
Journal of Survey in Fisheries Sciences 10(3S) 631-639 2023

631

Algorithms of Minimizing Makespan and Range of Lateness of Flow

Shop Machines

Adel Hashem Nouri
Department of Computer Science, College of Education, University of Kufa, Najaf, Iraq,

adilh.alhajjar@uokufa.edu.iq

Hussam Abid Ali Mohammed
Department of Mathematics, College of Education for Pure Sciences, University of

Karbala, Karbala, Iraq, hussam.abidali@uokerbala.edu.iq

Kareema Abed Al-Kadim
Department of Mathematics, College of Education for Pure Sciences, University of

Babylon, Hilla, Iraq, kareema.kadim@yahoo.com

Abstract

In this paper, the three-machine variant flow shop scheduling problem is addressed with the bi-

objectives of reducing the makespan (Cmax) and range of lateness (RL). The goal is to

concatenating minimize the two objective functions, i.e., to minimize the range of lateness

provided that the makespan is optimum. To discover the best solution to the issue for job sequences

with up to 2000 jobs, we introduce the Branch and Bound algorithm, and use the genetic and the

memetic algorithms to find pareto optimal solutions, and then the results will be compared between

them.

Keywords: Flowshop machine, makespan, range of lateness, Branch and Bound algorithm,

genetic algorithm, memetic algorithm.

Introduction

A scheduling problem in a flowshop contains n

tasks that must be completed on m machines in

the same machine-by-machine sequence.

Passing is allowed in the flowshop for

permutations. Therefore, the sequence in which

different jobs visit a set of machines is the

same. The general flowshop allows passage. As

a result, the order of the jobs on each machine

may differ.

Many papers on scheduling have treated the

multi-objective flowshop scheduling problem.

Marett and Wright (1996) used a large and

sophisticated multi-objective flow shop quality

measurement problem of simulated annealing

and tabu search. Sayin and Karabati (1999)

reduced the total time it took to complete the

task and its makespan concurrently to solve the

scheduling problem in a two machine flowshop

system.

There are typically three packed structure of

multiobjective scheduling problems. Tradeoffs

between objective functions are allowed in the

first class, and the ultimate result is the result of

the minimization of an aggregation function of

the studied objective functions. In the second

class, the objective functions were arranged

according to their relative importance

(lexicographical order), with the first objective

being minimized in proportion to its best value,

followed by the second, and so on. In the third

Journal of Survey in Fisheries Sciences 10(3S) 631-639 2023

632

class, the objectives were concurrently

decreased, and a set of non-dominated

solutions was generated.

Important Notations

𝑛 : Number of jobs.

𝑝𝑗: Processing time of jobs 𝑗

𝑑𝑗: Due date of jobs 𝑗.

𝐿𝑗: Lateness of job 𝑗, 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗.

𝐶𝑗 : Completion time of job j, where 𝐶𝑗 =

∑ 𝑝𝑘
𝑗
𝑘=1 .

𝑅𝐿: Range of lateness, 𝑅𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛.

Some Important Definitions

Johnson's 3 machine algorithm [12]:Optimal

makespan in a three-machine flow shop may be

obtained by extending Johnson's two-machine

method. Either,

min (p1j)≥ max(p2j) or min(p3j)≥ max(p2j)

Palmer’s Heuristic (PR) [12]:: The heuristic is

minimizing of makespan (Fm│Cmax) . These

are the two stages of this heuristic:

Step 1: Determine the inclination for the n-job,

m-machine static flow shop issue. As follows,

Aj, for the jth job:; Aj= -∑ {m− (2i −
m

i=1

1)} p ij
Step 2: Apply a descending (decreasing) order

to the jobs in the sequence based on the Aj

values.

Earliest Due Date (EDD)[12]: For each open

job, the one with the lowest date is completed

first.

Problem Formulation

Suppose we have a set of 𝑛 jobs 𝑁 =

{𝐽1, 𝐽2, … , 𝐽𝑛} Let's assume we have a list of n

jobs, N=J1, J2,..., Jn, ready to be processed at

t=0, and that these tasks may be run in any

sequence on machines A1, A2, and A3 during

periods of uninterrupted processing. In this

study, we concentrate on the makespan

function, which aims to maximize both (𝐶𝑚𝑎𝑥)

and range of lateness (𝑅𝐿).

