
Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

166

IoT - Fog Model Building on Agro and Fish

Farming Applications

1Dr. K. Rangaswamy, 2Dr. S. Murali Mohan, 3B. Rupa Devi, 4Lakkala Jayasree, 5B. V

Chandra Sekhar

1Associate Professor, Department of CSE (DS), Rajeev Gandhi Memorial college of Engineering and

Technology, Nandyal, Andhra Pradesh.

Email: rangaswamy19@gmail.com
2Professor, Department of Electronics & Communication Engineering, Mother Theresa Institute of

Engineering and Technology, Palamaner, A.P.

Email: muralimohanieee@gmail.com
3Associate Professor Department of Computer Science & Engineering, Annamacharya Institute of

Technology and Sciences, Tirupati.

Email: rupadevi.aitt@annamacharyagroup.org
4Assistant Professor, Department of Computer Science and Engineering, Sri Padmavati Mahila Visva

Vidyalayam, Tirupati.

 Email: jayasreemohan15@gmail.com
5 Assistant Professor, Department of CSE, Rajeev Gandhi Memorial college of Engineering and

Technology, Nandyal, Andhra Pradesh

 Email: bvcalfa@gmail.com

Abstract

The design of a fog application is complicated because it includes the application architecture and the deployment

diagram from software packages to connectivity computer systems and the runtime infrastructure. This entire

IoT of elements must be taken into consideration. There are many different design options available for each of

these facets, and they all impact the overall quality of service and cost of the application that is produced. This

paper suggests a strategy for assessing haze IoT application forms early in development. Our strategy uses

modeling and simulation to provide forecasts for the quality of service and cost, allowing developers to choose

a great application design through an interactive process.

Keywords: Application Design, IoT, Fog Computing, Simulation

1. Introduction

The Internet of Things (IoT) is seeing

widespread adoption of connected devices,

dramatically increasing the data available to

developers. The Internet of Things (IoT)

applications available today can employ this

knowledge to make possible more

sophisticated use cases[1]. The conventional

approach to building an IoT app entails

collecting data at the network's periphery,

transmitting it to the cloud computing system

for processing, and returning the results to

the network's edge. This can be used, for

example, to turn on a light when motion is

detected in a smart home situation[2], [25].

Various services, such as AWS IoT and the

Azure IoT Hub, utilize this method because

it can be implemented easily.

On the other hand, some drawbacks include

sluggishness, unnecessary data transfers, and

the risk of private information falling into the

wrong hands[3]. AWS Greengrass reduces

mailto:rangaswamy19@gmail.com
mailto:muralimohanieee@gmail.com
mailto:rupadevi.aitt@annamacharyagroup.org
mailto:jayasreemohan15@gmail.com
mailto:bvcalfa@gmail.com

IoT - Fog Model Building on Agro and Fish Farming Applications

167

the need for network bandwidth by

offloading some processing to the edge node,

allowing the node to continue functioning

even when network partitions are present.

However, this approach is limited by the

processing power of the network edge, which

is often insufficient to handle the execution

of compute-intensive tasks. Utilizing the

computing power offered by more powerful

machines, such as cloudlets, that are part of

the core network is an apparent solution to

this issue that can be implemented. The term

"fog" is commonly used to refer to this

execution environment, which is made up of

network edge[4], machines located inside the

core network, as well as the cloud[5], [24].

Usually, programmers must think about the

software architecture, the runtime

infrastructure, and the Application Software

Deployment Infrastructure Machine

Mapping when designing an application for

the fog[6].

There are many design possibilities for each

of the three aspects, and each can be merged

with possibilities from the other two.

Because of this, an application could be

designed in many different ways. When

deciding on a specific design, one should

thoroughly analyze how the change will

affect the quality of service (QoS) and the

cost. It is meant to carry out such an

evaluation. However, it is likely to be

complex because the additional benefits of

effectively utilizing fog can substantially

improve IoT systems[7]. This paper aims to

support such evaluations so developers can

select a design option more easily. As a

result, the following are the contributions

that we make:

We present an approach that can be utilized

during the design phase to evaluate

applications based on fog computing.

Implementing our methodology, which we

call Fog Explorer, is demonstrated as a proof

of concept. We present a scenario illustrating

how our methodology can be applied[8].

