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Abstract 

Graph products are introduced to obtain information on large graphs from similar information on 

smaller graphs. One of the most prominent graph products is Corona product of graphs. A more 

applicable version of it called as the edge corona was introduced ten years ago. A star coloring of 

an undirected graph G is an allocation of colors to every element of vertex set of the graph G such 

that no path of order four in G isbicolored. The star chromatic number of G is the minimum colors 

required to star color the graph G. Nowadays, the concept of star coloring is very much useful in 

tracebacking the IP addresses in networks. In this paper, we establish the exact value of the star 

chromatic number of edge corona product of path graph with complete graph, cycle graph, star 

graph, complete bipartite graph and any simple graph. Also, we have found the same for edge 

corona product of star graph with path graph, cycle graph, complete and any simple graph. 

Keywords: Star coloring, corona graphs, edge corona. 

1 Introduction 

The graphs studied in this paper are simple, 

finite and undirected. The notion of star 

chromatic number were first initiated by 

Branko Grünbaum in the year 1973[8]. A 

proper vertex coloring of a graph G is termed 

as star coloring of G, if no path on four vertices 

in G is 2-colored. In addition to this, the 

induced subgraphs obtained by the vertices of 

any two colors is a collection of star graphs[1, 

5, 8]. A star graph [9] is a complete bipartite 

graph of order n + 1 and it is denoted by 

K_(1,n). The least number of colors needed to 

star color the graph G is the star chromatic 

number of G. Fertin et al. [5] has given the star 

chromatic number of different graph families 

namely cycles, complete bipartite graphs, trees, 

outer planar graphs and two dimensional grids. 

Also, they investigated and gave bounds for the 

star chromatic number of other graph families 

namely hypercubes, tori, d-dimensional grids, 

planar graphsand graphs with bounded 

treewidth. 

In [1] Albertson et al. proved that even when G 

is both planar and bipartite graph, the problem 

of determining whether G has a star coloring 

with 3 colors is NP - complete. The problem of 

finding an optimal star coloring is NP-hard and 

remains so even for bipartite graphs [3, 4]. 

Gebremedhin et al. [7] gave some works related 

to applications and algorithmic approach on 

star coloring of  graphs. The concept of star 
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coloring of graphs G is usedto traceback the IP 

address of the attacker withleastcount of 

packets [15]. While tracing back the IP 

addresses, the routers arerecognisedwith pre-

assigned colors. 

Harary and Frucht [6, 9], introduced and 

studied the corona product of two graphs. The 

corona product is neither commutative nor 

associative. The idea of corona graph is used to 

represent chemical compounds in Chemistry 

[11] and application of this concept include 

robotic navigation in networks. When the 

system does not resemble the structure of 

corona product of graphs then every time one 

has to separate the system with binary conflict 

relations into equal or almost equal conflict-

free subsystems [12]. In [14], the star chromatic 

number was determined for the vertex corona 

product of graphs. In [10], Hou et al. introduced 

another type of corona product called the edge 

corona product. It is easy to observe that edge 

corona product of graphs can be applied in 

routing functions, transportation networks 

based on flights, trains, roads and ships in order 

to reach the destination and information seekers 

navigating in an information networks as they 

contain multiple paths and Hamiltonian paths. 

Graph products and their interesting 

applications have been discussed in [13]. 

Motivated by the above works, in this paper we 

study the star chromatic number of the edge 

corona product of path graph withnvertices and 

complete graph of order n (P_n♢K_n), cycle 

graph of same order (P_n♢C_n), star graph of 

n+1 vertices (P_n♢K_(1,n)), complete bipartite 

graph of order n_1+n_2 (P_n♢K_(n_1,n_2 )), 

simple graph of any order(P_n♢G) and star 

graph on n+1 vertices with path on n vertices 

(K_(1,n)♢P_n), cycle graph on n vertices 

(K_(1,n)♢C_n), complete graph on n vertices 

(K_(1,n)♢K_n), simple graph of any 

order(K_(1,n)♢G). 

 

2 Preliminaries 

  In this section, we recall the definition of edge 

corona product of graphs together with some 

theorems given in [5, 10]. The basic  graph 

theory terminologies that are used in this paper 

can be found in [2, 9]. 

 The edge corona of two graphs G_1 with 

vertices (or nodes) v_1,⋯,v_n and edges 

e_1,⋯,e_k and G_2 is obtained by taking k 

copies of G_2 and for every edge e_m=v_i v_j 

of G_1, joining edges between the end vertices 

v_i,v_j of e_m with every vertex of the m^th 

copy of G_2[10] .  

  Let G_1 be the cycle graph of order 3 (see Fig. 

1(a)) and G_2 be the path graph of order 3 (see 

Fig. 1(b)). The edge corona G_1♢G_2 of these 

two graphs is shown in Fig. 1(c). 

Fig  1. Edge corona of 𝑪𝟑 and 𝑷𝟐 

 

Next we recall two useful results:  

Theorem 2.1[5]``If 𝐶𝑛  is a cycle with 𝑛 ≥ 3 

vertices, then  

𝜒𝑠(𝐶𝑛) = {
4 𝑤ℎ𝑒𝑛  𝑛 = 5
3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Theorem 2.2[5] Let 𝐾𝑛,𝑚  be the complete 

bipartite graph. then  

𝜒𝑠(𝐾𝑛,𝑚) = min{𝑛, 𝑚} + 1.” 

3 Main Results 

We study the star chromatic number of some 

edge corona product of graphs in this section. 

 

Theorem 3.1 For any 𝑛 ≥ 4,  

 

𝜒𝑠(𝑃𝑛♢𝐾𝑛) = 𝑛 +  3.(1) 

 

Proof. Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛}  and 
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𝑉(𝐾𝑛) = {𝑢1, 𝑢2, ⋯ , 𝑢𝑛} . Let 𝑉(𝑃𝑛♢𝐾𝑛) =
{𝑣𝑥|1 ≤ 𝑥 ≤ 𝑛} ∪ {𝑢𝑦𝑧|1 ≤ 𝑦 ≤ 𝑛 − 1; 1 ≤

𝑧 ≤ 𝑛}. As in the definition of the edge corona 

graph, end vertices 𝑣𝑥, 𝑣𝑥+1 ∈ 𝑉(𝑃𝑛)  are 

adjacent to every vertex in {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛 −

1; 1 ≤ 𝑧 ≤ 𝑛}. 

The star coloring for the vertices of 𝑃𝑛♢𝐾𝑛 

with 𝑛 + 3 colors is given as follows:  

    1.  For every 𝑥 ∈ {1,2, ⋯ , 𝑛} , assign the 

color 𝑐𝑥 to 𝑣𝑥.  