𝑀𝑖𝑛 {
𝑓1(𝑠) = 𝐶𝑚𝑎𝑥

𝑓2(𝑠) = 𝑅𝐿
𝑠. 𝑡.

𝐶𝑖1
 =∑𝑝𝑘1

𝑖

𝑘=1

 𝑖 = 1,… , 𝑛, …… . . (1)

𝐶12
 = 𝑝11 + 𝑝12 , …………(2)

𝐶𝑖2
 = 𝑚𝑎𝑥 {𝐶𝑖1

 , 𝐶𝑖−1,2
 } + 𝑝𝑖2, 𝑖 = 2,… , 𝑛, … . . (3)

𝐶13
 = 𝑝11 + 𝑝12 + 𝑝13 , ………. (4)

𝐶𝑖3
 = 𝑚𝑎𝑥 {𝐶𝑖2

 , 𝐶𝑖−1,3
 } + 𝑝𝑖3, 𝑖 = 2,… , 𝑛, ……… . . (5)

𝐿𝑖 = 𝐶𝑖3
 − 𝑑𝑖, 𝑖 = 1,… , 𝑛. …… (6) }

(𝑃)

Solution Approaches:

Branch and Bound Algorithm (BAB) [5]:

The COP may be solved precisely using Branch

and Bound (BAB). It operates on the principle

of compiling a comprehensive set of viable

options in an intelligent manner. To elaborate,

this is because the desired solution to the

discrete optimization problem P is a

minimization. Now, break P into smaller issues

defined by smaller subsets of the set S of

possible solutions. P and its subproblems may

be quickly and easily associated with the

matching subset 𝑆′ ⊆ 𝑆. Three procedures are

needed for a BAB algorithm.

1. Branching: The forward branching rule is

used, let S is replaced by smaller subsets

𝑆𝑖(𝑖 = 1,… , 𝑟) such that 𝑆 = ⋃ 𝑆𝑖
𝑟
𝑖=1 . The

term "branching" describes this phenomenon.

Each S i is the seed from which another branch

grows; hence, branching is a cyclical process.

Algorithms of Minimizing Makespan and Range of Lateness of Flow Shop Machines

633

A branching tree is used to depict the full

branching process. Upper and initial lower

limits are determined for subsets of S, denoted

by S i (i=1,...,r), while S represents the root of

the tree. Subproblems are instances of discrete

optimization that are brought up during the

forking procedure.

2. Lower bounding (LB): If you're using an LB

scheme, the LB will be linked to every branch

in the index. The goal is to get rid of all of the

nodes where the LB is higher than the value of

the best known viable solution. It is possible to

determine an LB for this issue P by dividing the

sequence into subsequences 𝑠(= 𝑠′ ∪ 𝑠′′) into

two subsequences, 𝑠′ be a schedule jobs and 𝑠′′

be unscheduled jobs such that 𝑠1
′′ =

𝑠′′(𝐽𝑅) , 𝑠2
′′ = 𝑠′′(𝑃𝑅) and 𝑠3

′′ = 𝑠′′(𝐸𝐷𝐷) ,

then the decomposition LB is given by

𝐿𝐵1 = (𝐶𝑚𝑎𝑥(𝑠1 ∪ 𝑠1
′′), 𝑅𝐿(𝑠1 ∪ 𝑠3

′′)),

𝐿𝐵2 = (𝐶𝑚𝑎𝑥(𝑠1 ∪ 𝑠2
′′), 𝑅𝐿(𝑠1 ∪ 𝑠3

′′)),

𝐿𝐵 = 𝑚𝑎𝑥(𝐿𝐵1, 𝐿𝐵2)
3. Upper bounding (UB): We get to a UB of P's

actual value. Such a UB may be derived from

the objective value of any practically viable

solution.