When developing a fog-based Internet of

Things application design, many options

exist for deployment mappings, application

architecture, and runtime facilities[9]. This

opens up a wide variety of potential layouts.

To help developers assess their designs, we

have adopted an iterative simulation and

analysis process. We utilize simulations to

provide quality of service and cost estimates

for engagingly adjusting deployment lookup

tables. The simplified infrastructure and

application models form the basis for the

simulations. This information helps

designers weigh the pros and cons of

potential design decisions and find a happy

medium between the quality of service and

cost[5].

2. Modeling and Simulation

demonstrates the iterative simulation and

analysis developer workflow: first, build a

high-level model of the infrastructure (1a)

and the application (1b). Identifying the

various machines and how they are

connected, while the application model

outlines the application modules and the data

streams that flow between them. Note that

there is no need to implement anything to

carry out the simulation process. This is

because application modules comprise very

high-level data on the development tools of

an implementation that will later need to be

implemented. After creating the first

infrastructure and software model, designers

can create a deployment model by

positioning software applications on

infrastructure machines (2) based on those

models. Every placement update influences

QoS and cost, so a new simulation run should

be triggered by it (3)[10]. Studying these

effects allows for deriving recommendations

regarding optimizing placements and the

infrastructure and application model (4).

Because of this information, developers can

iteratively improve their designs and

Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

168

compare the merits of various design

solutions.

Model of the Infrastructure

When designing a system, programmers

usually only have a hazy idea of the backend

systems used. Of the system they are

designing. As a result, we cannot assume that

we have complete information and

benchmarking results on the currently

available performance. Therefore, the model

must support an abstract, high-level

infrastructure description. This can be

achieved by concentrating on six properties,

three of which pertain to the machines and

three to the connections between them.

The performance Indicator property of each

machine evaluates the system's efficiency

about a standard machine. For example, if

the performance indicator for a machine is

4.0, it indicates that the machine in question

is approximately four times "faster" than the

machine serving as the reference. In addition

to the performance measure, machines have

characteristics that characterize the amount

of memory (referred to as available memory)

and the price of that memory (referred to as

memory Price). If it becomes necessary,

more features can be added to our model. For

example, these supplementary properties can

describe storage capabilities and costs, while

quality-of-service properties like

availability. On the other hand, we

consciously decided to limit our approach to

the design phase to a straightforward model.

The latency property estimates the time it

takes for two machines to communicate with

one another for each connection. In addition,

bandwidth and bandwidth Price describe the

available bandwidth and its associated cost.

A machine can have strong links to another

machine. This allows for independently

modeling outgoing and incoming data, as

well as considering connections that are

either slow but inexpensive or expensive.

Building Application Model

Events frequently drive applications for the

Internet of Things: "things" produce streams

of data, the digital data are evaluated to

identify certain occurrences, and events

cause actions to be taken by other "things."

Each feature may be carried out in a different

location when the fog is present[11]. For this

reason, the architecture of an application

should be built on self-contained modules

that can be executed independently of one

another and share data and information

through the interconnection of data streams,

as is also done[12].

About these kinds of We identified three

distinct categories of application modules:

sources, services, and sinks. Data is

generated by sources and processed by

services, sending the results to sinks, which

then receive the data. Model of the

application consisting of four separate

application modules, including one origin,

one service, as well as two sinks. Because

our method is intended to make model

definitions possible at a very early stage of

the development process, we have again

chosen to employ a condensed collection of

module properties. In our model, sources

such as Internet of Things Sensors generate

a steady stream of data at a predetermined

rate (output Rate), which would be processed

sequentially by a set of services over a

predetermined period. A time frame is

associated with this processing (reference

Processing Time). With this abstraction in

place, designers need only worry about the

rate at which data is generated for every unit

of time rather than the specifics of how often

information is transmitted or how much data

is being generated at any given time. Sent 40

kilobytes of data to the Aggregator provider

from the temperature sensors. Five seconds

are spent by this service grouping the same

data before it is sent to the first of two

designated storage locations (Storage 1 and

IoT - Fog Model Building on Agro and Fish Farming Applications

169

Storage 2). The service's output rate is

calculated in real-time by dividing the total

data by a dynamically determined factor that

comes in with the output Ratio that

corresponds to it. This output Ratio defines

how well the service alters the volume of the

data stream coming in[13].