    2.  For 1 ≤ 𝑦 ≤ 𝑛 − 1 and 1 ≤ 𝑧 ≤ 𝑛,  

• If 𝑦 + 𝑧 + 1 ≤ 𝑛 + 3, then assign the 

color 𝑐𝑦+𝑧+1 to 𝑢𝑦𝑧.  

• If 𝑦 + 𝑧 + 1 > 𝑛 + 3, then assign the 

coloring as star chromatic as given 

below:  

        * 𝑐1 to 𝑢𝑦𝑧 when 𝑦 + 𝑧 ≡ 0(mod𝑛 + 3).  

        * 𝑐2 to 𝑢𝑦𝑧 when 𝑦 + 𝑧 ≡ 1(mod𝑛 + 3).  

            * …    …    … 

   * 𝑐𝑛+1 to 𝑢𝑦𝑧 when 𝑦 + 𝑧 ≡ 𝑛  (mod𝑛 + 3).  

   Therefore, 𝜒𝑠(𝑃𝑛♢𝐾𝑛) ≤ 𝑛 + 3. 

To prove 𝜒𝑠(𝑃𝑛♢𝐾𝑛) ≥ 𝑛 + 3 , let us, on the 

contrary, assume that 𝜒𝑠(𝑃𝑛♢𝐾𝑛) is less than 

𝑛 + 3 , say 𝜒𝑠(𝑃𝑛♢𝐾𝑛) = 𝑛 + 2. Now, assign 

𝑛 + 2  colors to the vertices {𝑣1, 𝑣2, 𝑢𝑦𝑧: 1 ≤

𝑧 ≤ 𝑛}  for proper star coloring. Since 

{𝑣1, 𝑣2, 𝑢𝑦𝑧: 1 ≤ 𝑧 ≤ 𝑛}  induces a clique of 

order 𝑛 + 2 (say 𝐾𝑛+2), star color the clique of 

order 𝑛  induced by the second copy of 𝐾𝑛 , 

{𝑢2𝑧: 1 ≤ 𝑧 ≤ 𝑛}, with already existing colors 

such that 𝑐(𝑣2) ≠ 𝑐(𝑢2𝑧) . By assigning  the 

same 𝑛 + 2  colors to the verties of another 

clique induced by the third copy of 𝐾𝑛 , 

{𝑣3, 𝑣4, 𝑢3𝑧: 1 ≤ 𝑧 ≤ 𝑛} ,results the 

contradiction that one of the path of order four 

between these cliques is bicolored. Therefore a 

star coloring with 𝑛 + 2 colors is not possible. 

Thus, 𝜒𝑠(𝑃𝑛♢𝐾𝑛) ≥ 𝑛 + 3 . Hence, 

𝜒𝑠(𝑃𝑛♢𝐾𝑛) = 𝑛 + 3.  

Note 1.For 𝑛 = 2, 3, 𝜒𝑠(𝑃𝑛♢𝐾𝑛) = 𝑛 + 2.  

Example 3.1   Substitute 𝑛 = 4 in Eqn. (1). By 

Theorem 3.1, we have 𝜒𝑠(𝑃4♢𝐾4) = 4 + 3 =
7 (Fig. 2). 

Now assign the star coloring as follows:  

𝑐(𝑣1) = 𝑐(𝑢34) = 𝑐1; 𝑐(𝑣2) = 𝑐2 

𝑐(𝑣3) = 𝑐(𝑢11) = 𝑐3; 𝑐(𝑣4) = 𝑐(𝑢12) =
𝑐(𝑣21) = 𝑐4; 

𝑐(𝑢13) = 𝑐(𝑢22) = 𝑐(𝑢31) = 𝑐5; 
𝑐(𝑢14) = 𝑐(𝑢23) = 𝑐(𝑢32) = 𝑐6; 
𝑐(𝑢24) = 𝑐(𝑢33) = 𝑐7. 

Fig 2. 𝝌𝒔(𝑷𝟒♢𝑲𝟒) 

 

Theorem 3.2  For any 𝑛 ≥ 4,  

𝜒𝑠(𝑃𝑛♢𝐶𝑛) = {
7 𝑛 = 5
6 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (2) 

 

Proof. Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} , 𝑉(𝐶𝑛) =
{𝑢1, 𝑢2, … , 𝑢𝑛}  and 𝑉(𝑃𝑛♢𝐶𝑛) = {𝑣𝑥: 1 ≤ 𝑥 ≤
𝑛} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛 − 1; 1 ≤ 𝑧 ≤ 𝑛} . As in 

the definition of edge corona graph, the end 

vertices 𝑣𝑥, 𝑣𝑥+1 ∈ 𝑉(𝐶𝑛) are adjacent to every 

vertex in{𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛 − 1; 1 ≤ 𝑧 ≤ 𝑛}. 

Case (i): 𝑛 = 5, Assign the following 7 colors 

for 𝑃𝑛♢𝐶𝑛 as star chromatic:  

    • For every 𝑥 ∈ {1, … ,5}, assign the color 𝑐𝑥 

to 𝑣𝑥.  

    • If 𝑧 = 2,3,4, then assign the color 𝑐𝑧+1 to 

𝑢1𝑧.  

    • If 𝑧 = 3,4,5, then assign the color 𝑐𝑧+1 to 

𝑢2𝑧.  

    • If 𝑧 = 4,5 , then assign the color 𝑐𝑧+1  to 

𝑢3𝑧.  

    • If 𝑧 = 3,5, then assign the color 𝑐6 to 𝑢4𝑧.  

    • If 1 ≤ 𝑦 ≤ 4,1 ≤ 𝑧 ≤ 5 , then assign the 

color 𝑐7 to 𝑢𝑦𝑧∀𝑦 = 𝑧.  

Assign the color 𝑐1 to the vertices 𝑢31 and 𝑢41. 

For the vertices 𝑢15, 𝑢21, 𝑢32, 𝑢42, assign the 

colors 𝑐3 , 𝑐4 , 𝑐6 , 𝑐2 , respectively. Thus 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≤ 7. 

To prove 𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≥ 7, let us assume that 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) < 7 , say 𝜒𝑠(𝑃𝑛♢𝐶𝑛) = 6 . By 

Theorem 2.1, assign six colors to the vertices of 
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the set{𝑣1, 𝑣2, 𝑢𝑦𝑧: 1 ≤ 𝑧 ≤ 𝑛}, since {𝑢𝑦𝑧: 1 ≤

𝑧 ≤ 𝑛}  is a cycle of order 5, it needs four 

distinct colors to have proper star coloring, 𝑣1 

and 𝑣2  is adjacent to every vertex from 

{𝑢𝑦𝑧: 1 ≤ 𝑧 ≤ 𝑛} . Star color the vertices of 

order 5 of the second copy of 𝐶𝑛 with any of the 

four existing colors such that 𝑐(𝑣2) ≠ 𝑐(𝑢2𝑧). 

