unit (1,0) is 

(𝑔, ℎ)-generalized derivation. When we added 

𝐷(1,0) = (0,0), then 𝐷 is ∗-(𝑔, ℎ)-derivation 

and hence (𝑔, 𝑡, ℎ) -ternary derivation (see 

Theorem 2.1.5 and Proposition 2.1.7). 

Furthermore, we prove that if a continuous 

linear map 𝐷  on unital ∗-𝐴 ⊕ 𝑋  is (𝑔, 𝑡, ℎ)- 

ternary derivation at (1,0), then 𝐷 is (𝑔, 𝑡, ℎ)-

ternary derivation (see Corollary 2.1.8). 

Finally, for a (𝑔, 𝑡, ℎ) -ternary derivation at 

zero on  ∗-𝐴 ⊕ 𝑋. We shall extension of ([6, 

Theorem 2.9] and [14, Theorem 4]) by using 

unital ∗-𝐴 ⊕ 𝑋. we prove that if a bounded 

linear map 𝐷 on ∗-𝐴 ⊕ 𝑋 is (𝑔, ℎ)-derivation 

or (𝑔, 𝑡, ℎ)- ternary derivation at zero, then 𝐷 

is (𝑔, ℎ)-generalized derivation (see Theorem 

2.2.3). 

2. (g,t,h)-Ternary Derivations at Stable 

Point of a *-Module Extension Banach 

Algebra 

Throughout this section, we will focus on 

linear maps between ∗ -module extension 

Banach algebras that are (𝑔, 𝑡, ℎ) -ternary 

derivations at a stable point. There exist two 

salient elements that should be taken into 

consideration at the beginning of any study, 

we mean the unit and zero element are those 

two elements of ∗ -module extension Banach 

algebra. Later, we will show that (𝑔, 𝑡, ℎ) -

ternary derivations at unit or at zero element 

between ∗-module extension Banach algebras 

are a fundamental connection to (𝑔, ℎ) - 

generalized derivations. We need the 

following proposition to prove our results. 

     Note that, the ∗ -module extension Banach 

algebra ∗-𝐵 ⊕ 𝑈 in the following proposition 

corresponds with ∗ - 𝐴 ⊕ 𝑋  or with any ∗ -

module extension Banach algebra containing 

∗ - 𝐴 ⊕ 𝑋  like a ∗ -submodule extension 

Banach algebra with the same unit. 

Proposition 2.1  

    Let 𝐷 be bounded linear map from unital ∗-

𝐴 ⊕ 𝑋 into a Banach (∗-𝐴 ⊕ 𝑋)-bimodule ∗-

𝐵 ⊕ 𝑈, where  𝑔 and ℎ from ∗ −𝐴 ⊕ 𝑋 into ∗

−𝐵 ⊕ 𝑈  are bounded homomorphisms. The 

next arguments are equivalent:  

1) 𝐷 is (𝑔, ℎ)-generalized derivation; 

2) 𝑔(ᶊ, ᶇ)𝐷(ᶉ, ᶆ)ℎ(ç, ᶎ) =

(0,0), whenever  (ᶊ, ᶇ) (ᶉ, ᶆ) =

(ᶉ, ᶆ) (ç, ᶎ) = (0,0) in ∗-𝐴 ⊕ 𝑋; 

3) 𝑔(ᶊ, ᶇ)𝐷(ᶉ, ᶆ)ℎ(ç, ᶎ) = (0,0), whenever 

(ᶊ, ᶇ) (ᶉ, ᶆ) = (ᶉ, ᶆ) (ç, ᶎ) = (0,0)  in 

(∗ −𝐴 ⊕ 𝑋)𝑠𝑎 . Furthermore, each 

argument in (1) - (3) is equivalent to any 

one of the following:  

4) 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) +

ℎ(ç, ᶎ) 𝐷(ᶉ, ᶆ) 𝑔(ᶊ, ᶇ) =

(0,0), whenever  (ᶊ, ᶇ) (ᶉ, ᶆ) =

(ᶉ, ᶆ)(ç, ᶎ) = (0,0) in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎; 

5) 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ᶊ, ᶇ) = (0,0),  whenever 

(ᶊ, ᶇ) (ᶉ, ᶆ) = (0,0) in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎; 

6)  For every (ᶉ, ᶆ)  in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎  we get 

𝑔((1,0) − 𝑅(ᶉ, ᶆ)) 𝐷(ᶉ, ᶆ) ℎ((1,0) −

𝑅(ᶉ, ᶆ)) = (0,0)  in (∗ −𝐵 ⊕ 𝑈)∗∗ , where 
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𝑅(𝑟, 𝑚) symbolizes the range projection of 

(ᶉ, ᶆ) in (∗ −𝐴 ⊕ 𝑋)∗∗.  

Proof. The proof of the first part is 

comparable to that of ([3, Proposition 2.8] and 

[17, Proposition 1.1]). For the proof of the 

second part, (3)  ⟹  (4) and (4)  ⟹  (5) are 

clear. Now, we will prove (5)  ⟹  (6) Let 

𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ᶊ, ᶇ) = (0,0),  with 

(ᶊ, ᶇ) (ᶉ, ᶆ) = (0,0)  in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 . 

Assume that 𝐴ᶉ  is a commutative 𝐶∗ -

subalgebra of 𝐴  which is generated by (ᶉ) . 