It is important to remember that services

never "freeze" while processing data but

continuously receive and process data in a

series of iterations. We have simplified this

issue by requiring devs only to estimate how

long the production process will take on a

reference device, as benchmarking real

software on facilities is the only way to

determine the actual operation time, which is

not feasible during the design phase. The

time spent calculating the correct processing

time is thus reduced[14]. Given the reference

point of the machine the module will be used

on and the comparison processing times of

the subsystem, we can estimate the actual

computation. Using the reference machine

(with its performance measured at 1.0) as an

example, we can infer that it will take the

Aggregator 5s to process the data. Each

service, as well as the reference, has a

corresponding mode that, when chosen,

specifies how the application module's

output rate is divided up among the various

outgoing streaming data. Depending on the

mode setting, either the total amount of data

is sent to all subsequent devices at the

determined rate (mode = "all") or each

successive device receives the entire

determined production rate (mode =

"individual") generates is proportionally

distributed across all streaming information

that is sent out (mode = "total"), depending

on which option is selected. If the

Aggregator service, for instance, had four

outgoing streams of data rather than two,

then the amount of data contained in each

data stream would be 5 kilobytes per second

because the 20 kilobytes per second that

were calculated as the output rate would need

to be divvied up by four. The amount of

memory a module will consume during the

runtime is specified by the required memory

property, which is present in all modules.

The only properties developers must specify

for data streams are the modules they

connect. The quantity of If you know the

reach its full potential, output ratios, and

modes for the module, you can figure out the

required bandwidth, which we'll call the

required bandwidth.

Fig 1. Modeling Design and Outline

Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

170

Model -1

Developers ought to be able to perform an

interactive evaluation of the effects of the

module placement alternative on both

qualities of service and cost based on the

application and infrastructure model. We

perform simulations of effects on a total of

four metrics using the present model's

properties: processing cost, process time,

transmission cost, and also transmission

time. The time metrics define the time it

takes to process a single data item on a given

machine or send it over a given connection

instead of the cost metrics, which describe

the average price imposed per second in a

particular configuration. For determining

these metrics, we suggest using an

implementation of a tool. After each module

placement, such an engaging simulation tool

must carry out several calculations, which

we will describe in more detail below.

1. The routing of data streams: The tool must

ascertain which connections are utilized. The

discrete components' streaming data must be

utilized to achieve this goal. For example,

let's pretend we have a model of facilities

comprising three machines, A, B, and C.

There is a connection between machines A

and B, and from there to machines C and D.

The AB connection and the BC connection

will transmit data between the detector and

the aggregation site when the detector is

located on node A. The aggregation site is

located on node C. In more complex

scenarios with multiple potential connection

routes, the tool can utilize the shortest path

algorithm to ascertain the links offering the

lowest bandwidth usage price.

2. Utilization of Resources: The tool needs to

calculate how the placement of something

affects the amount of bandwidth and

memory used by machines and connections.

The new amount of memory used is the same

as the previous amount, especially with the

amount necessary for the placed module.

Similarly, with the data stream's needs

factored in, the current rate of used available

bandwidth for each link is the sum of the

connection's actual rate and the amount

needed by the stream. All the data feeds

included in the module are subject to this

rule. When a machine has a module

removed, the free bandwidth and memory

usage both drop by the values. Putting the

Aggregator service on machine C, for

instance, could lead to a memory leak if

machine C requires 500 MB of memory

bandwidth utilization of 1500 megabytes,

and connections AB and BC each utilize a

bandwidth of 40 kilobits per second.

3. Under provisioning The tool needs to

determine the under-provisioning ratio, also

known for every connection and machine,

under the Provision Ratio. The ratio defined

here is the one that resources to available

resources. If more resources are available

than utilized, the ratio equals 1. In any other

case, it is calculated by dividing the

resources used (such as bandwidth or

memory) by the total available resources. For

instance, installing the Under-provisioning

ratio of 10 would occur if a machine

provided an aggregator service with only 100

MB of memory.

4. Different cost metrics for different

situations Costs associated with transmitting

and running individual data streams and

application modules must be calculated by

the tool module separately. Because of this,

it needs to consider the practice of under-

provisioning its resources.