By assigning the same six colors for the another 

set of vertices {𝑣3, 𝑣4, 𝑢3𝑧: 1 ≤ 𝑧 ≤ 𝑛}results a 

contradiction that one of the path of order four 

between these set of vertices is bicolored. Thus, 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≥ 7. 

Case (ii): 𝑛 ≠ 5. Assign the following 6 colors 

as star chromatic for 𝑝𝑛♢𝐶𝑛:  

    • For every 𝑥 ∈ {1,2, … ,6}, assign the color 

𝑐𝑥 to 𝑣𝑥.  

    • For every 𝑥 ∈ {7,8, … , 𝑛}, assign the color 

𝑐𝑘, 1 ≤ 𝑘 ≤ 6 to all such vertices 𝑣𝑥 that 

𝑥 ≡ 𝑘mod6.  

    • color all the vertices of 𝑉(𝐶𝑛
(1)

), 𝑉(𝐶𝑛
(7)

), 

𝑉(𝐶𝑛
(13)

) , …  with colors 𝑐3 , 𝑐4 , 𝑐5 , 

respectively.  

    • color all the vertices of 𝑉(𝐶𝑛
(2)

), 𝑉(𝐶𝑛
(8)

), 

𝑉(𝐶𝑛
(14)

) , …  with colors 𝑐4 , 𝑐5 , 𝑐6 , 

respectively.  

    • color all the vertices of 𝑉(𝐶𝑛
(3)

), 𝑉(𝐶𝑛
(9)

), 

𝑉(𝐶𝑛
(15)

) , …  with colors 𝑐1 , 𝑐5 , 𝑐6 , 

respectively.  

    • color all the vertices of 𝑉(𝐶𝑛
(4)

), 𝑉(𝐶𝑛
(10)

), 

𝑉(𝐶𝑛
(16)

) , …  with colors 𝑐1 , 𝑐2 , 𝑐6 , 

respectively.  

    • color all the vertices of 𝑉(𝐶𝑛
(5)

), 𝑉(𝐶𝑛
(11)

), 

𝑉(𝐶𝑛
(17)

) , …  with colors 𝑐1 , 𝑐2 , 𝑐3 , 

respectively.  

    • color all the vertices of 𝑉(𝐶𝑛
(6)

), 𝑉(𝐶𝑛
(12)

), 

𝑉(𝐶𝑛
(18)

) , …  with colors 𝑐2 , 𝑐3 , 𝑐4 , 

respectively.  

 

Therefore 𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≤ 6 . To prove 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≥ 6 , let us assume that 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) < 6 , say 𝜒𝑠(𝑃𝑛♢𝐶𝑛) = 5 . By 

Theorem 2.1, assign five colors to the vertices 

{𝑣1, 𝑣2, 𝑢𝑦𝑧: 1 ≤ 𝑧 ≤ 𝑛} , since {𝑢𝑦𝑧: 1 ≤ 𝑧 ≤

𝑛}  is a cycle,𝑣1  and 𝑣2  are adjacent to each 

{𝑢𝑦𝑧: 1 ≤ 𝑧 ≤ 𝑛}. It is possible to star color the 

second copy of 𝐶5 with any 3 of the existing 

colors such that 𝑐(𝑣2) ≠ 𝑐(𝑢𝑦𝑧). Assigning the 

same five colors to another set of vertices 

{𝑣3, 𝑣4, 𝑢3𝑧: 1 ≤ 𝑧 ≤ 𝑛}results a contradiction 

that one of the paths of order four between these 

set of vertices is bicolored. Therefore a star 

coloring with five colors is not possible. Thus 

𝜒𝑠(𝑃𝑛♢𝐶𝑛) ≥ 6 . Hence 𝜒𝑠(𝑃𝑛♢𝐶𝑛) = 6  for 

𝑛 ≠ 5.  

Note 2. For 𝑛 = 3, 𝜒𝑠(𝑃𝑛♢𝐶𝑛) = 5.  

The cases considered in Theorem 3.2 are 

demonstrated in Example 3.2. 

Example 3.2 Case (i): If 𝑛 = 5  in Eqn. (2), 

then 𝜒𝑠(𝑃5♢𝐶5) = 7.  

 

Assign the star coloring for 𝜒𝑠(𝑃5♢𝐶5)  as 

follows:  

𝑐(𝑣1) = 𝑐(𝑢31) = 𝑐(𝑢41) = 𝑐1; 𝑐(𝑣2)
= 𝑐(𝑢42) = 𝑐2; 

𝑐(𝑣3) = 𝑐(𝑢12) = 𝑐3; 𝑐(𝑣4) = 𝑐(𝑢13)
= 𝑐(𝑢23) = 𝑐4; 

𝑐(𝑣5) = 𝑐(𝑢14) = 𝑐(𝑢24) = 𝑐(𝑢34) = 𝑐5; 
𝑐(𝑢15) = 𝑐(𝑢25) = 𝑐(𝑢35) = 𝑐(𝑢45) = 𝑐6; 
𝑐(𝑢11) = 𝑐(𝑢22) = 𝑐(𝑢33) = 𝑐(𝑢44)

= 𝑐(𝑢55) = 𝑐7. 
 It is obvious that the graph 𝑃5♢𝐶5  accepts a 

star coloring. 

Case (ii): Let 𝑛 ≠ 5 . Let 𝑛 = 4  in Eqn. (2). 

Then 𝜒𝑠(𝑃4♢𝐶4) = 6 (See Fig. 3). Assign the 

star coloring as follows:  

𝑐(𝑣1) = 𝑐(𝑢31) = 𝑐1; 𝑐(𝑣2) = 𝑐2; 
𝑐(𝑣3) = 𝑐(𝑢31) = 𝑐3; 𝑐(𝑣4) = 𝑐(𝑢12)

= 𝑐(𝑢21) = 𝑐4; 
𝑐(𝑢13) = 𝑐(𝑢22) = 𝑐(𝑢31) = 𝑐5; 
𝑐(𝑢21) = 𝑐(𝑢23) = 𝑐(𝑢32) = 𝑐(𝑢34) = 𝑐6. 
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Fig 3. 𝝌𝒔(𝑷𝟒♢𝑪𝟒) 

 

Theorem 3.3 Let 𝑛 ≥ 4 be a positive integer. 

