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Abstract 

In this paper, the three-machine variant flow shop scheduling problem is addressed with the bi-

objectives of reducing the makespan (Cmax) and range of lateness (RL). The goal is to 

concatenating minimize the two objective functions, i.e., to minimize the range of lateness 

provided that the makespan is optimum. To discover the best solution to the issue for job sequences 

with up to 2000 jobs, we introduce the Branch and Bound algorithm, and use the genetic and the 

memetic algorithms to find pareto optimal solutions, and then the results will be compared between 

them. 

Keywords:  Flowshop machine, makespan, range of lateness, Branch and Bound algorithm, 

genetic algorithm, memetic algorithm.

Introduction 

A scheduling problem in a flowshop contains n 

tasks that must be completed on m machines in 

the same machine-by-machine sequence. 

Passing is allowed in the flowshop for 

permutations. Therefore, the sequence in which 

different jobs visit a set of machines is the 

same. The general flowshop allows passage. As 

a result, the order of the jobs on each machine 

may differ. 

Many papers on scheduling have treated the 

multi-objective flowshop scheduling problem. 

Marett and Wright (1996) used a large and 

sophisticated multi-objective flow shop quality 

measurement problem of simulated annealing 

and tabu search. Sayin and Karabati (1999) 

reduced the total time it took to complete the 

task and its makespan concurrently to solve the 

scheduling problem in a two machine flowshop 

system. 

There are typically three packed structure of 

multiobjective scheduling problems. Tradeoffs 

between objective functions are allowed in the 

first class, and the ultimate result is the result of 

the minimization of an aggregation function of 

the studied objective functions. In the second 

class, the objective functions were arranged 

according to their relative importance 

(lexicographical order), with the first objective 

being minimized in proportion to its best value, 

followed by the second, and so on. In the third 
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class, the objectives were concurrently 

decreased, and a set of non-dominated 

solutions was generated. 

Important Notations 

𝑛 : Number of jobs. 

𝑝𝑗: Processing time of jobs 𝑗 

𝑑𝑗: Due date of jobs 𝑗. 

𝐿𝑗: Lateness of job 𝑗, 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗. 

𝐶𝑗 : Completion time of job j, where 𝐶𝑗 =

∑ 𝑝𝑘
𝑗
𝑘=1 . 

𝑅𝐿: Range of lateness, 𝑅𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛. 

Some Important Definitions  

Johnson's 3 machine algorithm [12]:Optimal 

makespan in a three-machine flow shop may be 

obtained by extending Johnson's two-machine 

method. Either, 

min (p1j )≥ max(p2j )  or min(p3j )≥ max(p2j ) 

Palmer’s Heuristic (PR) [12]:: The heuristic is 

minimizing of makespan (Fm│Cmax) . These 

are the two stages of this heuristic: 

Step 1: Determine the inclination for the n-job, 

m-machine static flow shop issue. As follows, 

Aj, for the jth job:;  Aj= -∑ {m− (2i −
m

i=1

1)} p ij 
Step 2: Apply a descending (decreasing) order 

to the jobs in the sequence based on the Aj 

values. 

Earliest Due Date (EDD)[12]: For each open 

job, the one with the lowest date is completed 

first. 

Problem Formulation 

Suppose we have a set of 𝑛  jobs 𝑁 =

{𝐽1,  𝐽2, … , 𝐽𝑛} Let's assume we have a list of n 

jobs, N=J1, J2,..., Jn, ready to be processed at 

t=0, and that these tasks may be run in any 

sequence on machines A1, A2, and A3 during 

periods of uninterrupted processing. In this 

study, we concentrate on the makespan 

function, which aims to maximize both (𝐶𝑚𝑎𝑥) 

and range of lateness (𝑅𝐿). 

 

𝑀𝑖𝑛 {
𝑓1(𝑠) = 𝐶𝑚𝑎𝑥                                                                

𝑓2(𝑠) = 𝑅𝐿                                                                      
𝑠. 𝑡.                                                                                  

𝐶𝑖1
 =∑𝑝𝑘1

 

𝑖

𝑘=1

                                            𝑖 = 1,… , 𝑛, …… . . (1)         

𝐶12
 = 𝑝11 + 𝑝12 ,                                                         …………(2)         

𝐶𝑖2
 = 𝑚𝑎𝑥 {𝐶𝑖1

 , 𝐶𝑖−1,2
 } + 𝑝𝑖2,              𝑖 = 2,… , 𝑛, … . . (3)       