5. Individual measurements of time The tool

needs to determine the amount of time

necessary for transmission and processing

for every data stream and module. If the

respective source of information is not

adequately provided, each time metric will

be infinite. The system will experience

internal pressure that will never be managed.

After all, the input will always exceed the

IoT - Fog Model Building on Agro and Fish Farming Applications

171

capabilities of either transmission or

processing. If this is not the case, the

processing time corresponds to the estimated

processing time of the machine (which

considers the machine's performance

indicator), and the transmission time for each

connection is equal to its latency.

6. Total quantitative measurements: The tool

needs to determine a real and cost metric

every time. This allows designers to get an

overall sense of the characteristics of a

design by looking at a single value. For

instance, the sum of the modules' processing

costs equals the total processing cost.

Fig 2. Modeling Design on Temperature and Air Edge Devices Communication

Recommendations: The tool needs to

provide devs with suggestions on optimizing

placements and the current application

model or infrastructure. Data such as under-

provisioned computers and connections can

be the basis for these recommendations. In

addition, the recommendations need to assist

in identifying invalid module placements in

which a missing infrastructure linkage

disrupts the data streams. In addition, the

recommendations should highlight which

machine and connection resources might be

reduced without impacting the quality of

service or the cost. We decided to go with

this set of measures because they provide a

comprehensive overview of the effects of a

particular design on QoS and cost. In

addition, our tool can calculate these

performance measures before the application

is implemented and before the developer has

complete information about the runtime

infrastructure. We need modeling data about

application components and the planned run-

time infrastructure to do this. If the more

extensive quality of service and cost metrics

are required, or if additional

recommendations must be derived, it is also

possible to expand the properties of the

application and infrastructure model.

However, doing so will increase the

complexity of the analysis.

Fig 3. Server Loading – Fog and IoT with Edge Devices – Communication

Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

172

Scenario

In this section, we put the modeling and

simulation procedure to use by applying it to

a real-world example. Because of space

constraints, we have chosen to illustrate our

point with an example from edge computing.

On the other hand, the procedure is not

significantly altered for more complex

scenarios wherein machines have been geo-

distributed across the rim, core network, and

cloud locations. In the scenario that we have

planned, a company wants to reduce the cost

of energy by regulating the temperature

within one of their houses based on the

readings from various sensors. Because there

are multiple possible styles for an application

like this that involves smart buildings, the

company must consider the effects on quality

of service and cost before deciding which

design must be implemented[15]. Numerous

factors, such as the strength of the wind, the

amount of direct sunlight that enters the

building, the difference in temperature

between the interior and exterior of the

building, and the presence of air pollution,

are important to the climate that exists inside

of a building and should therefore be

monitored. In addition, there are numerous

methods for controlling the climate, such as

opening and closing the windows, shades,

and shutters, turning the temperature up or

down or using air conditioning or heating. In

addition, predictions of the weather and

analyses of past data make it possible to

make more informed choices [13].

 For example, when a cold front is coming, it

makes more sense to put it on hold for a few

more minutes before bringing the

temperature down with the help of an air-con

if the temperature threshold values have only

been slightly exceeded. This is especially

true if the temperature thresholds have been

exceeded for an extended period. We will

only concentrate on the scenario's heating

component for our assessment. In addition,

we only track the temperature on the inside

and exterior of the building, and we only use

two methods to control the climate: airing

and air conditioning. In other words, the

building must be cooled down as much as

possible by daylighting at specific moments

when the temperature outside is lower than

the temperature inside the building. Air

conditioning, which uses much energy,

should only be used if there's no other option.

The general type of situation set up. Several

temperature sensors are dispersed

throughout the building, and interior and

exterior measurements are taken every

second. An actuator is installed in each

building's glass, allowing the window to be

opened and closed as desired.

Additionally, several air conditioners are

positioned throughout the building, each

controlled by a separate actuator. The

primary focus of our scenario evaluation is

the selection of appropriate runtime facilities

for the Internet of Things application that

will control the actuators. The decentralized

and the centralized runtime infrastructures

will be evaluated as potential options. In a

decentralized setup, edge devices

communicate with one another directly to

share information. In contrast, edge devices

only interact with a (central) server in a

centralized setup, which performs most

processing[16]. Every possible choice for the

runtime infrastructure has its benefits and

drawbacks. Decentralized systems, for

instance, are inherently incapable of having

a single failure point and, thus, are typically

able to deal well with network partitioning.