Then  

𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) = 5. (3) 

 

Proof. Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}  and 

𝑉(𝐾1,𝑛) = {𝑢𝑦, 𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛 − 1; 1 ≤ 𝑧 ≤

𝑛},  and 𝑉(𝑃𝑛♢𝐾1,𝑛) = {𝑣𝑥/1 ≤ 𝑥 ≤ 𝑛} ∪
{𝑢𝑦: 1 ≤ 𝑦 ≤ 𝑛 − 1} ∪ {𝑢𝑦𝑧/1 ≤ 𝑦 ≤ 𝑛; 1 ≤

𝑧 ≤ 𝑛} . As in the definition of edge corona 

graph, all pairs of end vertices 𝑣𝑥, 𝑣𝑥+1 ∈
𝑉(𝑃𝑛) is adjacent to every vertex in {𝑢𝑦: 1 ≤

𝑦 ≤ 𝑛 − 1} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛 − 1; 1 ≤ 𝑧 ≤

𝑛}.  

 

    • For every 𝑥 ∈ {1,2, … , 𝑛} , color the 

vertices 𝑣𝑥  with colors 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 , 𝑐5 , 

respectively.  

    • For every 𝑦 ∈ {1,2, … , 𝑛 − 1} , color the 

vertices 𝑢𝑦  with colors 𝑐3 , 𝑐4 , 𝑐5 , 𝑐1 , 𝑐2 , 

respectively.  

    • For 1 ≤ 𝑦 ≤ 5 ; 1 ≤ 𝑧 ≤ 𝑛 , color the 

vertices 𝑢𝑦𝑧  with colors 𝑐4 , 𝑐5 , 𝑐1 , 𝑐2 , 𝑐3 , 

respectively.  

    • For 6 ≤ 𝑦 ≤ 𝑛  and 1 ≤ 𝑧 ≤ 𝑛 , color the 

vertices 𝑢𝑦𝑧 as a star coloring as follows:  

        - If 𝑦 ≡ 1mod5 , then color the vertices 

𝑢𝑦𝑧 with color 𝑐4.  

        - If 𝑦 ≡ 2mod5 , then color the vertices 

𝑢𝑦𝑧 with color 𝑐5.  

        - If 𝑦 ≡ 3mod5 , then color the vertices 

𝑢𝑦𝑧 with color 𝑐1.  

        - If 𝑦 ≡ 4mod5 , then color the vertices 

𝑢𝑦𝑧 with color 𝑐2.  

        - If 𝑦 ≡ 0mod5 , then color the vertices 

𝑢𝑦𝑧 with color 𝑐3.   

 

Therefore 𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) ≤ 5 . To prove 

𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) ≥ 5 . Let us assume that 

𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) < 5 , say 𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) = 4 . 

Assign four colors to {𝑣1, 𝑣2, 𝑢1, 𝑢1𝑧: 1 ≤ 𝑧 ≤
𝑛}. Since {𝑢1, 𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛} is a star graph, it 

needs two distinct colors and each {𝑢1, 𝑢1𝑧: 1 ≤
𝑧 ≤ 𝑛}  is adjacent to 𝑣1  and 𝑣2 . This shows 

that 𝑣1 and 𝑣2 need another two distinct colors 

for proper star coloring. Star color the second 

copy of 𝐾1,𝑛  (i.e. {𝑢2, 𝑢2𝑧: 1 ≤ 𝑧 ≤ 𝑛} ) with 

any two of colors which already exist such that 

𝑐(𝑣2) ≠ 𝑐(𝑢2) ≠ {𝑐(𝑢2𝑧) ; 1 ≤ 𝑧 ≤ 𝑛} . By 

assigning the same four colors to another set of 

vertices {𝑣3, 𝑣4, 𝑢3, 𝑢3𝑧: 1 ≤ 𝑧 ≤ 𝑛} , results a 

contradiction that one the path of order four 

between these set of vertices is bicolored. 

Therefore a star coloring with 4 colors is not 

possible. Thus 𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) ≥ 5 . Hence 

𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) = 5.  

Note 3. For 𝑛 = 2, 3, 𝜒𝑠(𝑃𝑛♢𝐾1,𝑛) = 4.  

Example 3.3 Substitute 𝑛 = 4 in Eqn. (3). By 

Theorem 3.3, we observe that 𝜒𝑠(𝑃4♢𝐾1,4) = 5 

(see Fig. 4), which can be done by assigning the 

colors in the following way:  

𝑐(𝑣1) = 𝑐(𝑢3) = 𝑐1; 𝑐(𝑣2) = 𝑐2; 
𝑐(𝑣3) = 𝑐(𝑢1) = 𝑐3; 
𝑐(𝑢11) = 𝑐(𝑢12) = 𝑐(𝑢13) = 𝑐(𝑢14) = 𝑐4; 
𝑐(𝑢21) = 𝑐(𝑢22) = 𝑐(𝑢23) = 𝑐(𝑢24) = 𝑐5; 
𝑐(𝑢31) = 𝑐(𝑢32) = 𝑐(𝑢33) = 𝑐(𝑢34) = 𝑐6. 

Fig 4. 𝝌𝒔(𝑷𝟒♢𝑲𝟏,𝟒) 

 

Theorem 3.4  For 𝑛 ≥ 4  and 𝑛 = 𝑛1  or 𝑛 =
𝑛2,  

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = min{𝑛1, 𝑛2} + 4. (4) 

 

Proof. Case (i): If 𝑛1 ≤ 𝑛2 , let 𝑛 =
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max{𝑛1, 𝑛2} = 𝑛2 . Let 𝑉(𝑃𝑛) = {𝑣𝑥: 1 ≤ 𝑥 ≤
𝑛2 − 1} , 𝑉(𝐾𝑛1,𝑛2

) = {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 −

1; 1 ≤ 𝑧 ≤ 𝑛1} ∪ {𝑤𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤

𝑧 ≤ 𝑛2}  and 𝑉(𝑃𝑛♢𝐾𝑛1,𝑛2
) = {𝑣𝑥: 1 ≤ 𝑥 ≤

𝑛} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛1} ∪

{𝑤𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛2}. As in the 

definition of edge corona graph, all end vertices 

𝑣𝑥, 𝑣𝑥+1 ∈ 𝑉(𝑃𝑛)  are adjacent to each vertex 

in {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛1} ∪

{𝑤𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛2} . Assign 

the star coloring as follows:  

    • For 1 ≤ 𝑥 ≤ 𝑛 − 1, if 𝑥 ≤ 𝑛1 + 4, assign 

the color 𝑐𝑥 to the vertex 𝑣𝑥.  

    • For 1 ≤ 𝑥 ≤ 𝑛 − 1 , color the vertex 𝑣𝑥 

with 𝑐𝑘 if 𝑥 > 𝑛1 + 4, 

if 𝑥 ≡ 𝑘(mod𝑛1 + 4); 1 ≤ 𝑘 ≤ (𝑛1 + 4).  