Now, if a particular subproblem's LB is larger

than or equal to UB, then that subproblem

cannot provide a superior solution to the main

problem P. Therefore, we may stop branching

from the matching node in the tree. The bound

UB should be as tiny as feasible and the bound

LB should be as big as possible to prevent

branching at as many nodes of the branching

tree as possible. This is why we use certain

heuristics at the beginning of the BAB

algorithm to locate a suitable viable solution

with a low value of UB. The primary action in

the BAB algorithm is to locate a suitable LB to

prune the BAB bushes. There may be a single

viable solution to the subproblem after multiple

branches have been taken. Next, we take the

objective value of this solution and use it to

replace the LB in the subproblem UB by LB if

LB < UB, i.e. set UB = LB.

Genetic Algorithm

Based on the ideas of evolution and natural

selection, the genetic algorithm (GA) is a

method of optimization and searching. In a GA,

many individuals make up a population, and

that population evolves according to principles

of selection that aim to optimize "fitness" (i.e.,

maximizes the benefit function). The figure

below [11] displays a simplified version of a

genetic algorithm, one of the most important

tools in the field of artificial evolution. Starting

with a seed group (population of parents).

Children may be born with crossover and

mutation. Children are bred to become parents

and so on until evolution is halted. This

framework may be tailored to the specifics of a

given problem-solving situation.

The proposed genetic algorithm consists of a

chromosome, which represents a solution, and

two primary components, the sequence and the

idle periods introduced at the beginning of the

algorithm.For example [5] [4,1,2,3] shows that

jobs 4, 1, 2, and 3 will be processed first, with

jobs 1 beginning at time 6. These genes were

utilized as genetic operators: Two distinct

crossover operators have been built in. Firstly,

there's the infamous crossover between Order

and (OX) [6]. In this method, two parents are

picked at random, and a little portion of one of

their chromosomes is replicated into the

embryo. During the second stage, the other

parent's chromosomes are inserted into the

resulting child in the order of their appearance.

Mohammed et al. [8] proposed a second

crossover they called homogeneous mixture

crossover (HMX), which involves mixing the

two parental chromosomes uniformly by

creating a set of genes called M. They also

presented a method for the mixture, which

Journal of Survey in Fisheries Sciences 10(3S) 631-639 2023

634

involves first taking the odd position from the

first parent and the even position from the

second. Then, we can split the genes apart

without repeating any of them; this is done by

reading the set M from left to right, inserting

gene j into the first child if it doesn't already

exist there, and inserting it into the second if it

does. An additional pair of chromosomes is

produced in this manner.

• Mutation: Following this decision, in our

implementation we use the classic mutation

technique denoted by the Adjacent Pairwise

Interchange (API) area. Description of the

Roots of the GA using a chromosomal segment

from each parent,

• Initialization: The first stage of GA involves

randomly generating a large number of

individual solutions. Several hundred solutions

are often included in the population's first

generation, however this number varies

depending on the specifics of the situation at

hand. Since the traditional method of

population generation relies on a random

number generator, it makes it possible for any

and all solutions to emerge (the search space).

It's possible to "seed" solutions in locations

where they're more likely to be discovered

successfully.

• Selection: Every new generation is made up

of a chosen subset of the previous one. Fitter

solutions (as assessed by a fitness function) are

often more likely to be picked during the

fitness-based solution selection process. Some

techniques of selection apply a fitness rating to

each solution and then choose the ones with the

highest ratings. Because it may take a long time

to evaluate the whole population, some

techniques just evaluate a representative

sample.

• Reproduction: Those solutions that do well in

the genetic selection process will then be used

to produce a new generation of solutions. A pair

of "parent" solutions is chosen from the pool of

preselected solutions to be used in the

generation of a new solution. In general, when

two solutions are crossed and mutated to create

a "child," the offspring takes on many of the

traits of both of its parents. Every new

generation begins with a fresh set of parents,

and this continues until a set of solutions of the

right size has been produced. Some studies

imply that more than two "parents" are better to

reproduce a high quality kid [9], despite the fact

that reproduction techniques based on the usage

of two parents are more akin to the nature of

biology. By acting in this way, the following

generation produces a set of kids that are

distinct from their parents. Since only the most

fit creatures from the first generation are chosen

to reproduce (along with a small percentage of

less fit solutions, as indicated above), this

approach often results in an increase in the

population's average fitness. While crossover

and mutation get all the attention, genetic

algorithms may also make use of additional

operators including migration, colonization,

and even regrouping.

