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  Abstract 

Surface electromyography (sEMG) is an important dimension for analyzing exercise and muscle activity. sEMG requires a very high sampling 

rate, thus wireless transmission of generated signals becomes very challenging. An important application of sEMG monitoring is the detection 

of muscle fatigue. The present study proposes a novel framework for the detection of muscular fatigue by monitoring sEMG signals obtained 

from various muscle groups throughout the body. The system uses an LSTM predictive model for the binary classification of sEMG signals 

trained on the UCI dataset. 
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1. INTRODUCTION 

Muscle fatigue arises due to the reduction in the ability of 
muscles to produce contractions [1]. This can be a result of 
vigorous physical exercise or neurological factors. The ability 
of muscles to produce contractions is limited by the ability of 
motor neurons in sustaining high frequency stimuli. Real-
time monitoring of muscle fatigue demonstrates the 
biochemical and physiological changes during physical 
activity and acts as an excellent tool for performance analysis 
in sports and athletics [2]. 

Surface electromyography is an excellent method for non-
invasive monitoring of muscular activity [3, 4]. It is very easy 
to set up and user-friendly due to its non-invasive nature. 
This has resulted in increased adoption in various biomedical 
applications [5, 6]. It is also used as an accessory for 
prosthetic limbs for various tasks such as movement 
recognition [7]. sEMG signals are highly compatible 
compared to other measurement techniques such as 
electroencephalograms and are ideal for the development of 
wearable electronic devices [8]. However, increased sensor 
noise and cross-talk may result in inaccurate analysis [9]. 
This is an important consideration while developing sEMG- 
based devices. 

The sEMG signals are ideal for the continuous monitoring 
of muscular activity. They can be used for the detection of 
various muscular disorders and conditions. Detection of 
muscular fatigue provides significant insights for both 
clinical and performance athletics applications. The present 
study proposes a novel framework for the detection of 
muscular fatigue with the help of sEMG signal 
analysis.Surface electromyography can be used in 
combination with predictive algorithms such as neural 
networks to produce excellent results in terms of the 
detection of physiological events. The long short-term 
memory (LSTM) algorithm is a type of recurrent neural 
network widely used for processing large continuous 
sequences of data. The proposed system uses the LSTM 
predictive model trained on a 4-channel analog sEMG signal 
data log with a sampling rate of 1kHz called the UCI dataset 
for real-time detection of muscle fatigue using analysis of 
sEMG signals. The main objective of the study is the analysis  

 

of performance accuracy in the detection of muscle 
fatigue and the effect of the LSTM predictive model on real-
time monitoring and response of the system. 

Various researchers have reviewed the performance of 
intermittent RNN predictive models for anticipation of 
resting earthquake patterns in EMG signals [10]. EMG 
signals in combination with inertial measurement units 
(IMUs) are also used for kinematic analysis of gait 
parameters [11]. Performance analysis shows that LSTM 
models offer better results compared to SVM-based 
techniques [12]. 

Deep learning architectures have also been applied for 
multi-stroke handwriting sequence recognition using sEMG 
signal analysis acquired through a wristband monitoring 
device [13]. Studies also explore the application of sEMG 
signals in gesture recognition by utilizing spatial-temporal 
features of the perished signals [14]. Review studies also 
investigate the application of deep learning architectures in 
combination with an EMG-based human-machine interface 
for torque estimation in muscular activity [15]. 
Comparative studies of numerous adaptive algorithms 
suggest that the application of convolutional neural 
networks improves the performance of the system in terms 
of precision [16]. 