    • For 1 ≤ 𝑦 ≤ 𝑛2 − 1,1 ≤ 𝑧 ≤ 𝑛1, color the 

vertex 𝑢𝑦𝑧 with 𝑐𝑦+𝑧+1 if 𝑦 + 𝑧 ≤ 𝑛1 + 4.  

    • For 1 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛1, color the 

vertex 𝑢𝑦𝑧 with 𝑐𝑘 if 𝑦 + 𝑧 ≡ 0(mod𝑛1 + 4).  

    • For 1 ≤ 𝑦 ≤ 2; 1 ≤ 𝑧 ≤ 𝑛2 , if 𝑐𝑘  is the 

color of the vertex 𝑢𝑦𝑛1
 then color all the 

vertices 𝑤𝑦𝑧 with color 𝑐𝑘+1.  

    • For 3 ≤ 𝑦 ≤ 𝑛2 − 1; 1 ≤ 𝑧 ≤ 𝑛2, color the 

vertices 𝑤𝑦𝑧  with one of the pre-assigned 

colors such that 𝑐(𝑤𝑦𝑧) ≠ 𝑐(𝑣𝑥) ≠ 𝑐(𝑣𝑥−1) ≠

𝑐(𝑢𝑦𝑧).  

 Thus 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≤ 𝑛1 + 4 when 𝑛1 < 𝑛2. 

To prove 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≥ 𝑛1 + 4 , let us 

assume that 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) < 𝑛1 + 4 , say 

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛1 + 3 . By Theorem 

2.2, 𝑛1 + 1  colors needed for a proper star 

coloring to the set {𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛1; 𝑤1𝑧: 1 ≤
𝑧 ≤ 𝑛2} . Since the vertices 𝑣1  and 𝑣2  are 

adjacent to each of the vertices in the set 

{𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛1} ∪ {𝑤1𝑧: 1 ≤ 𝑧 ≤ 𝑛2} , we 

need 𝑛1 + 3  colors to star color 

{𝑣1, 𝑣2, 𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛1} ∪ {𝑤1𝑧: 1 ≤ 𝑧 ≤ 𝑛2}. 

Star color the second copy of 𝐾𝑛1,𝑛2
 with colors 

which already exist such that 𝑐(𝑣2) ≠ 𝑐(𝑢𝑖𝑗) ≠

𝑐(𝑤𝑖𝑗) . Assigning the same 𝑛1 + 3  colors to 

the set {𝑣3, 𝑣4, 𝑢3𝑧: 1 ≤ 𝑧 ≤ 𝑛1, 𝑤3𝑧: 1 ≤ 𝑧 ≤
𝑛2}results a contradiction that one of the path 

of order four between these set of vertices is 

bicolored. Thus 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛1 + 3 is not 

possible. Therefore 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≥ 𝑛1 + 4 . 

Hence 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛1 + 4. 

Case (ii): If 𝑛2 < 𝑛1 . Let 𝑛 = max{𝑛1, 𝑛2} =
𝑛1 . Let 𝑉(𝑃𝑛) = {𝑣𝑥: 1 ≤ 𝑥 ≤ 𝑛2 − 1} , 

𝑉(𝐾𝑛1,𝑛2
) = {𝑤𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤

𝑛2} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛1}  and 

𝑉(𝑃𝑛♢𝐾𝑛1,𝑛2
) = {𝑣𝑥: 1 ≤ 𝑥 ≤ 𝑛} ∪ {𝑤𝑦𝑧: 1 ≤

𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛2} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛1} . As in the definition of 

edge corona graph, all end vertices 𝑣𝑥, 𝑣𝑥+1 ∈
𝑉(𝑃𝑛) are adjacent to all the vertices from the 

set {𝑤𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛2} ∪

{𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛1} . Assign 

the star coloring as follows:  

    • For 1 ≤ 𝑥 ≤ 𝑛 − 1, assign the color 𝑐𝑥 to 

the vertex 𝑣𝑥 if 𝑥 ≤ 𝑛2 + 4.  

    • For 1 ≤ 𝑥 ≤ 𝑛 − 1 , color the vertex 𝑣𝑥 

with 𝑐𝑘 if 𝑥 > 𝑛2 + 4; 

if 𝑥 ≡ 𝑘(mod𝑛2 + 4); 1 ≤ 𝑘 ≤ (𝑛2 + 4).  

    • For 1 ≤ 𝑦 ≤ 𝑛1 − 1,1 ≤ 𝑧 ≤ 𝑛2, color the 

vertex 𝑤𝑦𝑧 with 𝑐𝑦+𝑧+1 if 𝑦 + 𝑧 ≤ 𝑛2 + 4.  

    • For 1 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛2, color the 

vertex 𝑤𝑦𝑧 with 𝑐𝑘 if 𝑦 + 𝑧 ≡ 0(mod𝑛2 + 4).  

    • For 1 ≤ 𝑦 ≤ 2; 1 ≤ 𝑧 ≤ 𝑛1 , if 𝑐𝑘  is the 

color of the vertex 𝑢𝑦𝑛2
 then color all the 

vertices 𝑢𝑦𝑧 with color 𝑐𝑘+1.  

    • For 3 ≤ 𝑦 ≤ 𝑛1 − 1; 1 ≤ 𝑧 ≤ 𝑛1, color the 

vertices 𝑢𝑦𝑧 with one of the pre-assigned colors 

such that 𝑐(𝑢𝑦𝑧) ≠ 𝑐(𝑣𝑥) ≠ 𝑐(𝑣𝑥−1) ≠

𝑐(𝑤𝑦𝑧).  

 Thus 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≤ 𝑛2 + 4 when 𝑛2 < 𝑛1. 

To prove 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≥ 𝑛2 + 4 , let us 

assume that 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) < 𝑛2 + 4 , say 

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛2 + 3 . By Theorem 2.2, 

𝑛2 + 1 colors needed for a proper star coloring 

to the set {𝑤1𝑧: 1 ≤ 𝑧 ≤ 𝑛2} ∪ {𝑢1𝑧: 1 ≤ 𝑧 ≤
𝑛1}. Since the vertices 𝑣1 and 𝑣2 are adjacent 

to each of the vertices in {𝑤1𝑧: 1 ≤ 𝑧 ≤ 𝑛2} ∪
{𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛1} , it needs 𝑛2 + 3  colors to 

star color {𝑣1, 𝑣2, 𝑤1𝑧: 1 ≤ 𝑧 ≤ 𝑛2, 𝑢1𝑧: 1 ≤
𝑧 ≤ 𝑛1}. Star color the second copy of 𝐾𝑛1,𝑛2
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with existing colors such that 𝑐(𝑣2) ≠
𝑐(𝑤𝑦𝑧) ≠ 𝑐(𝑢𝑦𝑧). By assigning the same 𝑛2 +

3  colors to the set {𝑣3, 𝑣4, 𝑤3𝑦: 1 ≤ 𝑦 ≤

𝑛2, 𝑢3𝑦: 1 ≤ 𝑦 ≤ 𝑛1}  results a contradiction 

that onee of the path of order four between 

these set of vertices is bicolored. Thus 

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛2 + 3  is not possible. 