• Termination: This process of passing on

characteristics from one generation to the next

is continued until a certain threshold is met,

usually measured in terms of the number of

generations.

Simple generational genetic algorithm

procedure:

• Select the first set of individuals.

• To determine how healthy each person is, you

must examine the population as a whole.

• Continue with this generation forever (time

limit, sufficient fitness achieved, etc.)

• Choose the healthiest and most fertile people.

Algorithms of Minimizing Makespan and Range of Lateness of Flow Shop Machines

635

• The process of producing offspring by use of

crossover and mutation procedures.

• Assess the health and fitness of newcomers..

• The weakest members of the population

should be swapped out for fresh ones.

Memetic Algorithm

Memetic algorithms [10] might be seen as the

union of a population-based global strategy

with a personalized local search. They are a

kind of genetic algorithms known for their use

of a hill-climbing local environment. Memetic

algorithms are a kind of population-based AI

similar to genetic ones. Some tests have

revealed that their speed surpasses that of

typical genetic algorithms by many orders of

magnitude. A ternary tree-based population

structure was selected for use in this memetic

algorithm. It separates the people into groups

and limits the opportunities for mixing, in

contrast to a population that is not organized in

any way.

Population structure

Each cluster in the structure has a leader and

three follower solutions. The group choose its

leader by identifying its most capable member.

There must be at least 13 persons for a ternary

tree with three levels, at least 40 for a ternary

tree with four levels, and so on.

• Representation: Our representation for the

permutation flow shop scheduling issue is

rather natural; a solution is shown as a

chromosome, with alleles taking on various

integer values in the [1, n] range, where n is the

number of tasks.

• Crossover: The crossovers in GA are the same

as those mentioned up above..

• Mutation: The similar mutation in GA was

already mentioned up above.

• Fitness Function: The fitness function was

arbitrarily selected, since the objective in this

challenge is to minimize the weighted mean

completion time and weighted mean tardiness.

• Offspring Insertion in Population:

After a leader and follower are chosen, the

reproductive processes of recombination,

mutation, and local search begin, ultimately

leading to the birth of a new generation. If a

progeny's fitness levels are higher than those of

the leader, the progeny takes over. However, if

the recombination was successful, it will

replace the original supporter. A new member

of the population is not introduced if there is

already an individual with that identifier in the

population. For diversity's sake, we made it a

policy to not permit identical persons. The

populace is reorganized once all new members

have been added. A group's fitness leader must

have a lower score than the group's fitness

leader immediately above them. If this strategy

is followed, the root subgroup's leader will be

the most fit of all the subgroup heads, while

those at higher levels will have the least fit

leaders. Each subgroup's leader is compared to

the leader of the next higher subgroup to

determine the necessary modification. In the

event that the leader of the level below proves

to be superior, the two leaders will switch

positions.

Computational Experience

Test Problems

In this part, we conduct a series of experiments

to demonstrate the efficacy of the

aforementioned algorithm. The goal of these

simulations is to evaluate the merits of the

memetic algorithm technique vs the genetic

algorithm approach to solving the Permutation

Flowshop Scheduling Problem. The

experiments were conducted on Pentium IV at

Journal of Survey in Fisheries Sciences 10(3S) 631-639 2023

636

2.2GHz, 2GB computer using "Matlab"

language.

In order to evaluate the algorithms' capabilities,

a collection of test problems was developed.

The number of machines and the number of

open positions are two primary indicators of the

scope of a problem. The effectiveness of

algorithms that discover near-optimal solutions

is likely to be impacted by the degree to which

processing times for individual tasks are

correlated. Using three machines and a total of

10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000,

and 2000 tasks, a representative sample of test

issues was created. The processing times p i1,

p i2, and p i3 used in the test problems were

drawn at random from a uniform distribution

on the integers given by the range [1,10], and

the deadlines were also produced using a

uniform distribution [(1 − 𝑇𝐹 −
𝑅𝐷𝐷

2
)𝑆𝑃, (1 − 𝑇𝐹 +

𝑅𝐷𝐷

2
) 𝑆𝑃] such that 𝑆𝑃 =

∑ 𝑘𝑖
𝑛
𝐼=1 where 𝑘𝑖 =

(𝑝𝑖1+𝑝𝑖2+𝑝𝑖3)

3
, TF = 0.2, 0.4,

RDD = 0.2, 0.4, 0.6, 0.8, 1, and the due date

generation follow that given in [7]. For each

value of n jobs we have average 10 problems.

