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ABSTRACT 

Aim: The  aim of this research article is to improve the accuracy rate in  Novel Rent Prediction of house or flat 

rent in metro cities by using Convolutional Neural Network (CNN) in comparison with Decision Tree (D-Tree) 

Classification . Materials & Methods: The data set in this paper utilizes the publicly available Kaggle data set 

for  Novel Rent Prediction of house or flat rent in metro cities. The sample size of  Novel Rent Prediction of 

house or flat rent in metro cities with improved accuracy rate was sample 80 (Group 1=40 and Group 2 =40) and 

calculation is performed utilizing G-power 80% with alpha and beta qualities are 0.05, 0.2 with a confidence 

interval at 95%. The prediction of house or flat rent in metro cities with improved accuracy rate is performed by 

Convolutional Neural Network (CNN) whereas number of samples (N=10) and Decision Tree (D-Tree) where 

number of samples (N=10). Results: The Convolutional Neural Network (CNN) classification has 96.32 higher 

accuracy rates when compared to the accuracy rate of Decision Tree (D-Tree) is 94.15. There exists a 

statistically significant difference between the two groups (p=0.0300; p<0.05) with confidence interval 95%. 

Conclusion: Convolutional Neural Network (CNN) provides better outcomes in accuracy rate when compared 

to Decision Tree (D-Tree) for Novel Rent Prediction of house or flat rent in metro cities. 

Keywords: machine Learning, Rent, Metro cities, Novel Convolutional Neural 

Network, Decision Tree, Prediction. 

 

INTRODUCTION 

House rent estimation has been 

broadly studied a lot as described 

in(Valadez 2011; Xu 2017). Establishing a 

housing rent estimating model can greatly 

help the formulation of housing prices and 

improve the accuracy of estimation of 

future real estate policies(Meidani, Zabihi, 

and Ashena 2011; Quigley 2002). The 

pricing of house rent not only depends on 

the size of the property and no. of rooms, 

but also on the neighborhoods like 

transport facility, banks, schools or 

colleges, shops etc. When a person buys a 

home, they consider structural features, 

working accessibility, neighborhood 

services. Hence, a house price  Novel Rent 

Prediction system is invented to improve 

estimation of house prices (Oliphant 

2007). This study presents a house rent  

Novel Rent Prediction using a novel 

convolutional neural network (CNN) 

algorithm(Zhan et al. 2020). Machine 

learning plays a major role in many of the 

application areas like image detection, 

spam reorganization, economics, banking 

sectors, normal speech command, product 

recommendation and medical diagnosis 

(Cao, Yang, and Others 2018). 

Recently, a lot of interesting work 

has been done in the area of applying 
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machine learning and deep learning 

algorithms for analyzing house rent 

patterns and predicting housing prices. 

IEEE Explore published 89 research 

papers, and Google Scholar found 119 

articles. The paper proposed by Neelam 

Shinde, Kiran Gawande(Shinde and 

Gawande 2018) surveyed to predict a 

continuous target value, using algorithms 

Logistic Regression, Support Vector 

Machine, Lasso Regression Technique and 

Decision Tree are used to build a 

predictive model. It was found that the 

Decision Tree had the best accuracy of 

84% approx. They tried to implement the 

problem of Regression using the 

Classification Algorithm which was 

successful. Guanglan Wei used the 

Markov chain to study housing price 

behaviors for the city of Kunming(Wang, 

Chen, and Li 2007), but with some 

influential factors ignored. In addition, 

Shengping Sin provided an algorithm 

based on Random Forest with a more 

satisfied result than the ARMA model(Xue 

et al. 2020). Similar works also included 

BP neural network(Jiang and Shen 2019) 

and GM model etc. Kumar experiments 

with different machine learning algorithms 

such as Linear regression, Decision Tree, 

and Nearest Neighbor(Kumar et al. 2015). 