Therefore 𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) ≥ 𝑛2 + 4 . Hence 

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = 𝑛2 + 4.  

Note 4. For 𝑛 = 2, 3 and 𝑛 = 𝑛1 or 𝑛 = 𝑛2,  

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = min{𝑛1, 𝑛2} + 3. 

The cases considered in Theorem 3.4 are 

demonstrated in Example 3.4. 

Example 3.4   Case (i): Let 𝑛1 < 𝑛2  and let 

𝑛 = 𝑛2 = 4 𝑎𝑛𝑑 𝑛1 = 2  in Eqn. (4). Then 

𝜒𝑠(𝑃4♢𝐾2,4) = min{2,4} + 4 = 2 + 4 = 6 

(see Fig. 4). Assign the star coloring as follows:  

𝑐(𝑣1) = 𝑐(𝑤31) = 𝑐(𝑤32) = 𝑐(𝑤33)
= 𝑐(𝑤34) = 𝑐6, 𝑐(𝑣2) = 𝑐2; 

𝑐(𝑣3) = 𝑐(𝑢11) = 𝑐3; 𝑐(𝑣4) = 𝑐(𝑢12) = 𝑐4; 
𝑐(𝑤11) = 𝑐(𝑤12) = 𝑐(𝑤13) = 𝑐(𝑤14)

= 𝑐(𝑢22) = 𝑐(𝑢31) = 𝑐5; 
𝑐(𝑤21) = 𝑐(𝑤22) = 𝑐(𝑤23) = 𝑐(𝑤24)

= 𝑐(𝑢31) = 𝑐6. 
 Case (ii): Let 𝑛1 ≥ 𝑛2. By Theorem 3.2 of the 

Case (ii), it is easy to show that 

𝜒𝑠(𝑃𝑛♢𝐾𝑛1,𝑛2
) = min{𝑛1, 𝑛2} + 4.  

Fig 5. 𝝌𝒔(𝑷𝟒♢𝑲𝟐,𝟒) 

 

Notation. Let 𝐺 be a simple graph of any order 

say 𝑡 and denote the vertices of each copy of 𝐺 

as 𝑢𝑦𝑧  where, 𝑦  represents the corresponding 

copy of 𝐺 and 𝑧 ranges from 1 to 𝑡. We use this 

notations in Theorem 3.5 and Theorem 3.9.  

Theorem 3.5 For any 𝑛 ≥ 4,  

𝜒𝑠(𝑃𝑛♢𝐺) = 𝜒𝑠(𝐺)  +  3. (5) 

 

Proof. Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}  and 

𝜒𝑠(𝐺) = 𝑟. 

Color the vertices of 𝑃𝑛♢𝐺 with 𝑟 + 3 colors as 

follows and it is denoted by 𝜎. 

    • Color the vertex 𝑣𝑥 with color 𝑐𝑘 such that, 

𝑥 ≡ 𝑘(mod𝑟 + 3)  for each 𝑥 ∈ {1,2, … , 𝑛} 

and 0 ≤ 𝑘 ≤ 𝑟 + 3. 

    • Assign the star coloring to all the copies of 

G in 𝑃𝑛♢𝐺 with the color set {𝑐𝑘/𝑦 + 𝑧 + 1 ≡
𝑘(mod𝑟 + 3);  1 ≤ 𝑦 ≤ 𝑛 − 1;  0 ≤ 𝑘 ≤ 𝑟 +
3}. 

It is obvious that 𝜎 is a proper coloring. Now, 

we have to prove that 𝜎 is a star coloring. 

Let 𝑃4  be any path of order four in 𝑃𝑛♢𝐺 . If 
|𝑉(𝑃4) ∩ 𝑉(𝑃𝑛)| = 4 or 0  then it is obvious 

that, 𝑃4 is not bicolored. If |𝑉(𝑃4) ∩ 𝑉(𝑃𝑛)| =
3 then 𝑃4  is not bicolored, since, any three 

successive vertices of 𝑃𝑛  in 𝑃𝑛♢𝐺  have three 

distinct colors. If |𝑉(𝑃4) ∩ 𝑉(𝑃𝑛)| = 2  either 

𝑃4 has two vertices on each copy of G of 𝑃𝑛♢𝐺 

or it has two vertices on two different copies of 

G say 𝐺𝑖 and 𝐺𝑗 of 𝑃𝑛♢𝐺. For the former case, 

let 𝜎(𝑣𝑥) = 𝑐𝑘;  𝑥 ≡ 𝑘(mod𝑟 + 3), 𝜎(𝑣𝑥+1) =
𝑐𝑚;  𝑥 + 1 ≡ 𝑚(mod𝑟 + 3)  and 𝑐𝑘 ≠ 𝑐𝑚 ≠ 𝑐𝑙 

where 𝑥 + 𝑦 ≡ 𝑙(mod𝑟 + 3)  then 𝑃4  has 

atleast three vertices with different colors. 

Therefore 𝑃4  is not bicolored. For the latter 

case, 𝜎(𝑣𝑥+1) = 𝑐𝑚;  𝑥 + 1 ≡ 𝑚(mod𝑟 + 3) , 

𝜎(𝑣𝑥+2) = 𝑐𝑝;  𝑥 + 2 ≡ 𝑝(mod𝑟 + 3) , any 

vertex of 𝐺𝑗 has color 𝑐𝑥+𝑦+1, obviously, three 

sucessive vertices have dstinct color, i.e., 𝑃4 is 

not bicolored. If |𝑉(𝑃4) ∩ 𝑉(𝑃𝑛)| = 1 , since 

the number of colors on the three successive 

vertices is atleast two and 𝜎(𝑣𝑥)  is different 

from other color then 𝑃4 is not bicolored. Thus, 

𝜒𝑠(𝑃𝑛♢𝐺) ≤ 𝜒𝑠(𝐺) + 3. 