From the Gelfand theory, we have  𝐴ᶉ ≅

𝐶∘(𝜎(ᶉ)) , such that 𝐶∘(𝜎(ᶉ))  denotes  𝐶∗ - 

algebra of each bounded functions on 𝜎(ᶉ) 

finish at zero, and 𝜎(ᶉ) ⊆ [−∥ ᶉ ∥, ∥ ᶉ ∥] refers 

to the spectrum of ᶉ. For every natural 𝛼, let a 

projection (𝑎𝛼, 𝑥)  ∈  (∗ −𝐴 ⊕ 𝑋)(ᶉ,ᶆ)
∗∗ ⊆

(∗ −𝐴 ⊕ 𝑋)∗∗ according to the function of the 

set ([−∥ ᶉ ∥, −
1

𝛼
]  ∪ [

1

𝛼
, ∥ ᶉ ∥]) ∩  𝜎(ᶉ). Let us 

choose a function (ᶉ𝛼 , ᶆ) ∈  (∗ −𝐴 ⊕ 𝑋)(ᶉ,ᶆ), 

with (ᶉ𝛼, ᶆ)   (𝑎𝛼, 𝑥)   =   (𝑎𝛼, 𝑥)   (ᶉ𝛼, ᶆ)  =

(ᶉ𝛼, ᶆ) =  (ᶉ𝛼 , ᶆ)∗ , and ∥ (ᶉ𝛼, ᶆ) − (ᶉ, ᶆ) ∥

 ≤
1

𝛼
 . It is clear that a sequence (𝑎𝛼, 𝑥)  is 

convergent to  𝑅(ᶉ, ᶆ)   in the  𝑠𝑡𝑟𝑜𝑛𝑔∗ - 

topology of  (∗ −𝐴 ⊕ 𝑋)∗∗  see [23, Ş1.8]. 

And let us pick (𝑏, −𝑥)  ∈  ((1,0) −

(𝑎𝛼, 𝑥))  (∗ −𝐴 ⊕ 𝑋)∗∗  ((1,0) − (𝑎𝛼, 𝑥))   ∩

 (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 . Since (ᶉ𝛼, ᶆ)  (𝑏, −𝑥) =

(0,0) . By the hypothesis, we have that 

𝑔(𝑏, −𝑥) 𝐷(ᶉ𝛼 , ᶆ) ℎ(𝑏, −𝑥) = (0,0) . 

Moreover, from ([24, Definition III.6.19] and 

[1]), a projection (𝑎𝛼, 𝑥)  be a closed in 

(∗ −𝐴 ⊕ 𝑋)(ᶉ,ᶆ)
∗∗ ⊆ (∗ −𝐴 ⊕ 𝑋)∗∗ . This 

implies that 1 − 𝑎𝛼 is open projection in  𝐴∗∗. 

So, there is increasing net (𝑏𝛽)  ∈ (1 −

𝑎𝛼)𝐴∗∗ (1 − 𝑎𝛼) ∩ 𝐴 , with 0 ≤ (𝑏𝛽)  ≤  1 −

𝑎𝛼, and (𝑏𝛽 ) is convergent to (1 − 𝑎𝛼) in the  

𝑤𝑒𝑎𝑘∗- topology of 𝐴∗∗ see ([1], [8] and [22, 

Proposition 3.11.9]). Since 0 ≤ ((1 − 𝑎𝛼) −

(𝑏𝛽))
2

≤ (1 − 𝑎𝛼) − (𝑏𝛽) ≤ (1 − 𝑎𝛼) . So, 

(𝑏𝛽)   is convergent to (1 − 𝑎𝛼)  in the  

𝑠𝑡𝑟𝑜𝑛𝑔∗ - topology of  𝐴∗∗ . We have that 

𝑔(𝑏𝛽 , −𝑥) 𝐷(ᶉ𝛼, ᶆ) ℎ(𝑏𝛽 , −𝑥) = (0,0) , for 

all 𝛽. From [23, Proposition 1.8.12], we have 

that the product of 𝐴  is together 𝑠𝑡𝑟𝑜𝑛𝑔∗ -

continuous. Thus, 𝑔((1,0) −

(𝑎𝛼, 𝑥)) 𝐷(ᶉ𝛼 , ᶆ) ℎ((1,0) − (𝑎𝛼, 𝑥)) = (0,0), 

for each natural 𝛼 . Since  (1,0) − (𝑎𝛼, 𝑥) 

converges to (1,0) − 𝑅(ᶉ, ᶆ)  in the  𝑠𝑡𝑟𝑜𝑛𝑔∗- 

topology and 𝐷(ᶉ𝛼, ᶆ)  converges to 𝐷(ᶉ, ᶆ) 

in norm. This implies that 𝑔((1,0) −

𝑅(ᶉ, ᶆ))  𝐷(ᶉ, ᶆ)  ℎ((1,0) − 𝑅(ᶉ, ᶆ))  =

(0,0)  in (∗ −𝐴 ⊕ 𝑋)∗∗.  

    (6)  ⟹  (3) Assume that 

(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)  in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 such that 

(ᶊ, ᶇ)  (ᶉ, ᶆ) = (ᶉ, ᶆ)  (ç, ᶎ) = (0,0) . We 

observe that 𝑔(ᶊ, ᶇ) = 𝑔(ᶊ, ᶇ) 𝑔((1,0) −

𝑅(ᶉ, ᶆ)) , and ℎ(ç, ᶎ) = ℎ((1,0) −

𝑅(ᶉ, ᶆ)) ℎ(ç, ᶎ) . So, we conclude that 

𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) = 𝑔(ᶊ, ᶇ) 𝑔((1,0) −

𝑅(ᶉ, ᶆ)) 𝐷(ᶉ, ᶆ)  ℎ((1,0) −

𝑅(ᶉ, ᶆ)) ℎ(ç, ᶎ) = (0,0), which complete the 

proof.      