Comparative Results

Results from our computer experiments

demonstrating the efficacy of our BAB and

local search algorithms are shown here. Our

next step is to evaluate the data we've collected

with...

[Table 1 Compare among BAB,GA and MA]

Table 2 below compares the time and value

spent on each of two popular local search

heuristics: the genetic algorithm (GA) and the

memetic algorithm (MA).

Algorithms of Minimizing Makespan and Range of Lateness of Flow Shop Machines

637

[Table 2]

Journal of Survey in Fisheries Sciences 10(3S) 631-639 2023

638

Conclusion

In this paper, we consider that the three-system

problem is reduced in lexical order The two

objective functions, Makepan(Cmax) and

range of lateness (RL), the problem denotes F3

|| (Cmax, RL). We suggest several Algorithms

for solving the problem, genetic and memetic

algorithm. We also tried to improve the

performance of the BAB algorithm by reducing

the number of visits Contracts and calculation

times for efficient solutions n = 2000. Future

research can be done through an app suggested

algorithms in practical production scheduling

problems.

Reference

[1]J. M. Framiñán, R. Leisten, and R. R. Garc,

“Manufacturing scheduling systems,

an integrated view on models,” Methods and

Tools, (2014) pp. 51–63.

[2] S. M. Johnson, “Optimal two-and three-

stage production schedules with setup times

included,” Nav. Res. Logist. Q., vol. 1, no. 1,

(1954) pp. 61–68.

[3] Pinedo M. Scheduling: theory algorithms

and systems. Englewood Cliffs, Prentice-

Hall, New Jersey (1995).

[4] Solimanpur M., Vrat P. and Shankar R., A

neuro-tabu search heuristic for flowshop

scheduling problem. Computers &

Operations Research 31: (2004): 2151–

2164.

[5] Pinedo, L.M., Scheduling: Theory,

Algorithms, and Systems, Fourth Edition

Springer Science+Business Media, LLC,

(2012).

[6] Mohammed H. A., Cheachan H. A. and

Khtan Q. A.,: Single machine scheduling to

minimizing sum penalty number of late

jobs subject to minimize the sum weight of

completion time. Journal of Kerbala

University. 7(1): (2009)163–173.

[7] Yousefi M. and Yusuff R. M., Minimizing

earliness and tardiness penalties in a single

machine scheduling against common due

date using genetic algorithm. Research

Journal of Applied Sciences, Engineering

and Technology 4(9): (2012) 1205-1210.

Algorithms of Minimizing Makespan and Range of Lateness of Flow Shop Machines

639

[8] Mohammed H. A., Hassan A. S., Saloomi

M. H. and Khtan Q. A., Memetic Algorithm

and Genetic Algorithm for the Single

Machine Scheduling Problem with Linear

Earliness and Quadratic Tardiness Costs.

Journal of Kerbala University. 7(1): (2012):

163–173.

[9] Ting, Chuan-Kang): On Mean Convergence

Time of Multi-parent Genetic Algorithms

without Selection. Advances in Artificial

Life, pp: 403-412. ISBN 978-3-540-

28848(2005)

[10] Murata T., Ishibuchi H. and Tanaka H.,:

Multi-objective genetic algorithm and its

applications to flowshop scheduling.

Computers and Industrial Engineering

30(1996) 957–968.

[11] Cheachan H. A., Mohammed H. A. and

Khtan Q. A.: Scheduling flowshop

machines to minimize the multi-objective

functions. Iraqi Journal for Administrative

Sciences (2010)637–657.

[12]Alharkan I. M., "Algorithms for

Sequencing and Scheduling", Industrial

Engineering Department, College of

Engineering, King Saud University,

Riyadh, Saudi Arabia, (2007).