𝐶13
 = 𝑝11 + 𝑝12 + 𝑝13 ,                                             ……….      (4)            

𝐶𝑖3
 = 𝑚𝑎𝑥 {𝐶𝑖2

 , 𝐶𝑖−1,3
 } + 𝑝𝑖3,              𝑖 = 2,… , 𝑛, ……… . . (5)         

𝐿𝑖 = 𝐶𝑖3
 − 𝑑𝑖,                                              𝑖 = 1,… , 𝑛.    …… (6)       }

 
 
 
 
 
 

 
 
 
 
 
 

(𝑃)

Solution Approaches:  

Branch and Bound Algorithm (BAB) [5]:  

The COP may be solved precisely using Branch 

and Bound (BAB). It operates on the principle 

of compiling a comprehensive set of viable 

options in an intelligent manner. To elaborate, 

this is because the desired solution to the 

discrete optimization problem P is a 

minimization. Now, break P into smaller issues 

defined by smaller subsets of the set S of 

possible solutions. P and its subproblems may 

be quickly and easily associated with the 

matching subset 𝑆′ ⊆ 𝑆. Three procedures are 

needed for a BAB algorithm.  

1. Branching: The forward branching rule is 

used, let S is replaced by smaller subsets 

𝑆𝑖(𝑖 = 1,… , 𝑟)  such that 𝑆 = ⋃ 𝑆𝑖
𝑟
𝑖=1 . The 

term "branching" describes this phenomenon. 

Each S i is the seed from which another branch 

grows; hence, branching is a cyclical process. 
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A branching tree is used to depict the full 

branching process. Upper and initial lower 

limits are determined for subsets of S, denoted 

by S i (i=1,...,r), while S represents the root of 

the tree. Subproblems are instances of discrete 

optimization that are brought up during the 

forking procedure. 

2. Lower bounding (LB): If you're using an LB 

scheme, the LB will be linked to every branch 

in the index. The goal is to get rid of all of the 

nodes where the LB is higher than the value of 

the best known viable solution. It is possible to 

determine an LB for this issue P by dividing the 

sequence into subsequences 𝑠(= 𝑠′ ∪ 𝑠′′) into 

two subsequences, 𝑠′ be a schedule jobs and 𝑠′′ 

be unscheduled jobs such that 𝑠1
′′ =

𝑠′′(𝐽𝑅) ,  𝑠2
′′ = 𝑠′′(𝑃𝑅)  and 𝑠3

′′ = 𝑠′′(𝐸𝐷𝐷) , 

then the decomposition LB is given by  

𝐿𝐵1 = (𝐶𝑚𝑎𝑥(𝑠1 ∪ 𝑠1
′′), 𝑅𝐿(𝑠1 ∪ 𝑠3

′′)), 

𝐿𝐵2 = (𝐶𝑚𝑎𝑥(𝑠1 ∪ 𝑠2
′′), 𝑅𝐿(𝑠1 ∪ 𝑠3

′′)), 

𝐿𝐵 = 𝑚𝑎𝑥(𝐿𝐵1, 𝐿𝐵2) 
3. Upper bounding (UB): We get to a UB of P's 

actual value. Such a UB may be derived from 

the objective value of any practically viable 

solution. 

Now, if a particular subproblem's LB is larger 

than or equal to UB, then that subproblem 

cannot provide a superior solution to the main 

problem P. Therefore, we may stop branching 

from the matching node in the tree. The bound 

UB should be as tiny as feasible and the bound 

LB should be as big as possible to prevent 

branching at as many nodes of the branching 

tree as possible. This is why we use certain 

heuristics at the beginning of the BAB 

algorithm to locate a suitable viable solution 

with a low value of UB. The primary action in 

the BAB algorithm is to locate a suitable LB to 

prune the BAB bushes. There may be a single 

viable solution to the subproblem after multiple 

branches have been taken. Next, we take the 

objective value of this solution and use it to 

replace the LB in the subproblem UB by LB if 

LB < UB, i.e. set UB = LB.  

Genetic Algorithm  

Based on the ideas of evolution and natural 

selection, the genetic algorithm (GA) is a 

method of optimization and searching. In a GA, 

many individuals make up a population, and 

that population evolves according to principles 

of selection that aim to optimize "fitness" (i.e., 

maximizes the benefit function). The figure 

below [11] displays a simplified version of a 

genetic algorithm, one of the most important 

tools in the field of artificial evolution. Starting 

with a seed group (population of parents). 