2.1 (𝑔, 𝑡, ℎ) -Ternary Derivations of a ∗ -

Module Extension Banach Algebra at the Unit 

Element 

    In this subsection, ∗-𝐴 ⊕ 𝑋 will denote a ∗-

submodule extension Banach algebra of unital 

∗-module extension Banach algebra ∗-𝐵 ⊕ 𝑈 

which contains the unit element of ∗-𝐵 ⊕ 𝑈, 

and we will assume that  𝐷  from ∗- 𝐴 ⊕ 𝑋 

into ∗- 𝐵 ⊕ 𝑈 is a continuous linear map, also 

𝑔, 𝑡  and ℎ  from ∗ - 𝐴 ⊕ 𝑋  into ∗ - 𝐵 ⊕ 𝑈  are 

continuous homomorphisms.  
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Proposition 2.1.1 

    Assume that 𝐴 ⊕ 𝑋 is a module extension 

Banach algebra with unit (1,0), and let 𝐵 ⊕

𝑈 be a unital Banach 𝐴 ⊕ 𝑋 -bimodule. 

Suppose 𝐷 , 𝑔  and ℎ  : 𝐴 ⊕ 𝑋  →  𝐵 ⊕ 𝑈  are 

continuous linear maps, then 𝐷  is (𝑔, ℎ) -

derivation at the unit element, if and only if  𝐷 

is a Jorden (𝑔, ℎ)-derivation. 

Proof. The proof is like to that of [18, 

Theorem 2.1 or Corollary 2.3]. 

Proposition 2.1.2 

    Suppose 𝐴 ⊕ 𝑋 is a symmetric amenability 

module extension Banach algebra, and let 

𝐵 ⊕ 𝑈 be a Banach 𝐴 ⊕ 𝑋-bimodule, where 

𝑔  and ℎ  : 𝐴 ⊕ 𝑋  →  𝐵 ⊕ 𝑈  are continuous 

linear maps, then there are no proper 

continuous Jorden (𝑔, ℎ)-derivation from 𝐴 ⊕

𝑋 into 𝐵 ⊕ 𝑈. 

Proof. The proof is similar to that of [15, 

Theorem 6.2].  

Actually, Proposition 2.1.1 and 2.1.2 lead to 

the following result. 

Proposition 2.1.3  

 Let 𝐴 ⊕ 𝑋  be unital symmetric amenability 

module extension Banach algebra, and let 

𝐵 ⊕ 𝑈 be unital Banach 𝐴 ⊕ 𝑋 -bimodule. 

Suppose 𝐷 , 𝑔  and ℎ  : 𝐴 ⊕ 𝑋  →  𝐵 ⊕ 𝑈  are 

continuous linear maps. If 𝐷  is a (𝑔, ℎ) -

derivation at the unit element, then 𝐷  is a 

(𝑔, ℎ)-derivation.   

The local triple derivations, triple derivations 

and derivations on 𝐶∗-algebras have common 

property that they transfer the unit element 

from domain 𝐶∗ -algebras into a symmetric 

element see ([6, Lemma 2.2], [12, proof of 

Lemma 1], [13, Lemma 3.4] and [16, Lemma 

2.1]). This property holds to linear maps on ∗-

module extension Banach algebras which are 

(𝑔, ℎ)-derivations at (1,0) as well. 

 

Lemma 2.1.4   

Let 𝐷 ∶ ∗ - 𝐴 ⊕ 𝑋 → ∗ - 𝐵 ⊕ 𝑈  be (𝑔, 𝑡, ℎ) -

ternary derivation at (1,0) of  ∗-𝐴 ⊕ 𝑋, then 

the following arguments hold:  

(i) 𝐷(1,0)∗ =  − 𝐷(1,0); 

(ii) The identity 𝐷(ᶊ, ᶇ) =
1

2
(𝐷(ᶊ, ᶇ) ℎ(ᶊ, ᶇ) +

𝑔(ᶊ, ᶇ)  𝐷(ᶊ, ᶇ) − 𝑔(ᶊ, ᶇ) 𝐷(1,0) ℎ(ᶊ, ᶇ) +

𝐷(ᶊ, ᶇ) 𝑔(ᶊ, ᶇ) + ℎ(ᶊ, ᶇ) 𝐷(ᶊ, ᶇ) −

ℎ(ᶊ, ᶇ) 𝐷(1,0) 𝑔(ᶊ, ᶇ) ), holds for all 

projection (ᶊ, ᶇ) in  ∗-𝐴 ⊕ 𝑋. 

Proof. (i) Since (1,0) = {(1,0), (1,0), (1,0)}, 

by the hypothesis, we get  

𝐷(1,0)  =  𝐷 {(1,0), (1,0), (1,0)}  =

 {𝐷(1,0), 𝑡(1,0), ℎ(1,0)}  +

  {𝑔(1,0), 𝐷(1,0), ℎ(1,0)} +

{𝑔(1,0), 𝑡(1,0), 𝐷(1,0)} = 2  𝐷(1,0) +

𝐷(1,0)∗ . This implies that 𝐷(1,0)∗ =

 − 𝐷(1,0).     