Data access and bug fixing are made simpler

using a centralized configuration. Because

none of these choices is optimal in every

circumstance, an analysis of each

circumstance is required. As the evaluation

needs to occur early in the design phase, the

proposed approach aims to make this

evaluation possible and helps decision-

makers make choices despite their limited

IoT - Fog Model Building on Agro and Fish Farming Applications

173

data on application architecture and runtime

infrastructure. In addition, our methodology

is still adaptable enough to assess the results

of a wide range of modifications, such as

increasing or decreasing the total network

edge number or recalculating the resources'

costs.

Models for Both Infrastructure and

Applications

The first thing we do in our process is build

an initial continuous integration for each

runtime environment. We combined all edge

machines attached to the same category of

"things" into a single machine to simplify the

modeling process. Even though this is only

feasible when all computers and their

interconnection have identical hardware

resources, it is still possible for us to build a

separate machine for each end device if the

resources are changed. Our centralized

infrastructure models. At this point, the

performs analysis on the measurements and

sends commands to the edge devices. The

edge devices, in turn, only forward these

instructions to the actuators without

performing any additional processing.

Although the devices at the network's edge

do not require substantial storage and

processing capabilities[17], the server in the

center does. The bandwidth utilization is

relatively high compared to a decentralized

system since all raw sensor data must be

transferred to the centralized server[18]. Our

strategy calls for creating an application

model in addition to the infrastructure model.

Regarding the scenario, we came up with the

one shown in figure 4. It is suitable for use

with either of the aforementioned runtime

infrastructures. Sensor sources constantly

send information to event dispatcher (ED)

services, which check to see if they need to

send out a new event. Air Conditioning

Manager and Airing Manager are both

responsible for receiving events and

performing analysis on them. By the findings

of the analysis, they issue directives to the

two electro-hydraulic drains. It is important

to remember that every actuator "thing" has

a corresponding sensor because the

managers need to peruse the current state,

such as whether or not an air conditioner is

operating.

Fig 4. Application Building with IoT- Fog Edge Devices at Field – Agro Monitoring

Modelling

Model -2

After creating both models, developers are

now able to begin the process of placing

sources, services, and sinks on machines.

The sources and sinks are located on the edge

devices of both runtime infrastructures.

While in the centralized configuration, all the

Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

174

services are located on the server, and the

decentralized configuration places the ED

and Manager services on the network's edge.

With the help of these deployment mappings,

the creators of the smart building will be able

to start investigating how the quality of

service and cost metrics are affected when

the properties of the infrastructure and

application models are altered[19].

Ultimately, the question of which runtime

facilities are " better " is determined by the

myriad aspects of a particular situation.

These considerations include the number of

actuators and sensors, the frequency and

volume of different sensors, the tasks and

analyses carried out by EDs and Manager

assistance, and the transmission and

processing resources cost. Developers can

run the required computer models to receive

advice, improve their design, as well as

compare different innovative solutions if

they follow our approach and do so to obtain

these goals [20], [21]. We prepared a

demo10 for this situation using evaluating

effects on quality of service and cost for the

centralized and decentralized runtime

infrastructure but also trying out various

model properties. The evaluation presented

in this study is done using a case study. The

outcomes of the demonstration utilizing the

default settings. In this scenario, the

centralized infrastructure has a higher cost

but good QoS metric values; consequently,

the centralized runtime infrastructure must

be selected if a quality level of this nature is

required. In conclusion, the information

made available by Fog Explorer enables

developers to make educated decisions

regarding issues such as selecting particular

runtime facilities without the necessity for

early prototype implementations[22].

Real-Time Agriculture Application Modelling and Results

Fig 5. Node-wise Sensors Integration with IoT – Fog and Edge devices

The figure displays the hardware and

software used in Experiment 2 to facilitate

communication between nodes equipped

with sensors and actuators and the Fog

layer. The field equipment we used

included three soil moisture sensors and an

actuator for the zone's irrigation system.

Python was our tool of choice. Model both

parts, including soil moisture progression

based on irrigation level (on or off)[23]. A

Rabbitmq messaging server with two

queues (data input and output) and a

IoT - Fog Model Building on Agro and Fish Farming Applications

175

module dedicated to the data stream and

complex event processing (CEP) were

implemented using the FlinkCEP library in

Apache Flink, making up the Fog tier. The

MQTT protocol enabled interaction

between the Fog layer and the edge devices.