To prove 𝜒𝑠(𝑃𝑛♢𝐺) ≥ 𝜒𝑠(𝐺) + 3 , on the 

contrary, let us assume that 𝜒𝑠(𝑃𝑛♢𝐺) is less 

than 𝑟 + 3, say 𝜒𝑠(𝑃𝑛♢𝐺) = 𝑟 + 2. Assign 𝑟 +
2  colors to the vertices {𝑣1, 𝑣2, 𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛 − 1 and 𝑧 starts from 1 to t} (𝑢𝑦𝑧 refers the 

label of vertices of copies of G) for proper star 

coloring. Since 𝐺  has star chromatic number 

𝑟 + 2 , star color the next copy of 𝐺  with 𝑟 

colors. By assigning the same 𝑟 + 2 colors to 
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another copy of 𝐺  with same 𝑟 + 2  colors, 

results a contradiction that one of the path of 

order four between these vertes sets is 

bicolored. Therefore a star coloring with 𝑟 + 2 

colors is not possible. Thus, 𝜒𝑠(𝑃𝑛♢𝐺) ≥ 𝑟 +
3. Hence, 𝜒𝑠(𝑃𝑛♢𝐺) = 𝜒𝑠(𝐺) + 3.  

Note 5. For 𝑛 = 2, 3,  

𝜒𝑠(𝑃𝑛♢𝐺) = 𝜒𝑠(𝐺) + 2. 
Theorem 3.6 Let 𝑛 ≥ 3  be any positive 

integer,  

𝜒𝑠(𝐾1,𝑛♢𝑃𝑛) = 5. (6) 

 

Proof. Let 𝑉(𝐾1,𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛+1}  and 

𝑉(𝑃𝑛) = {𝑢1, 𝑢2, … , 𝑢𝑛} . Let 𝑉(𝐾1,𝑛♢𝐾𝑛) =

{𝑣𝑥: 1 ≤ 𝑥 ≤ 𝑛 + 1} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛; 1 ≤

𝑧 ≤ 𝑛} . As in the definition of edge corona 

graph, all end vertices 𝑣𝑥 , 𝑣𝑥+1 ∈ 𝑉(𝐾1,𝑛) are 

adjacent to each vertex in { 𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛; 1 ≤ 𝑧 ≤ 𝑛}. Assign the following 5 colors as 

star chromatic for 𝐾1,𝑛♢𝑃𝑛:  

    • Assign color 𝑐5 to the vertex 𝑣1.  

    • For every 𝑥 ∈ {2,3, ⋯ , 𝑛 + 1} , color the 

vertices 𝑣𝑥 with color 𝑐4.  

    • Assign the colors 𝑐1, 𝑐2, 𝑐3 respectively to 

all the vertices of each copy of 𝑃𝑛  (i.e. 

∀{𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛; 1 ≤ 𝑧 ≤ 𝑛}).  

 Thus 𝜒𝑠(𝐾1,𝑛♢𝑃𝑛) ≤ 5 . To prove 

𝜒𝑠(𝐾1,𝑛♢𝑃𝑛) ≥ 5 . Let us assume that 

𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) < 5 , say 𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) = 4 . We 

must assign three distinct colors to all of the 

vertices of 𝑃𝑛 , {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛: 1 ≤ 𝑧 ≤ 𝑛} 

and we need another two distinct colors to color 

the vertices 𝑣1  and 𝑣2  as 𝑣1  and 𝑣2  are 

adjacent with all the vertices in {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛: 1 ≤ 𝑧 ≤ 𝑛}, which is a contradiction. Thus 

𝜒𝑠(𝐾1,𝑛♢𝑃𝑛) ≥ 5. Hence 𝜒𝑠(𝐾1,𝑛♢𝑃𝑛) = 5.  

 

Example 3.5 Substitute 𝑛 = 4 in Eqn. (6). By 

Theorem 3.6, we observe that 𝜒𝑠(𝐾1,4♢𝑃4) =
5, (see Fig. 6), which can be done by assigning 

the colors in the following way:  

𝑐(𝑣1) = 𝑐5; 𝑐(𝑣2) = 𝑐(𝑣3) = 𝑐(𝑣4) = 𝑐(𝑣5)
= 𝑐4; 

𝑐(𝑢11) = 𝑐(𝑢21) = 𝑐(𝑢31) = 𝑐(𝑢41) = 𝑐1; 
𝑐(𝑢12) = 𝑐(𝑢22) = 𝑐(𝑢32) = 𝑐(𝑢42) = 𝑐2; 

𝑐(𝑢13) = 𝑐(𝑢23) = 𝑐(𝑢33) = 𝑐(𝑢43) = 𝑐3; 
𝑐(𝑢14) = 𝑐(𝑢24) = 𝑐(𝑢34) = 𝑐(𝑢44) = 𝑐4. 

Fig 6. 𝝌𝒔(𝑲𝟏,𝟒♢𝑷𝟒) 

 

Theorem 3.7  For any 𝑛 ≥ 2,  

𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) = 𝑛 + 2. (7) 

 

Proof. Let 𝑉(𝐾1,𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛+1}  and 

𝑉(𝐾𝑛) = {𝑢1, 𝑢2, … , 𝑢𝑛} . Let 𝑉(𝐾1,𝑛♢𝐾𝑛) =
{𝑣𝑥: 1 ≤ 𝑥 ≤ 𝑛 + 1} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛; 1 ≤

𝑧 ≤ 𝑛} . As in the definition of edge corona 

graph, all end vertices 𝑣𝑥, 𝑣𝑥+1 ∈ 𝑉(𝐾1,𝑛) are 

adjacent to every vertex in {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛; 1 ≤ 𝑧 ≤ 𝑛} . Assign the following 𝑛 + 2 -

coloring to 𝐾1,𝑛♢𝐾𝑛  as a star chromatic 

coloring:  

    • Assign color 𝑐𝑛+2 to the vertex 𝑣1 .  

    • For every 𝑥 ∈ {2,3, … , 𝑛 + 1}, assign the 

color 𝑐𝑛+1 to 𝑣𝑥.  

    • For every 𝑦 ∈ {1,2, … , 𝑛}  and 𝑧 ∈
{1,2, … , 𝑛} , color the vertices 𝑢𝑦𝑧  with color 

𝑐𝑧.  

 Thus 𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) ≤ 𝑛 + 2 . To prove 

𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) ≥ 𝑛 + 2 , let us assume that 

𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) < 𝑛 + 2 , say 𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) =
𝑛 + 1 , which is not possible since 

{𝑣1, 𝑣2, 𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛}  induces a clique of 

order 𝑛 + 2  (say 𝐾𝑛+2 ). Therefore a star 

coloring with 𝑛 + 1 colors is not possible. Thus 

𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) ≥ 𝑛 + 2. Hence 𝜒𝑠(𝐾1,𝑛♢𝐾𝑛) =
𝑛 + 2.  

Example 3.6Substitute 𝑛 = 2 in Eqn. (7). By 

Theorem 3.7, we observe that 𝜒𝑠(𝐾1,2, 𝐾2) =
2 + 2 = 4 (see Fig. 7), which can be done by 
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assigning the colors in the following way: 

𝑐(𝑣1) = 𝑐4 , 𝑐(𝑣2) = 𝑐(𝑣3) = 𝑐3 , 𝑐(𝑢11) =
𝑐(𝑢21) = 𝑐1, 𝑐(𝑢12) = 𝑐(𝑢22) = 𝑐2.  