Children may be born with crossover and 

mutation. Children are bred to become parents 

and so on until evolution is halted. This 

framework may be tailored to the specifics of a 

given problem-solving situation. 

The proposed genetic algorithm consists of a 

chromosome, which represents a solution, and 

two primary components, the sequence and the 

idle periods introduced at the beginning of the 

algorithm.For example [5] [4,1,2,3] shows that 

jobs 4, 1, 2, and 3 will be processed first, with 

jobs 1 beginning at time 6. These genes were 

utilized as genetic operators: Two distinct 

crossover operators have been built in. Firstly, 

there's the infamous crossover between Order 

and (OX) [6]. In this method, two parents are 

picked at random, and a little portion of one of 

their chromosomes is replicated into the 

embryo. During the second stage, the other 

parent's chromosomes are inserted into the 

resulting child in the order of their appearance. 

Mohammed et al. [8] proposed a second 

crossover they called homogeneous mixture 

crossover (HMX), which involves mixing the 

two parental chromosomes uniformly by 

creating a set of genes called M. They also 

presented a method for the mixture, which 
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involves first taking the odd position from the 

first parent and the even position from the 

second. Then, we can split the genes apart 

without repeating any of them; this is done by 

reading the set M from left to right, inserting 

gene j into the first child if it doesn't already 

exist there, and inserting it into the second if it 

does. An additional pair of chromosomes is 

produced in this manner. 

• Mutation: Following this decision, in our 

implementation we use the classic mutation 

technique denoted by the Adjacent Pairwise 

Interchange (API) area. Description of the 

Roots of the GA using a chromosomal segment 

from each parent, 

• Initialization: The first stage of GA involves 

randomly generating a large number of 

individual solutions. Several hundred solutions 

are often included in the population's first 

generation, however this number varies 

depending on the specifics of the situation at 

hand. Since the traditional method of 

population generation relies on a random 

number generator, it makes it possible for any 

and all solutions to emerge (the search space). 

It's possible to "seed" solutions in locations 

where they're more likely to be discovered 

successfully.  

• Selection: Every new generation is made up 

of a chosen subset of the previous one. Fitter 

solutions (as assessed by a fitness function) are 

often more likely to be picked during the 

fitness-based solution selection process. Some 

techniques of selection apply a fitness rating to 

each solution and then choose the ones with the 

highest ratings. Because it may take a long time 

to evaluate the whole population, some 

techniques just evaluate a representative 

sample. 

• Reproduction: Those solutions that do well in 

the genetic selection process will then be used 

to produce a new generation of solutions. A pair 

of "parent" solutions is chosen from the pool of 

preselected solutions to be used in the 

generation of a new solution. In general, when 

two solutions are crossed and mutated to create 

a "child," the offspring takes on many of the 

traits of both of its parents. Every new 

generation begins with a fresh set of parents, 

and this continues until a set of solutions of the 

right size has been produced. Some studies 

imply that more than two "parents" are better to 

reproduce a high quality kid [9], despite the fact 

that reproduction techniques based on the usage 

of two parents are more akin to the nature of 

biology. By acting in this way, the following 

generation produces a set of kids that are 

distinct from their parents. Since only the most 

fit creatures from the first generation are chosen 

to reproduce (along with a small percentage of 

less fit solutions, as indicated above), this 

approach often results in an increase in the 

population's average fitness. While crossover 

and mutation get all the attention, genetic 

algorithms may also make use of additional 

operators including migration, colonization, 

and even regrouping. 

• Termination: This process of passing on 

characteristics from one generation to the next 

is continued until a certain threshold is met, 

usually measured in terms of the number of 

generations. 

Simple generational genetic algorithm 

procedure:  

• Select the first set of individuals. 

• To determine how healthy each person is, you 

must examine the population as a whole. 

• Continue with this generation forever (time 

limit, sufficient fitness achieved, etc.) 

• Choose the healthiest and most fertile people. 
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• The process of producing offspring by use of 

crossover and mutation procedures. 

• Assess the health and fitness of newcomers..  

• The weakest members of the population 

should be swapped out for fresh ones. 

Memetic Algorithm 

Memetic algorithms [10] might be seen as the 

union of a population-based global strategy 

with a personalized local search. They are a 

kind of genetic algorithms known for their use 

of a hill-climbing local environment. Memetic 

algorithms are a kind of population-based AI 

similar to genetic ones. Some tests have 

revealed that their speed surpasses that of 

typical genetic algorithms by many orders of 

magnitude. A ternary tree-based population 

structure was selected for use in this memetic 

algorithm. It separates the people into groups 

and limits the opportunities for mixing, in 

contrast to a population that is not organized in 

any way. 