(ii) Suppose a projection (ᶊ, ᶇ) ∈ ∗ - 𝐴 ⊕ 𝑋 , 

and let the identity (1,0) = {((1,0) −

2(ᶊ, ᶇ)), (1,0), ((1,0) − 2(ᶊ, ᶇ))} . From 

assumptions, we have that  𝐷(1,0)  =

 𝐷{((1,0) − 2(ᶊ, ᶇ)), (1,0), ((1,0) −

2(ᶊ, ᶇ)) }   =  {𝐷((1,0) − 2(ᶊ, ᶇ)), 𝑡(1,0),

ℎ((1,0) − 2(ᶊ, ᶇ))}  + {𝑔((1,0) −

2(ᶊ, ᶇ)), 𝐷(1,0), ℎ((1,0) − 2(ᶊ, ᶇ))}  +

 {𝑔((1,0) − 2(ᶊ, ᶇ)), 𝑡(1,0), 𝐷((1,0) −

2 (ᶊ, ᶇ)) }   =   𝐷(1,0) −  4  𝐷(ᶊ, ᶇ)   +

  2 𝐷(ᶊ, ᶇ)  ℎ(ᶊ, ᶇ)  +  2  ℎ(ᶊ, ᶇ)  𝐷(ᶊ, ᶇ)  +

 2  𝑔(ᶊ, ᶇ)  𝐷(ᶊ, ᶇ) +  2  𝐷(ᶊ, ᶇ) 𝑔(ᶊ, ᶇ)  −

 2 𝑔(ᶊ, ᶇ) 𝐷(1,0) ℎ(ᶊ, ᶇ)  −

 2  ℎ(ᶊ, ᶇ)  𝐷(1,0) 𝑔(ᶊ, ᶇ). Hence,  

𝐷(ᶊ, ᶇ) =
1

2
( 𝐷(ᶊ, ᶇ)  ℎ(ᶊ, ᶇ)  +  𝑔(ᶊ, ᶇ)  

𝐷(ᶊ, ᶇ)  − 𝑔(ᶊ, ᶇ) 𝐷(1,0) ℎ(ᶊ, ᶇ) +

𝐷(ᶊ, ᶇ) 𝑔(ᶊ, ᶇ) + ℎ(ᶊ, ᶇ) 𝐷(ᶊ, ᶇ) −

ℎ(ᶊ, ᶇ) 𝐷(1,0) 𝑔(ᶊ, ᶇ)).  ∎ 
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There exist ∗ -module extension Banach 

algebras containing just zero projection. 

Therefore, we necessary to transact with 

unitaries. 

Theorem 2.1.5  

Let a bounded linear map 𝐷: ∗-𝐴 ⊕ 𝑋 → ∗-

𝐵 ⊕ 𝑈  be a (𝑔, 𝑡, ℎ)-ternary derivation at the 

unit of ∗ −𝐴 ⊕ 𝑋, then 𝐷 is (𝑔, ℎ)-generalized 

derivation.  

Proof.  Let us fix (ᶊ, ᶇ) ∈ (∗ −𝐴 ⊕ 𝑋)𝑠𝑎. For 

all  𝜆 ∈ 𝑅, (𝑒𝑖𝜆(ᶊ,ᶇ), 0)  is a unitary in ∗-𝐴 ⊕ 𝑋  

and (1,0) = { (𝑒𝑖𝜆(ᶊ,ᶇ), 0), (1,0), (𝑒−𝑖𝜆(ᶊ,ᶇ), 0)}. 

Therefore, 

𝐷(1,0)  =

 {𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝑡(1,0), ℎ(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} +

{𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝐷(1,0), ℎ(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} +

{𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝑡(1,0), 𝐷(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} . By 

taking the first derivative at 𝜆, we have that 

(0,0)

= {𝐷 ((ᶊ, ᶇ)(𝑒𝑖𝜆(ᶊ,ᶇ), 0)) , 𝑡(1,0), ℎ(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} 

          − {𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0),   𝑡(1,0),

ℎ ((ᶊ, ᶇ)(𝑒𝑖𝜆(ᶊ,ᶇ), 0))} 

          

+ {𝑔 ((ᶊ, ᶇ)(𝑒𝑖𝜆(ᶊ,ᶇ), 0)) , 𝐷(1,0), ℎ(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} 

          − {𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝐷(1,0),

ℎ ((ᶊ, ᶇ) (𝑒𝑖𝜆(ᶊ,ᶇ), 0))} 

         

 + {𝑔 ((ᶊ, ᶇ)(𝑒𝑖𝜆(ᶊ,ᶇ), 0)) , 𝑡(1,0), 𝐷(𝑒−𝑖𝜆(ᶊ,ᶇ), 0)} 

          − {𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝑡(1,0),

𝐷 ((ᶊ, ᶇ)(𝑒𝑖𝜆(ᶊ,ᶇ), 0))}.  