He concludes that Naïve Bayes is 

consistent for unequal distribution 

frequency and Decision Tree is the most 

consistent classification for equal 

frequency distributions. One of the most 

popular ways to predict house pricing 

through machine learning is the use of 

Linear Regression as the model contains 

many features affecting the price(Cao, 

Yang, and Others 2018). An approach to 

the use of Artificial Neural Network was 

used to predict the house prices in New 

Zealand(Limsombunchai 2004). It proved 

to be a daunting task as the multiple 

features required powerful calculations 

from algorithms, but the results were 

promising. The most cited article was(Liu 

2013), in Google scholar explore with 58 

citations and 1134full text 

views.(Bhavikatti et al. 2021; Karobari et 

al. 2021; Shanmugam et al. 2021; Sawant 

et al. 2021; Muthukrishnan 2021; Preethi 

et al. 2021; Karthigadevi et al. 2021; 

Bhanu Teja et al. 2021; Veerasimman et 

al. 2021; Baskar et al. 2021) 

The Limitation of the existing 

method for house rent  Novel Rent 

Prediction is their inability to accurately 

predict highly dynamic and fast changing 

patterns in house rent movement. The 

current work attempts to address this 

shortcoming by exploiting the power of 

novel Convolutional Neural Networks in 

learning the past behavior of house rent 

price movements and making a highly 

accurate forecast for the future behavior of 

the house rent price. The aim of the paper 

is that the model based on CNN can 

effectively identify the changing trend of 

housing prices and predict it which can 

provide valuable reference for house rent 

forecasts. 

 

MATERIALS AND METHODS 

This work was carried out in the 

laboratory of Artificial Intelligence, 

Department of Computer Science and 

Engineering, Saveetha School of 

Engineering, Saveetha Institute of Medical 

and Technical Sciences, chennai,India. 

The dataset is the prices and features of 

residential houses rent from 2016 to 2019 

collected from some of the Housing Firms, 

a few web portals like nobroker.com, 

magicbricks.com(Liu 2013). This dataset 

consists of 60 house features and 1100 

houses with rent prices. The dataset 
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consists of features in various formats. It 

has numerical data such as prices and 

numbers of bathrooms/bedrooms/living 

rooms, as well as categorical features such 

as zone classification for sale, which can 

be Agricultural, Residential High Density, 

Residential Low Density, Residential Low 

Density Park, etc. Sample size was 

calculated using previous literature(Otero 

Gomez et al. 2020). The database is 

divided by the amount of 75% training and 

25% testing. Group 1 was a Decision Tree 

(D-Tree)algorithm and Group 2 was a 

novel Convolutional Neural Network 

(CNN) algorithm. In this work two groups 

are taken and 10 samples for each group, 

total samples considered are 20. The 

output is obtained by using Python 

software for the  Novel Rent Prediction of 

house rent prices. The calculation is 

performed utilizing G-power 0.8 with 

alpha and beta qualities 0.05, 0.2 with a 

confidence interval at 95%. 

The sample group 1 is the Decision 

Tree (D-Tree) algorithm is a supervised 

learning algorithm that works for both 

discrete and continuous variables. The 

steps involved in the implementation of 

the D-Tree algorithm are described as 

follows. 

 

Decision Tree Regression, as the name 

suggests, uses tree-like structure to build 

regression and classification models. It 

breaks down a dataset into smaller and 

smaller subsets while at the same time an 

associated decision tree is incrementally 

developed. The final result is a tree with 

decision nodes and leaf nodes. A decision 

node has two or more branches, each 

representing values for the attribute tested. 

Leaf node represents a decision on the 

numerical target. The topmost decision 

node in a tree which corresponds to the 

best predictor called root node. Decision 

trees can handle both categorical and 

numerical data. The Decision tree output 

for classifying the availability of houses 

has discrete binary values like Yes or No. 

The output of the Decision tree Regression 

used for house price  Novel Rent 

Prediction is a continuous one.  

The continuous values (Prices) are 

predicted with the help of a decision tree 

regression model. Once the Decision Tree 

is formed, new instances can be classified 

easily by tracing the tree from root to leaf 

node. Classification through the Decision 

Tree does not require much computation. 

Decision Trees are capable of handling 

both continuous and Categorical type of 

attributes. To avoid generation of 

meaningless and unwanted rules in 

Decision Trees, trees should not be deeper 

which results in over fitting. Such a tree 

with over fitting works more accurately 

with training data and less accurate with 

test data. Pre pruning and Post pruning are 

the techniques used in Decision Tree to 

reduce the size of the trees and avoid 

overfitting. In Post Pruning the Decision 

Tree branches and hence the level (depth) 

of the tree are reduced after completely 

building the tree. In Pre Pruning, care is 

taken to avoid overfitting while building 

the tree itself. 

The sample preparation group 2 is the 

novel convolutional neural network 

(CNN), which is a multi-layered feed-

forward neural network, made by stacking 

many hidden layers on top of each other in 

sequence. The experimental results show 

that the proposed CNN method has 

achieved better accuracy results. 