Because RabbitMQ includes a built-in

plugin for receiving MQTT messages, it

was selected as the preferred messaging

service.

Fig 6. Messages – Responses from the Device

The outcomes of the experiment we ran to

evaluate the system's performance in the

following metrics: number of false

positives, number of false negatives,

accuracy, precision, recall, F1-Score, and

data traffic. Three examples will be

provided below.

Table 1: Performance Metrics

This experimental results scenario with 100

sensors on fog confirms the strategy's

performance in a network with a more

sizable number of nodes. As a result, 1800

soil moisture measurements and 1800

temperature measurements were taken to

ensure the proposal could be scaled. The

proposed method was used to collect soil

moisture in the field, resulting shown in

Figure 7. Using CEP and fusion techniques,

field-collected temperature data is analyzed

and displayed as a matrix of positive and

negative results.

Fig 7. Evaluation of the performance

Journal of Survey in Fisheries Sciences 10(4S) 166-177 2023

176

3. Conclusion

In this article, we proposed a method for

assessing fog-based Internet of Things

(IoT that can be employed right from the

beginning of the design phase. When

developers use our methodology, they can

compare various design options using

quality of service metrics and cost

considerations. This strategy is built on a

modeling and simulation process in which

models of runtime infrastructure and

software architecture are created, and

simulations of the impacts of application

module positions on infrastructure

computers are carried out. Because there is

a possibility that only a small amount of

information will be accessible for the

modeling, the proposed simulation

procedure only needs high-level model

meanings. It can, as a result, be used early

in the development process. We proffered

Fog Explorer, our prototypical execution,

as a proof of concept. We also

demonstrated how our methodology could

be utilized by providing an example

scenario.

References

[1] M. S. Farooq, S. Riaz, A. Abid, T. Umer,

and Y. Bin Zikria, "Role of IoT technology in

agriculture: A systematic literature review,"

Electronics, vol. 9, no. 2, p. 319, 2020.

[2] S. D. Bhogaraju, K. V. R. Kumar, P.

Anjaiah, J. H. Shaik, and others, "Advanced

Predictive Analytics for Control of Industrial

Automation Process," in Innovations in the

Industrial Internet of Things (IIoT) and Smart

Factory, IGI Global, 2021, pp. 33–49.

[3] G. Seeja, O. Reddy, K. V. R. Kumar, S.

Mounika, and others, "Internet of Things and

Robotic Applications in the Industrial Automation

Process," in Innovations in the Industrial Internet

of Things (IIoT) and Smart Factory, IGI Global,

2021, pp. 50–64.

[4] Y. Kalyani and R. Collier, "A systematic

survey on the role of cloud, fog, and edge

computing combination in smart agriculture,"

Sensors, vol. 21, no. 17, p. 5922, 2021.

[5] T.-C. Hsu, H. Yang, Y.-C. Chung, and C.-

H. Hsu, "A Creative IoT agriculture platform for

cloud fog computing," Sustain. Comput.

Informatics Syst., vol. 28, p. 100285, 2020.

[6] E. Guardo, A. Di Stefano, A. La Corte, M.

Sapienza, and M. Scatà, "A fog computing-based

iot framework for precision agriculture," J. Internet

Technol., vol. 19, no. 5, pp. 1401–1411, 2018.

[7] S. Jaiganesh, K. Gunaseelan, and V.

Ellappan, "IOT agriculture to improve food and

farming technology," in 2017 Conference on

Emerging Devices and Smart Systems (ICEDSS),

2017, pp. 260–266.

[8] M. S. Farooq, S. Riaz, A. Abid, K. Abid,

and M. A. Naeem, "A Survey on the Role of IoT in

Agriculture for the Implementation of Smart

Farming," Ieee Access, vol. 7, pp. 156237–156271,

2019.

[9] X. Zhang, Z. Cao, and W. Dong,

"Overview of edge computing in the agricultural

internet of things: key technologies, applications,

challenges," Ieee Access, vol. 8, pp. 141748–

141761, 2020.