    Let`s take the second derivative at 𝜆 = 0  in  

the final equality, we get (0,0)  =

2 {𝐷(ᶊ, ᶇ)2, 𝑡(1,0), ℎ(1,0)} −  2 { 𝐷(ᶊ, ᶇ),

𝑡(1,0), ℎ(ᶊ, ᶇ)} –  2 {𝑔(ᶊ, ᶇ), 𝐷(1,0),

ℎ(1,0)}  − 2 {𝑔(ᶊ, ᶇ), 𝑡(1,0), 𝐷(ᶊ, ᶇ)}, or 

equivalent 2  𝐷(ᶊ, ᶇ)2  =  𝐷(ᶊ, ᶇ)  ℎ(ᶊ, ᶇ)  +

  ℎ(ᶊ, ᶇ)  𝐷(ᶊ, ᶇ) + 𝑔(ᶊ, ᶇ) 𝐷(ᶊ, ᶇ) +

𝐷(ᶊ, ᶇ) 𝑔(ᶊ, ᶇ) + 𝑔(ᶊ, ᶇ) 𝐷(1,0)∗ ℎ(ᶊ, ᶇ) +

ℎ(ᶊ, ᶇ)  𝐷(1,0)∗ 𝑔(ᶊ, ᶇ) . From Lemma 2.1.4 

(i), we have that 𝐷(ᶊ, ᶇ)2 =

 
1

2
(𝐷(ᶊ, ᶇ) ℎ(ᶊ, ᶇ) + 𝑔(ᶊ, ᶇ) 𝐷(ᶊ, ᶇ) −

𝑔(ᶊ, ᶇ) 𝐷(1,0) ℎ(ᶊ, ᶇ) +  𝐷(ᶊ, ᶇ) 𝑔(ᶊ, ᶇ) +

ℎ(ᶊ, ᶇ) 𝐷(ᶊ, ᶇ) − ℎ(ᶊ, ᶇ) 𝐷(1,0) 𝑔(ᶊ, ᶇ)),          

(1)                 

for all (ᶊ, ᶇ) in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 . Now, let us 

choose (ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ) in (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 

such that (ᶊ, ᶇ)(ᶉ, ᶆ) = (0,0) = (ᶉ, ᶆ)(ç, ᶎ) 

and 𝑔(ᶊ, ᶇ)ℎ(ᶉ, ᶆ) = (0,0) = 𝑔(ᶉ, ᶆ) ℎ(ç, ᶎ) . 

If we take  (ᶉ, ᶆ) = (ᶉ, ᶆ)+ −  (ᶉ, ᶆ)− , with 

(ᶉ, ᶆ)+ (ᶉ, ᶆ)− = (0,0)  and  (ᶉ, ᶆ)𝛼 ≥ (0,0)  

for all 𝛼 ∈ {∓}, find (ᶂ, ᶄ)𝛼 ≥ (0,0)  in ∗-𝐴 ⊕

𝑋  such that ((ᶂ, ᶄ)𝛼)2 = (ᶉ, ᶆ)𝛼 ( 𝛼 = ∓). It 

is easily to check that (ᶊ, ᶇ) (ᶂ, ᶄ)𝛼 = (0,0) = 

(ᶂ, ᶄ)𝛼 (ç, ᶎ)  and 𝑔(ᶊ, ᶇ) ℎ((ᶂ, ᶄ)𝛼) = (0,0) = 

𝑔((ᶂ, ᶄ)𝛼) ℎ(ç, ᶎ) for 𝛼 = ∓, by applying (1) 

we have that 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) =

𝑔(ᶊ, ᶇ)  𝐷((ᶉ, ᶆ)+) ℎ(ç, ᶎ) −

𝑔(ᶊ, ᶇ) 𝐷((ᶉ, ᶆ)−) ℎ(ç, ᶎ) =
1

2
(𝑔(ᶊ, ᶇ)( 𝐷((ᶂ, ᶄ)+) ℎ((ᶂ, ᶄ)+) +

𝑔((ᶂ, ᶄ)+)    𝐷((ᶂ, ᶄ)+)    −

    𝑔((ᶂ, ᶄ)+)   𝐷((ᶂ, ᶄ)+)   ℎ((ᶂ, ᶄ)+)   +

  𝐷((ᶂ, ᶄ)+)    𝑔((ᶂ, ᶄ)+) +

ℎ((ᶂ, ᶄ)+)    𝐷((ᶂ, ᶄ)+)     −

      ℎ((ᶂ, ᶄ)+)       𝐷((ᶂ, ᶄ)+)        𝑔((ᶂ, ᶄ)+)      )          ℎ(ç, ᶎ)      )  −

 
1

2
(𝑔(ᶊ, ᶇ)(𝐷((ᶂ, ᶄ)−)ℎ((ᶂ, ᶄ)−) +

𝑔((ᶂ, ᶄ)−) 𝐷((ᶂ, ᶄ)−) −

 (𝑔(ᶂ, ᶄ)− ) 𝐷((ᶂ, ᶄ)−) ℎ((ᶂ, ᶄ)−)  +

𝐷((ᶂ, ᶄ)−)   𝑔((ᶂ, ᶄ)−)  +

 ℎ((ᶂ, ᶄ)− ) 𝐷((ᶂ, ᶄ)−) −

 ℎ((ᶂ, ᶄ)−) 𝐷((ᶂ, ᶄ)−)   𝑔((ᶂ, ᶄ)−) ) ℎ(ç, ᶎ))  =

(0,0). Hence, 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) = (0,0). 



Linear Maps that are (g,h)-Derivations or (g,t,h)-Ternary Derivations at a Point on *-Module Extension Banach 

Algebras  

 

5829 

We deduce from Proposition 2.1 that 𝐷  is a 

(𝑔, ℎ)-generalized derivation.     

      There exist (𝑔, ℎ)-generalized derivations 

on ∗-module extension Banach algebra which 

are not (𝑔, 𝑡, ℎ)-ternary derivations at (1,0) , 

see the following example.                            