 

https://paperpile.com/c/9crC0C/yhS8Q
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Pseudocode  for Decision Tree (D-Tree) 

Classifier 

 
Novel convolutional neural network is a 

feed-forward neural network. Like the 

traditional architecture of a neural network 

including input layers, hidden layers and 

output layers, convolutional neural 

networks also contain these features and 

the input of the layer of convolution are 

the output of the previous layer of 

convolution or pooling. Of course, they 

still have some unique features such as 

pooling layers, full connection layers, etc. 

The number of hidden layers in a 

convolutional neural network is more than 

that in a traditional neural network, which, 

to some extent, shows the capability of the 

neural network. The more the hidden 

layers are, the higher feature it can extract 

and recognize from the input. CNN has 

achieved good results in time series 

problems. When convolution kernels that 

share the same weights are applied to local 

signals at different time segments, a type 

of translation invariance is obtained. 

Convolution layer is the core of CNN. The 

convolution kernel, also called filter, could 

be considered as a small window that 

contains learned parameters as a matrix 

form. This filter slides all over the input 

data to capture the local information by 

applying the convolution operation on 

each patch. Different local information by 

applying different convolution kernels 

would be combined to generate the global 

information. Pooling layer is added 

between continuous convolution layers in 

one CNN structure. It is designed to 

gradually reduce the amount of data and 

parameters, which could help to avoid 

overfitting to some extent. The pooling 

layer utilizes a small sliding window 

which is similar to the convolution layer. 

The convolved features of a specific area 

are compressed into the maximum value or 

the mean value of that area. Fully 

connected layer is applied after several 

convolution layers and pooling layers to 

obtain the  Novel Rent Prediction results 

or classification results. The latent features 

through dimensionality reduction and 

feature extraction would be learned well 

with a fully connected layer. 

Pseudocode for  Novel convolutional neural network 
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Statistical Analysis 

The output is obtained by using 

Python software(Oliphant 2007). To train 

these datasets, required a monitor with 

resolution of 1024×768 pixels (7th gen, i5, 

4 8GB RAM, 500 GB HDD), and Python 

software with required library functions 

and tool functions. For statistical 

implementation, the software tool used 

here is IBM SPSS(Frey 2017). The 

independent sample t test was performed 

to find the mean, standard deviation and 

the standard error mean statistical 

significance between the groups, and then 

comparison of the two groups with the 

SPSS software will give the accurate 

values for the two different s which will be 

utilized with the graph to calculate the 

significant value with maximum accuracy 

value (96.32%), mean value (95%) and 

standard deviation value (0.21122s). 

Dependent variables are accuracy and 

independent variables are image size. 

 

RESULTS 

Figure 1 shows the simple bar 

graph for Decision Tree (D-Tree) 

Classifier accuracy rate is compared with 

Novel Convolutional Neural Network 

(CNN) Classifier. The Convolutional 

Neural Network (CNN) Classifier is higher 

in terms of accuracy rate 96.32 when 

compared with Decision Tree (D-Tree) 

Classifier 94.15. Variable results with its 

standard deviation ranging from 80 lower 

to 90 higher Decision Tree (D-Tree) 

Classifier where Convolutional Neural 

Network (CNN) Classifier standard 

deviation ranging from 90 lower to 100 

higher. There is a significant difference 

between Decision Tree (D-Tree) Classifier 

and Convolutional Neural Network (CNN) 

Classifier (p<0.05 Independent sample 

test). X-axis: Convolutional Neural 

Network (CNN) Classifier accuracy rate vs 

Decision Tree (D-Tree) Classifier Y-axis: 

Median of accuracy rate, for identification 

of keywords ± 1 SD with 95 % CI. 

Table.1 shows the Evaluation Metrics of 

Comparison of Decision Tree (D-Tree) 

and Convolutional Neural Network (CNN) 

Classifier. The accuracy rate of Decision 

Tree (D-Tree) is 94.15 and Convolutional 

Neural Network (CNN) has 96.32. In all 

aspects of parameters Convolutional 

Neural Network (CNN) provides better 

performance compared with the Decision 

Tree (D-Tree) of  Novel Rent Prediction of 

house or flat rent in metro cities with 

improved accuracy rate. 