Population structure  

Each cluster in the structure has a leader and 

three follower solutions. The group choose its 

leader by identifying its most capable member. 

There must be at least 13 persons for a ternary 

tree with three levels, at least 40 for a ternary 

tree with four levels, and so on. 

• Representation: Our representation for the 

permutation flow shop scheduling issue is 

rather natural; a solution is shown as a 

chromosome, with alleles taking on various 

integer values in the [1, n] range, where n is the 

number of tasks. 

• Crossover: The crossovers in GA are the same 

as those mentioned up above..  

• Mutation: The similar mutation in GA was 

already mentioned up above. 

• Fitness Function: The fitness function was 

arbitrarily selected, since the objective in this 

challenge is to minimize the weighted mean 

completion time and weighted mean tardiness. 

• Offspring Insertion in Population:  

After a leader and follower are chosen, the 

reproductive processes of recombination, 

mutation, and local search begin, ultimately 

leading to the birth of a new generation. If a 

progeny's fitness levels are higher than those of 

the leader, the progeny takes over. However, if 

the recombination was successful, it will 

replace the original supporter. A new member 

of the population is not introduced if there is 

already an individual with that identifier in the 

population. For diversity's sake, we made it a 

policy to not permit identical persons. The 

populace is reorganized once all new members 

have been added. A group's fitness leader must 

have a lower score than the group's fitness 

leader immediately above them. If this strategy 

is followed, the root subgroup's leader will be 

the most fit of all the subgroup heads, while 

those at higher levels will have the least fit 

leaders. Each subgroup's leader is compared to 

the leader of the next higher subgroup to 

determine the necessary modification. In the 

event that the leader of the level below proves 

to be superior, the two leaders will switch 

positions. 

Computational Experience  

Test Problems 

In this part, we conduct a series of experiments 

to demonstrate the efficacy of the 

aforementioned algorithm. The goal of these 

simulations is to evaluate the merits of the 

memetic algorithm technique vs the genetic 

algorithm approach to solving the Permutation 

Flowshop Scheduling Problem. The 

experiments were conducted on Pentium IV at 
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2.2GHz, 2GB computer using "Matlab" 

language.  

In order to evaluate the algorithms' capabilities, 

a collection of test problems was developed. 

The number of machines and the number of 

open positions are two primary indicators of the 

scope of a problem. The effectiveness of 

algorithms that discover near-optimal solutions 

is likely to be impacted by the degree to which 

processing times for individual tasks are 

correlated. Using three machines and a total of 

10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000, 

and 2000 tasks, a representative sample of test 

issues was created. The processing times p i1, 

p i2, and p i3 used in the test problems were 

drawn at random from a uniform distribution 

on the integers given by the range [1,10], and 

the deadlines were also produced using a 

uniform distribution [(1 − 𝑇𝐹 −
𝑅𝐷𝐷

2
)𝑆𝑃, (1 − 𝑇𝐹 +

𝑅𝐷𝐷

2
) 𝑆𝑃]  such that 𝑆𝑃 =

∑ 𝑘𝑖
𝑛
𝐼=1  where 𝑘𝑖 =

(𝑝𝑖1+𝑝𝑖2+𝑝𝑖3)

3
, TF = 0.2, 0.4, 

RDD = 0.2, 0.4, 0.6, 0.8, 1, and the due date 

generation follow that given in [7]. For each 

value of n jobs we have average 10 problems. 

Comparative Results  

Results from our computer experiments 

demonstrating the efficacy of our BAB and 

local search algorithms are shown here. Our 

next step is to evaluate the data we've collected 

with... 

[Table 1 Compare among BAB,GA and MA] 

Table 2 below compares the time and value 

spent on each of two popular local search 

heuristics: the genetic algorithm (GA) and the 

memetic algorithm (MA). 
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[Table 2] 
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Conclusion 

In this paper, we consider that the three-system 

problem is reduced in lexical order The two 

objective functions, Makepan(Cmax) and 

range of lateness (RL), the problem denotes F3 

|| (Cmax, RL). We suggest several Algorithms 

for solving the problem, genetic and memetic 

algorithm. We also tried to improve the 

performance of the BAB algorithm by reducing 

the number of visits Contracts and calculation 

times for efficient solutions n = 2000. Future 

research can be done through an app suggested 

algorithms in practical production scheduling 

problems. 
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