Example 2.1.6  

    Let 𝑔, 𝑡, ℎ ∶ ∗ - 𝐴 ⊕ 𝑋 →  ∗ - 𝐴 ⊕ 𝑋  be 

continuous homomorphisms. Suppose element 

(ᶊ, ᶇ) is a non-zero symmetric in ∗-𝐴 ⊕ 𝑋 and 

let 𝐷 be a continuous linear map on ∗-𝐴 ⊕ 𝑋 

defined by 𝐷(ᶉ, ᶆ) = (ᶊ, ᶇ) ℎ(ᶉ, ᶆ) , for all 

(ᶉ, ᶆ) in ∗-𝐴 ⊕ 𝑋. Then  

𝐷((ᶉ, ᶆ) (ç, ᶎ)) = (ᶊ, ᶇ) ℎ((ᶉ, ᶆ)(ç, ᶎ)).                                                                                

(2) 

𝐷(ᶉ, ᶆ)ℎ(ç, ᶎ) + 𝑔(ᶉ, ᶆ) 𝐷(ç, ᶎ) −

𝑔(ᶉ, ᶆ) 𝐷(1,0) ℎ(ç, ᶎ) =

(ᶊ, ᶇ) ℎ(ᶉ, ᶆ) ℎ(ç, ᶎ) +

𝑔(ᶉ, ᶆ) (ᶊ, ᶇ) ℎ(ç, ᶎ)  −

𝑔(ᶉ, ᶆ) (ᶊ, ᶇ) ℎ(1,0) ℎ(ç, ᶎ) =

 (ᶊ, ᶇ) ℎ((ᶉ, ᶆ)(ç, ᶎ)),                       (3) for all 

(ᶉ, ᶆ), (ç, ᶎ)  in ∗ −𝐴 ⊕ 𝑋 .  From equations 

(2) and (3), we have that, 𝐷  is a (𝑔, ℎ) -

generalized derivation. Moreover, 𝐷(1,0)  =

 (ᶊ, ᶇ) ∈ (∗ −𝐴 ⊕ 𝑋 )𝑠𝑎 \  {(0,0)}  with 

Lemma 2.1.4, we have that  𝐷 is not (𝑔, 𝑡, ℎ)-

ternary derivation at (1,0). 

 

     Whenever 𝐷(1,0) = (0,0) , a proper 

modification to the arguments stated in 

Theorem 2.1.5 provides extra information. 

Proposition 2.1.7   

    Let a bounded linear map 𝐷 ∶ ∗-𝐴 ⊕ 𝑋 → ∗-

𝐴 ⊕ 𝑋 be a (𝑔, 𝑡, ℎ)-ternary derivation at the 

unit of  ∗-𝐴 ⊕ 𝑋 with 𝐷(1,0) = (0,0), then 𝐷 

is a ∗-(𝑔, ℎ)-derivation and a (𝑔, 𝑡, ℎ)-ternary 

derivation.  

Proof.  In the same way as in the proof of 

Theorem 2.1.5, let us pick (ᶊ, ᶇ) ∈ (∗ −𝐴 ⊕

𝑋)𝑠𝑎. For all 𝜆 ∈ 𝑅, (𝑒𝑖𝜆(ᶊ,ᶇ), 0)   is a unitary in 

∗ - 𝐴 ⊕ 𝑋   and (1,0) =

{ (𝑒𝑖𝜆(ᶊ,ᶇ), 0), (𝑒𝑖𝜆(ᶊ,ᶇ), 0), (1,0)}. Thus,  

(0,0) = 𝐷(1,0)

= { 𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝑡(𝑒𝑖𝜆(ᶊ,ᶇ), 0), ℎ(1,0)} +  

                               

{𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0), ℎ(1,0)} +

                                   {𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝑡(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 𝐷(1,0)}

, 

                          =
1

2
(𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0) 𝑡(𝑒𝑖𝜆(ᶊ,ᶇ), 0)∗ +

𝑡(𝑒𝑖𝜆(ᶊ,ᶇ), 0)∗ 𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0), 

                         

 + 
1

2
(𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0)𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0)∗ +

 𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0)∗𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0)). 

That is,  (0,0) =  𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0)  ∘

 𝑡(𝑒−𝑖𝜆(ᶊ,ᶇ), 0) +  𝑔(𝑒𝑖𝜆(ᶊ,ᶇ), 0) ∘ 𝐷(𝑒𝑖𝜆(ᶊ,ᶇ), 0)∗. 

By taking a derivative at  𝜆 = 0 , (0,0) =

𝐷(ᶊ, ᶇ) − 𝐷(1,0) ∘ 𝑡(ᶊ, ᶇ) + 𝑔(ᶊ, ᶇ) ∘

𝐷(1,0)∗ − 𝐷(ᶊ, ᶇ)∗. That is implies, 𝐷(ᶊ, ᶇ) =

𝐷(ᶊ, ᶇ)∗  for every (ᶊ, ᶇ) ∈ (∗ −𝐴 ⊕ 𝑋)𝑠𝑎 . 

Therefore,  𝐷  is a symmetric map. We have 

from Theorem 2.1.5, that 𝐷  is a (𝑔, ℎ) -

generalized derivation. Since 𝐷  is symmetric 

map and 𝐷(1,0) = (0,0), then 𝐷 is a ∗ -(𝑔, ℎ)-

derivation and also a (𝑔, 𝑡, ℎ)-ternary (triple) 

derivation.                                                                       

Corollary 2.1.8 

    Let 𝐷 ∶ ∗-𝐴 ⊕ 𝑋 → ∗-𝐴 ⊕ 𝑋  be a bounded 

linear map on unital ∗-𝐴 ⊕ 𝑋 that is (𝑔, 𝑡, ℎ)-

ternary derivation at the unit of  ∗-𝐴 ⊕ 𝑋, then 

𝐷 is a (𝑔, 𝑡, ℎ)-ternary derivation.  