Table.2 The statistical calculation such as 

Mean, standard deviation and standard 

error Median for Decision Tree (D-Tree) 

and Convolutional Neural Network 

(CNN). The accuracy rate parameter used 

in the t-test. The mean accuracy rate of 

Decision Tree (D-Tree) is 94.15 and 

Convolutional Neural Network (CNN) is 

96.32. The mean and  Standard Deviation 

of Decision Tree (D-Tree) is 91.20,1.2365 

https://paperpile.com/c/9crC0C/E3jWS
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and Convolutional Neural Network (CNN) 

is 92.40,0.21122. The Standard Error 

Median of Decision Tree (D-Tree) is 

0.87363 and Convolutional Neural 

Network (CNN) is 0.1289.  

Table.3 displays the statistical calculations 

for independent samples test between 

Decision Tree (D-Tree) and Convolutional 

Neural Network (CNN). TThe statistical 

calculations for independent samples test 

between Decision Tree (D-Tree) and 

Convolutional Neural Network (CNN). 

There exists a statistically significant 

difference between the two groups 

(p=0.0300; p<0.05) with confidence 

interval 95%. This independent sample test 

for comparison of Decision Tree (D-Tree) 

and Novel Convolutional Neural Network 

(CNN) consists of significance as 0.000, 

significance (2-tailed), Mean 

difference(11.89388,11.0123), standard 

error difference (0.76734,0.12421, and 

lower (11.73674,10.12353)and upper 

(13.78374,12.02343) interval difference. 

 

DISCUSSION 

This study proposes an integrated 

CNN model to predict the house rent in 

metro cities. To verify the effectiveness of 

the proposed model, we compare its 

performance to D-Tree and CNN models 

without optimization users to predict the 

availability of houses in the city and also 

to predict the prices of the houses. Two 

algorithms like decision tree regression 

and CNN were used in predicting the 

prices of the houses. Comparatively the 

performance CNN is found to be better 

than the decision tree regression in 

predicting the house prices. Performance 

of convolutional neural networks is better 

than the decision tree model for predicting 

the prices of houses. The developed model 

can be used to predict the availability and 

prices of houses for any new record as per 

the user constraints. The performance of 

CNN deep learning model was found to 

have far too superior to that of the machine 

learning based predictive model.There 

exists a statistically significant difference 

between the two groups (p=0.0300; 

p<0.05) with confidence interval 95%.  

The study has conclusively elicited 

the fact that CNN models have much 

higher capability in extracting and learning 

the features of a training dataset than their 

corresponding machine learning 

counterparts. Four effective measures that 

have been used in this study are based on 

confusion matrix output, which are True 

Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). 

Accuracy is the ratio of the number of 

cases which are correctly classified to the 

total number of cases expressed as a 

percentage. Specificity is the ratio of the 

true negatives (correctly identified “0” s) 

to the total number of negatives in the test 

dataset expressed as a percentage. 

Sensitivity is the ratio of the number of 

true positives to the sum of the true 

positive cases and false positive cases 

expressed as a percentage.Various 

methods have been proposed in the 

literature studies to predict the house rent 

over the past few years. Fan et al(Fan, 

Ong, and Koh 2006) has utilized the 

decision tree approach for finding the 

resale prices of houses based on their 

significant characteristics. In this paper, 

hedonic based regression method is 

employed for identifying the relationship 

between the prices of the houses and their 

significant characteristics. Ong et al.(Ong, 

Ho, and Lim 2003) and Berry et al.(Berry 

et al. 2003) have also used hedonic based 

regression for house  Novel Rent 

Prediction based on significant 

https://paperpile.com/c/9crC0C/nI7if
https://paperpile.com/c/9crC0C/nI7if
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characteristics and obtained an accuracy 

rate of 94.8%. Shinde and 

Gawande(Shinde and Gawande 2018), 

predicted the sale price of the houses using 

various machine learning algorithms like, 

lasso, SVR, Logistic regression and 

decision tree and compared the accuracy. 

Alfiyatin et al.(Nur et al. 2017) has 

modeled a system for house price 

prediction using Regression and Particle 

Swarm Optimization (PSO). In this paper, 

it has been proved that the house price  

Novel Rent Prediction accuracy is 

improved by combining PSO with 

regression. Timothy C. Au(Au 2018) 

addressed the absent level problems in 

Random Forests, Decision Trees, and 

Categorical Predictors and achieved an 

accuracy of 91.5%. 

A limitation of using the CNN is the 

difficultly in interpretation on intermediate 

features inside its architecture. In future 

the dataset can be prepared with more 

features and advanced deep learning 

techniques can be used for constructing the 

house price  Novel Rent Prediction model. 