[10] M. R. M. Kassim, "IoT applications in

smart agriculture: Issues and challenges," in 2020

IEEE conference on open systems (ICOS), 2020,

pp. 19–24.

[11] K. V. R. Kumar, K. D. Kumar, R. K.

Poluru, S. M. Basha, and M. P. K. Reddy, "Internet

of things and fog computing applications in

intelligent transportation systems," in Architecture

and Security Issues in Fog Computing

Applications, IGI Global, 2020, pp. 131–150.

[12] O. Elijah, T. A. Rahman, I. Orikumhi, C.

Y. Leow, and M. H. D. N. Hindia, "An overview of

the Internet of Things (IoT) and data analytics in

agriculture: Benefits and challenges," IEEE

Internet Things J., vol. 5, no. 5, pp. 3758–3773,

2018.

[13] O. Friha, M. A. Ferrag, L. Shu, and M.

Nafa, "A robust security framework based on

blockchain and SDN for fog computing enabled

agricultural internet of things," in 2020

International Conference on Internet of Things and

Intelligent Applications (ITIA), 2020, pp. 1–5.

[14] F. M. R. Junior, R. A. C. Bianchi, R. C.

Prati, K. Kolehmainen, J.-P. Soininen, and C. A.

Kamienski, "Data reduction based on machine

learning algorithms for fog computing in IoT smart

agriculture," Biosyst. Eng., 2022.

[15] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-

Marganiec, and A. V Vasilakos, "Fog computing

for sustainable smart cities: A survey," ACM

IoT - Fog Model Building on Agro and Fish Farming Applications

177

Comput. Surv., vol. 50, no. 3, pp. 1–43, 2017.

[16] C. S. M. Babou, B. O. Sane, I. Diane, and

I. Niang, "Home edge computing architecture for

smart and sustainable agriculture and breeding," in

Proceedings of the 2nd International Conference

on Networking, Information Systems \& Security,

2019, pp. 1–7.

[17] F. Sharofidinov, M. S. A. Muthanna, V.

D. Pham, A. Khakimov, A. Muthanna, and K.

Samouylov, "Agriculture management based on

lora edge computing system," in International

Conference on Distributed Computer and

Communication Networks, 2020, pp. 113–125.

[18] M. Uddin, M. Ayaz, A. Mansour, el-H.

M. Aggoune, Z. Sharif, and I. Razzak, "Cloud-

connected flying edge computing for smart

agriculture," Peer-to-Peer Netw. Appl., vol. 14, no.

6, pp. 3405–3415, 2021.

[19] S. D. Bhogaraju and V. R. K. Korupalli,

"Design of Smart Roads-A Vision on Indian Smart

Infrastructure Development," in 2020 International

Conference on COMmunication Systems &

Networks (COMSNETS), 2020, pp. 773–778.

[20] D. J. Reddy and M. R. Kumar, "Crop yield

prediction using machine learning algorithm," in

2021 5th International Conference on Intelligent

Computing and Control Systems (ICICCS), 2021,

pp. 1466–1470.

[21] K. Ramana, R. Aluvala, M. Rudra Kumar,

G. Nagaraja, A. Vijaya Krishna, and P. Nagendra,

"Leaf Disease Classification in Smart Agriculture

using Deep Neural Network Architecture and IoT,"

J. Circuits, Syst. Comput., 2022.

[22] M. Kumar, K. Dubey, and R. Pandey,

"Evolution of emerging computing paradigm cloud

to fog: applications, limitations and research

challenges," in 2021 11th International Conference

on Cloud Computing, Data Science \& Engineering

(Confluence), 2021, pp. 257–261.

[23] M. N. Akhtar, A. J. Shaikh, A. Khan, H.

Awais, E. A. Bakar, and A. R. Othman, "Smart

sensing with edge computing in precision

agriculture for soil assessment and heavy metal

monitoring: A review," Agriculture, vol. 11, no. 6,

p. 475, 2021.

[24] Reddy, K. Uday Kumar, S. Shabbiha,
and M. Rudra Kumar. "Design of high-security
smart health care monitoring system using
IoT." Int. J 8 (2020).

[25] Ramana, Kadiyala, et al. "Leaf Disease
Classification in Smart Agriculture using Deep
Neural Network Architecture and IoT." Journal
of Circuits, Systems, and Computers (2022).