Proof. The fact that the mapping 

𝑑(𝐷(1,0), (1,0)): ∗ - 𝐴 ⊕ 𝑋 → ∗ - 𝐴 ⊕ 𝑋 

defined by 𝑑(𝐷(1,0), (1,0)) (ᶊ, ᶇ) =

{𝐷(1,0), 𝑡(1,0), ℎ(ᶊ, ᶇ)} −
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{ 𝑔(1,0), 𝐷(1,0), ℎ(ᶊ, ᶇ)} , and by Lemma 

2.1.4, 𝐷(1,0)∗ =  − 𝐷(1,0) . We have 𝑑  is a 

(𝑔, 𝑡, ℎ)-ternary derivation see [12, Proof of 

Lemma 1]. The real linear combination of 

linear maps that are (𝑔, 𝑡, ℎ) -ternary 

derivations at (1,0) is also a (𝑔, 𝑡, ℎ)-ternary 

derivation at (1,0) . Thus, the following 

mapping 𝐷̃ = 𝐷 −  
1

2
 𝑑(𝐷(1,0), (1,0))  is a 

(𝑔, 𝑡, ℎ) -ternary derivation at (1,0)  and 

𝐷̃(1,0) = (0,0). By Proposition 2.1.7, we get 

𝐷̃  is a ∗ - (𝑔, ℎ) -derivation and a (𝑔, 𝑡, ℎ) -

ternary derivation as well. Hence, the map 

𝐷 =  𝐷̃ +  
1

2
 𝑑(𝐷(1,0), (1,0))  is a (𝑔, 𝑡, ℎ) -

ternary derivation.   ∎                                                                                  

Corollary 2.1.9 [6, Theorem 2.3]    

    Let 𝐷 be a bounded linear map from a  𝐶∗-

algebra 𝐴  into 𝐴 -bimodule 𝐵  which is a 

ternary derivation at the unit of 𝐴, then 𝐷 is a 

generalized derivation. 

Proof. By Theorem 2.1.5, taking 𝑔, 𝑡 and ℎ to 

be the identity maps and 𝑋 = 𝑈 = 0. 

Corollary 2.1.10 [6, Proposition 2.4]   

     If a bounded linear map 𝐷 defined on a 𝐶∗-

algebra 𝐴  is a ternary derivation at the unit 

element of 𝐴  with 𝐷(1) = 0 , then 𝐷  is a ∗-

derivation and a ternary derivation. 

Proof. By proposition 2.1.7, taking 𝑔, 𝑡 and ℎ 

to be the identity maps and 𝑋 = 𝑈 = 0. 

 

Corollary 2.1.11. [6, Corollary 2.5]   

    Let a bounded linear map 𝐷  defined on 

unital 𝐶∗-algebra 𝐴 be a ternary derivation at 

the unit element of 𝐴 , then 𝐷  is a ternary 

derivation. 

Proof. By Corollary 2.1.8, taking 𝑔, 𝑡 and ℎ to 

be the identity maps and 𝑋 = 𝑈 = 0. 

 

2.2 (𝑔, 𝑡, ℎ)-Ternary Derivation of a ∗-Module 

Extension Banach Algebra at Zero 

    We will explore the fundamental properties 

of (𝑔, ℎ) -derivations at zero on a  ∗ -module 

extension Banach algebra in this subsection. 

Lemma 2.2.1   

    Let ∗-𝐴 ⊕ 𝑋  be a  ∗-submodule extension 

Banach algebra of a ∗ -module extension 

Banach algebra ∗-𝐵 ⊕ 𝑈, and let a linear map 

𝐷 ∶ ∗-𝐴 ⊕ 𝑋 → ∗-𝐵 ⊕ 𝑈  be (𝑔, ℎ)-derivation 

at zero, where 𝑔, ℎ ∶ ∗-𝐴 ⊕ 𝑋 → ∗-𝐵 ⊕ 𝑈 are 

homeomorphisms, then 

𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ)  ℎ(ç, ᶎ) =

(0,0), ∀ (ᶊ, ᶇ), (ᶉ, ᶆ) , (ç, ᶎ) ∈ ∗ - 𝐴 ⊕ 𝑋 , such 

that (ᶊ, ᶇ) (ᶉ, ᶆ)  = (ᶉ, ᶆ)  (ç, ᶎ) = (0,0).  

Proof. Let us take (ᶊ, ᶇ), (ᶉ, ᶆ) ,  (ç, ᶎ)  in ∗-

𝐴 ⊕ 𝑋  such that (ᶊ, ᶇ) (ᶉ, ᶆ)  =

(ᶉ, ᶆ)  (ç, ᶎ) = (0,0) .  Since 𝐷  is (𝑔, ℎ) -

derivation at zero, we get 

𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ)  ℎ(ç, ᶎ) = (𝐷((ᶊ, ᶇ)(ᶉ, ᶆ) ) −

𝐷(ᶊ, ᶇ) ℎ(ᶉ, ᶆ) )ℎ(ç, ᶎ) = (0,0).    ∎                                                                                                                                                                                                                     

    Let's note that under the supposition of the 

aforementioned lemma, we are unable to apply 

Proposition 2.1 because 𝐷 is not considered to 

be bounded. 

    Recall that (ᶊ, ᶇ) and (ᶉ, ᶆ)  in ∗-𝐴 ⊕ 𝑋 are 

orthogonal (denoted by  (ᶊ, ᶇ)  ⊥  (ᶉ, ᶆ) ) if 

and only if  (ᶊ, ᶇ) (ᶉ, ᶆ) ∗ = (ᶉ, ᶆ) ∗ (ᶊ, ᶇ) =

(0,0). 