When it comes to data acquisition and pre-processing, 
various researchers propose techniques for multi-channel 
data acquisition of both synergistic and agonistic sEMG 
data.   A multi-channel fusion RNN model as a predictive 
tool has also been proposed [17]. Inheritable programming 
methods for muscle fatigue detection using sEMG signal 
analysis have also been explored [18]. Some researchers 
propose the usage of deep belief networks (DBNs) as a 
literacy medium for the prediction of muscle fatigue onset 
from the upper extremities of the sEMG signal [19]. 
Denoising frameworks implementing convolutional 

algorithms in combination with graph neural networks for 
fatigue detection have also been proposed [20].
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It is observed that among the various methods suggested 
for the detection of muscle fatigue using sEMG signal 
analysis, there is a lack of consideration of user information 
and the physical state of the user which is crucial for muscle 
fatigue detection. The lack of automated signal acquisition 
techniques and devices also hinders implementation. 

2. METHODOLOGY 
 

 

Fig. 1. Brief overview of the proposed solution. 

 

Fig. 1 describes the various processes involved in muscle 
fatigue detection using the LSTM predictive model. The 
algorithm is trained on the UCI sEMG dataset which contains 
4-channel analog sEMG signals from 22 test subjects with 11 
different conditions and a total of 67 readings. The data is 
acquired using an MWX8 data logger. The raw data 
undergoes pre-processing and the one-hot encoded data is 
subjected to feature selection to ensure dimensionality 
reduction. The obtained samples are used for training the 
LSTM model. The trained model is evaluated using various 
parameters. 

A. Data Pre-Processing and Feature Extraction 

A total of five attributes are considered for training the 
model – Recto Femoral (RF), Femoral Biceps (BF), Vatus 
Medialis (VM), Flexion at the knee, and Semitendinosus 
(ST). The three factors that are to be considered for feature 
extraction are - segment (which defines the part of the body 
where data is acquired), channel (which corresponds to the 
electrode attached), and the muscle being measured. 

 
TABLE 1. SELECTED FEATURES 

 

Segment Lower Limb 

Channel Ch1 Ch2 Ch3 Ch4 Ch5 

Muscle RF BF VM ST FX 

Column 0 1 2 3 4 

 

Table I shows the channels, muscle groups, and segments 
selected for analysis. Muscle fatigue in the lower limbs using 
5-channel measurements has been considered. 

The original UCI sEMG dataset contains 67 samples with 
labels – fatigue detected and normal. Out of these 67 samples, 
9 samples were found to have missing values. Such samples 
were eliminated and a total of 58 sEMG samples were 
considered for training the LSTM predictive model. 

Thus, a total of 4 electrodes with 5 shares or motion 
repetitions were considered for each subject.  

The obtained data is stored in four folders - A_LOG, 
A_TXT, N_LOG Y N_TXT. Folder _log contains data in 
.log format that can be loaded and analyzed by the data log 
software. Folder _txt contains SEMG data in columns and 
their headers. 

 
TABLE 2. CONTENTS OF A STANDARD FOLDER 

 

Channel Muscle Values Units Filter Used 

Ch1 RF 15300 mV No 

Ch2 BF 15300 mV No 

Ch3 VM 15300 mV No 

Ch4 ST 15300 mV No 

Ch5 FX 765 degrees No 

*Channel – 5 is extrapolated from 50 samples to 1000 samples per second 

 
 

A sample folder 2Nsen.log contains data from five 
channels as shown in Table II. 

 

Fig.2. Pre-processed sEMG signals from Ch-1 . 

 

 
Fig. 3. Pre-processed sEMG signals from Ch-3 . 

 

Fig.2 and Fig. 3 represent the conditioned signal 
samples obtained. The waveforms describe the magnitude 
of sEMG signals during continuous motion repetitions for 
five cycles for various muscle groups.
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B. Model Training 

The filtered and conditioned sEMG signals from the UCI 
dataset are used for training the LSTM predictive model. The 
channel labels from the ‘.txt’ folders are converted into one-
hot encoded arrays. The predictive model analyzes the sEMG 
signal sequences and outputs the one-hot encoded label array 
which classifies the signal into two classes – Normal and 
Fatigue Detected. 

The optimization problem boils down to a univariate 
binary classification problem. The dataset is bifurcated into 
two subsets – the training subset and the testing subset. The 
model is trained for 300 epochs with an early stopping 
algorithm. Hyper-parameter fine-tuning is performed to 
optimize the learning rate of the algorithm. 