 

CONCLUSION 

The proposed model exhibits the Decision 

Tree (D-Tree) and Convolutional Neural 

Network (CNN), in which the 

Convolutional Neural Network (CNN) has 

the highest values. The accuracy Rate of 

Convolutional Neural Network (CNN) is 

96.32 is higher compared with Decision 

Tree (D-Tree) that has an accuracy rate of 

94.15 in analysis of  Novel Rent Prediction 

of house or flat rent in metro cities with 

improved accuracy rate. 
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TABLES AND FIGURES 

Table 1. Comparison of Decision Tree (D-Tree) and Convolutional Neural Network (CNN) 

Classifier for  Novel Rent Prediction of house or flat rent in metro cities with improved 

accuracy rate. The accuracy rate of Decision Tree (D-Tree) is 94.15 and Convolutional 

Neural Network (CNN) has 96.32. 

SI.No.  Test Size 

Novel 

Convolutional 

Neural Network 

(CNN) Classifier 

Decision Tree (D-Tree) Classifier 

1           550 92.45                  90.10 

2           600 93.00                  90.00 

3           650 93.56                   91.00 

4           700 94.21                    91.52 

5           750 94.02                     92.03 

6           800 94.56                     93.00 

7           850 95.05                     92.52 

8           900            95.56                     91.32 

9           950            95.12                     93.00 
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10           990            96.32                     94.15             

 

Table 2. The statistical calculation such as Mean, standard deviation and standard error 

Median for Decision Tree (D-Tree) and Convolutional Neural Network (CNN). The accuracy 

rate parameter used in the t-test. The mean accuracy rate of Decision Tree (D-Tree) is 94.15 

and Convolutional Neural Network (CNN) is 96.32. The mean and  Standard Deviation of 

Decision Tree (D-Tree) is 91.20,1.2365 and Convolutional Neural Network (CNN) is 

92.40,0.21122. The Standard Error Median of Decision Tree (D-Tree) is 0.87363 and 

Convolutional Neural Network (CNN) is 0.1289.  

Group N Mean 
Standard 

Deviation 

Standard Error 

Mean 

 

ACCURA

CY 

CONVOLUTIONAL 

NEURAL NETWORK (CNN) 
10 92.40 0.21122 0.1289 

DECISION TREE (D-TREE) 10 91.20 1.2365 0.87363 

 

Table 3: The statistical calculations for independent samples test between Decision Tree (D-

Tree) and Convolutional Neural Network (CNN). There exists a statistically significant 

difference between the two groups (p=0.0300; p<0.05) with confidence interval 95%. This 

independent sample test for comparison of Decision Tree (D-Tree) and Novel Convolutional 

Neural Network (CNN) consists of significance as 0.000, significance (2-tailed), Mean 

difference(11.89388,11.0123), standard error difference (0.76734,0.12421, and lower 

(11.73674,10.12353)and upper (13.78374,12.02343) interval difference. 

 

Group 

 Levene's 

Test for 

Equality of 

Variances 

 

t-test for Equality of Medians 

 

 

F Sig. t df 

Sig. 

(2-

taile

d) 

Mean 

Differe

nce 

Std. 

Error 

Differe

nce 

95% 

Confide

nce 

Interval 

(Lower) 

95% 

Confide

nce 

Interval 

(Upper) 

 

 

Accura

cy 

Equal 

varian

ces 

assum

ed 

0.8

78 

0.03

00 

17.2

34 
18 .000 

11.8938

3 
0.76734 

11.7367

4 

13.7837

4 

Equal 

varian

ces not 

assum

ed 

  
17.2

34 

12.82

73 
.000 

11.0123

1 
0.12421 

10.1235

3 

12.0234

3 
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Fig. 1. Simple Bar graph for Decision Tree (D-Tree) Classifier accuracy rate is compared 

with Convolutional Neural Network (CNN) Classifier. The Decision Tree (D-Tree) Classifier 

is higher in terms of accuracy rate 94.15 when compared with Convolutional Neural Network 

(CNN) Classifier 96.32. Variable results with its standard deviation ranging from 80 lower to 

90 higher Decision Tree (D-Tree) Classifier where Convolutional Neural Network (CNN) 

Classifier standard deviation ranging from 90 lower to 100 higher. There is a significant 

difference between Decision Tree (D-Tree) Classifier and Convolutional Neural Network 

(CNN) Classifier (p<0.05 Independent sample test). X-axis: Convolutional Neural Network 

(CNN) Classifier accuracy rate vs Decision Tree (D-Tree) Classifier Y-axis: Median of 

accuracy rate, for identification of keywords ± 1 SD with 95 % CI. 

 