Lemma 2.2.2   

    Let ∗-𝐴 ⊕ 𝑋  be a  ∗ -submodule extension 

Banach algebra of a ∗ -module extension 

Banach algebra ∗-𝐵 ⊕ 𝑈, and let a linear map 

𝐷 ∶ ∗ - 𝐴 ⊕ 𝑋 → ∗ - 𝐵 ⊕ 𝑈  be (𝑔, 𝑡, ℎ) -ternary 

derivation at zero, where 𝑔, 𝑡, ℎ ∶  ∗ - 𝐴 ⊕

𝑋 → ∗ - 𝐵 ⊕ 𝑈  are homomorphisms, then  

{𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ(ç, ᶎ)}  =  (0,0), ∀ (ᶊ, ᶇ),  
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(ᶉ, ᶆ),  (ç, ᶎ) ∈ ∗ - 𝐴 ⊕ 𝑋  such that (ᶊ, ᶇ) ⊥

(ᶉ, ᶆ) ⊥ (ç, ᶎ) and 𝑔(ᶊ, ᶇ) ⊥ 𝑡(ᶉ, ᶆ) ⊥ ℎ(ç, ᶎ). 

Proof. Assume that (ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ) in ∗-

𝐴 ⊕ 𝑋 , satisfying (ᶊ, ᶇ) ⊥ (ᶉ, ᶆ) ⊥ (ç, ᶎ) 

and  𝑔(ᶊ, ᶇ) ⊥ 𝑡(ᶉ, ᶆ) ⊥ ℎ(ç, ᶎ) . Since 

{(ᶊ, ᶇ), (ᶉ, ᶆ), (ç, ᶎ)} = (0,0), this implies that 

(0,0) = {𝐷(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), ℎ(ç, ᶎ)}   +

  {𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ(ç, ᶎ)}    +   {𝑔(ᶊ, ᶇ),

𝑡(ᶉ, ᶆ), 𝐷(ç, ᶎ)} = {𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ(ç, ᶎ)} . 

Since, {𝐷(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), ℎ(ç, ᶎ)}  =

 {𝑔(ᶊ, ᶇ), 𝑡(ᶉ, ᶆ), 𝐷(ç, ᶎ)} = (0,0) . Therefore, 

{𝑔(ᶊ, ᶇ), 𝐷(ᶉ, ᶆ), ℎ(ç, ᶎ)} = (0,0) . This 

proved the statement.    ∎ 

Theorem 2.2.3   

    Let ∗ - 𝐴 ⊕ 𝑋  be a  ∗ -submodule extension 

Banach algebra of a unital ∗-module extension 

Banach algebra ∗-𝐵 ⊕ 𝑈 , and let 𝐷 ∶ ∗-𝐴 ⊕

𝑋 → ∗ - 𝐵 ⊕ 𝑈  be a continuous linear map, 

where 𝑔, 𝑡 and ℎ ∶ ∗ - 𝐴 ⊕ 𝑋 → ∗ - 𝐵 ⊕ 𝑈  are 

continuous homomorphisms.  If 𝐷 is (𝑔, ℎ) -

derivation at zero or (𝑔, 𝑡, ℎ) -ternary 

derivation at zero, then 𝐷  is  (𝑔, ℎ) -

generalized derivation.  

Proof. Suppose 𝐷  is (𝑔, 𝑡, ℎ) -ternary 

derivation at zero, from Lemma 2.2.2, we have 

that for all (ᶊ, ᶇ),  (ᶉ, ᶆ),  (ç, ᶎ) ∈ (∗ −𝐴 ⊕

𝑋)𝑠𝑎  such that (ᶊ, ᶇ) (ᶉ, ᶆ) = (ᶉ, ᶆ) (ç, ᶎ)  =

(0,0)  with 𝑔(ᶊ, ᶇ)   ⊥     𝑡(ᶉ, ᶆ)    ⊥    ℎ(ç, ᶎ) 

given (0,0)   =

   2  {   𝑔(ᶊ, ᶇ),     𝐷(ᶉ, ᶆ),   ℎ(ç, ᶎ)  }  =

𝑔(ᶊ, ᶇ)    𝐷(ᶉ, ᶆ)∗    ℎ(ç, ᶎ)   +

   ℎ(ç, ᶎ)    𝐷(ᶉ, ᶆ)∗    𝑔(ᶊ, ᶇ) , or equivalently, 

(0,0) = 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) +

ℎ(ç, ᶎ) 𝐷(ᶉ, ᶆ) 𝑔(ᶊ, ᶇ). When we assume that 

𝐷 is (𝑔, ℎ)-derivation at (0,0). From Lemma 

2.2.1, we get 𝑔(ᶊ, ᶇ) 𝐷(ᶉ, ᶆ) ℎ(ç, ᶎ) = (0,0). 

It follows from Proposition 2.1 (4)  ⇔ (1), 

assures that 𝐷 is (𝑔, ℎ)-generalized derivation.    

∎  

 

    Now, we can say that Theorem 2.2.3, 

extends [6, Theorem 2.9] and [14, Theorem 4] 

by using  

of unital ∗-module extension Banach algebras. 

Corollary 2.2.4 [6, Theorem 2.9] 

    Suppose 𝐴  is 𝐶∗ -subalgebra of unital 𝐶∗ -

algebra 𝐵, and let a continuous linear map 𝐷 ∶

𝐴 → 𝐵  be derivation at zero or ternary 

derivation at zero, then 𝐷  is generalized 

derivation.  

Proof. Applying Theorem 2.2.3, taking 𝑔, 𝑡 

and ℎ to be the identity maps and 𝑋 = 𝑈 = 0. 
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