Fig 7. 𝝌𝒔(𝑲𝟏,𝟐♢𝑲𝟐) 

 

Theorem 3.8 For any 𝑛 ≥ 3,  

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) = {
6 𝑛 = 5
5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

Proof. Let 𝑉(𝐾1,𝑛) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛+1} , 

𝑉(𝐶𝑛) = {𝑢1, 𝑢2, … , 𝑢𝑛}  and 𝑉(𝐾1,𝑛♢𝐶𝑛) =
{𝑣𝑥: 1 ≤ 𝑥 ≤ 𝑛 + 1} ∪ {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤ 𝑛; 1 ≤

𝑧 ≤ 𝑛} . As in the definition of edge corona 

graph, all end vertices 𝑣𝑥 , 𝑣𝑥+1 ∈ 𝑉(𝐾1,𝑛) are 

adjacent to every vertex in {𝑢𝑦𝑧: 1 ≤ 𝑦 ≤

𝑛; 1 ≤ 𝑧 ≤ 𝑛}. 

Case (i): Let 𝑛 = 5. Assign the following 6-

colors to 𝑃𝑛♢𝐶𝑛 as a star chromatic coloring: 

    • Assign color 𝑐6 to the vertex 𝑣1.  

    • For every 𝑥 ∈ {2,3, ⋯ , 𝑛 + 1}, assign the 

color 𝑐5 to 𝑣𝑥.  

    • For every 𝑦 ∈ {1,2, ⋯ , 𝑛}  and 𝑧 ∈
{1,2, ⋯ 𝑛}, assign the colors 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐2 to 

all the vertices of each copy of 𝐶𝑛 of order 5.  

 Thus 𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≤ 6 . To prove 

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≥ 6 , let us assume that 

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) = 5, which is not possible since 

by Theorem 4, four distinct colors needed for a 

proper star coloring and each {𝑢1𝑧: 1 ≤ 𝑧 ≤ 𝑛} 

is adjacent to 𝑣1 and 𝑣2. This shows that 𝑣1 and 

𝑣2 need another two distinct colors. Therefore 

a star coloring with 5  colors is impossible. 

Thus 𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≥ 6. Hence 𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) =
6. 

Case (ii): Let 𝑛 ≠ 5. Assign the following 5-

colors to 𝑃𝑛♢𝐶𝑛 as a star chromatic coloring: 

    • Assign color 𝑐5 to the vertex 𝑣1.  

    • For every 𝑥 ∈ {2,3, ⋯ , 𝑛 + 1} , color the 

vertices 𝑣𝑥 with color 𝑐4.  

    • For every 𝑦 ∈ {1,2, … , 𝑛}  and 𝑧 ∈
{1,2, … , 𝑛} , assign the colors 𝑐1 , 𝑐2 , 𝑐3 

respectively to all the vertices of each copy of 

𝐶𝑛 of order n.  

 Thus 𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≤ 5 . To prove 

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≥ 5 , let us assume that 

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) = 4, which is not possible since 

by Theorem 4, three distinct colors needed for 

a proper star coloring and each {𝑢1𝑧: 1 ≤ 𝑧 ≤
𝑛} is adjacent to 𝑣1 and 𝑣2. This shows that 𝑣1 

and 𝑣2  need another two distinct colors. 

Therefore a star coloring with 4 colors is not 

possible. Thus 𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) ≥ 5 . Hence 

𝜒𝑠(𝐾1,𝑛♢𝐶𝑛) = 5.  

Example 3.7Substitute 𝑛 = 3 in Eqn. (8). By 

Theorem 3.8, we observe that 𝜒𝑠(𝐾1,3, 𝐶3) = 5, 

(see Fig. 8), which can be done by assigning the 

colors in the following way:  

𝑐(𝑣1) = 𝑐5; 𝑐(𝑣2) = 𝑐(𝑣3) = 𝑐(𝑣4) = 𝑐4; 
𝑐(𝑢11) = 𝑐𝑢21

= 𝑐(𝑢31) = 𝑐1; 

𝑐(𝑢12) = 𝑐(𝑢22) = 𝑐(𝑢32) = 𝑐2; 
𝑐(𝑢13) = 𝑐(𝑢23) = 𝑐(𝑢33) = 𝑐3. 

Fig 8. 𝝌𝒔(𝑲𝟏,𝟑♢𝑪𝟑) 

 

Theorem 3.9 For any 𝑛 ≥ 2,  

𝜒𝑠(𝐾1,𝑛♢𝐺) = 𝜒𝑠(𝐺)  +  2. (9) 

 

Proof. Let 𝑉(𝐾1,𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}  and 

𝜒𝑠(𝐺) = 𝑟. 

    1.  Assign the color 𝑐𝑟+2 to the vertex 𝑣1 and 

for every 𝑥 ∈ {2,3, … , 𝑛 + 1}, assign the color 

𝑐𝑟+1 to 𝑣𝑥. 

    2.  Assign the star coloring for all the copies 
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of 𝐺 in 𝐾1,𝑛♢𝐺 with colors from the color set 

{𝑐𝑘/1 ≤ 𝑘 ≤ 𝑟}.  

Thus, 𝜒𝑠(𝐾1,𝑛♢𝐺) ≤ 𝑟 + 2 . To prove 

𝜒𝑠(𝐾1,𝑛♢𝐺) < 𝑟 + 2, say 𝜒𝑠(𝐾1,𝑛♢𝐺) = 𝑟 + 1 

which is not possible, since we need two 

distinct colors for the vertices of 𝐾1,𝑛  of 

𝐾1,𝑛♢𝐺 . Therefore, star coloring with 𝑟 + 1 

color is impossible. Thus, 𝜒𝑠(𝐾1,𝑛♢𝐺) ≥ 𝑟 +
2. 

Hence, 𝜒𝑠(𝐾1,𝑛♢𝐺) = 𝑟 + 2.  

4  Conclusion 

The idea of corona graph is used to represent 

chemical compounds in Chemistry and 

application of this concept include robotic 

navigation in networks. In recent times the 

concept of star coloring is very useful in day to 

day life especially in IP traceback in networks. 

With this motive, in this paper, we have 

determined the star chromatic number of edge 

corona product of path graph with complete 

graph, cycle graph, star graph, complete 

bipartite graph and any simple graph. Also, we 

have found the same for edge corona product of 

star graph with path graph, cycle graph, 

complete and any simple graph. The future 

scope of this paper is to find the star chromatic 

number of edge corona product of various 

families of graphs and to find the star chromatic 

number of neighbourhood corona product of 

different families of graphs. 
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