The trained model is evaluated on the test subset based on 
various parameters. The obtained models are selected based 
on the accuracy of prediction. The selected model is stored in 
a ‘.h5’ format for further implementation. 

3. SYSTEM DESIGN 

The design of a feasible system is an important 
requirement for real-time operation. Various sub-systems are 
recognized based on the construction modeling outlines 
which are portrayals of the product structure planning. 

 

Fig. 4. Flow diagram of the system architecture. 

 

Fig.4 provides a brief understanding of the system 
components and the working of the proposed architecture. 
The input signals are subject to feature extraction and are fed 
as the input to the trained LSTM predictive model. The 
model analyzes the sEMG sequence and outputs the 
classification label. 

A. Data Flow Diagram and its Components 

The data flow diagram provides an overview of the 
logical flow of information across the system architecture. It 
also establishes the required notations and determines the 
physical requirements for real-time operation. The data flow 
diagram representing the source, destination, and data storage 
mechanisms can be broken down into four components – 
entities, process, data storage and data flow. Entities refer to 
the components which act as data sources or receive outputs 
from the system. Processes refer to the logical and 
computational operations which are performed to extract 
inferences from the input data. Data storage refers to folders 
or repositories which store information for further use or 
analysis. Data flow refers to the route taken by the data 
stream from the input to output. 

The architecture can be broken down into two layers – 
level-0 and level-1. Fig. 5 and Fig. 6 describe the data flow 
for level-0 and level-1. Level-0 deals with data pre- 
processing and one-hot encoding of the generated feature 
vector. Level-1 deals with training and selection of the 
optimized predictive model, results from the analysis, and 
the display of results. 

 

 

Fig. 5. Data flow diagram for level-0. 

 
Fig. 6. Data flow diagram for level-1. 

 

B. Case and Sequence Diagrams 
 

 
Fig. 7. Case diagram of the model. 

 

Fig. 7 describes the functional requirements of the 
system and provides an outside view of the system. It is 
useful for the determination of internal and external 
influencing factors. It also provides information regarding 
the interaction between various components of the system. 

Sequence diagrams provide information on the various 
processes involved, their operations, and outcomes 
arranged
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in sequential order. The Exchange of messages between 
various components and the response of the system to 
different scenarios can be analyzed with the help of the 
sequence diagram. The representation and study of the case 
and sequence diagrams provide useful insights into the real- 
time operation of the system and are useful for gauging the 
design of the architectural components and their order. 

 

Fig. 8. Sequence diagram of the model. 

 

Fig. 8 provides information regarding the logical flow of 
data and interaction between various individual components 
of the system as discussed earlier. 

4. RESULTS AND DISCUSSIONS 
 

 
Fig.9. Training curves and confusion matrix. 

 

The performance of the muscle fatigue detection system is 
evaluated on the test subset obtained from the UCI sEMG 
dataset using a test train split of 80:20. The optimal model is 
selected based on error minimization and accuracy. Other 
parameters such as validation curves and confusion matrix 
have also been considered for further evaluation. 

An accuracy of 84% was obtained on the test subset. The 
system provides an efficient real-time diagnosis of muscle 
fatigue. The results obtained are very useful for the detection 
of muscular abnormalities. The detailed analysis of the 
trained model has been presented in Fig. 9 and Fig. 10. The 
framework is ideal for use in clinical environments and also 
has applications in athletic performance analysis. The 
algorithm can also be incorporated into a mobile application 
for increased ease of use and monitoring by the patients and 
medical professionals. This provides a broader perception of 
significant features for muscle fatigue detection. 

 

 
Fig.10. Confusion matrix of the trained 

model. 

 

FUTURE WORKS 

The research can be extended to hardware 
implementation of sEMG-based data acquisition systems. 
Also, domain specific applications related to athletic 
performance analysis and biomedical applications can be 
discussed in detail. Biometric applications such as 
handwriting analysis can be explored. 
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