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Abstract 

The design of a fog application is complicated because it includes the application architecture and the deployment 

diagram from software packages to connectivity computer systems and the runtime infrastructure. This entire 

IoT of elements must be taken into consideration. There are many different design options available for each of 

these facets, and they all impact the overall quality of service and cost of the application that is produced. This 

paper suggests a strategy for assessing haze IoT application forms early in development. Our strategy uses 

modeling and simulation to provide forecasts for the quality of service and cost, allowing developers to choose 

a great application design through an interactive process. 
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1. Introduction 

The Internet of Things (IoT) is seeing 

widespread adoption of connected devices, 

dramatically increasing the data available to 

developers. The Internet of Things (IoT) 

applications available today can employ this 

knowledge to make possible more 

sophisticated use cases[1]. The conventional 

approach to building an IoT app entails 

collecting data at the network's periphery, 

transmitting it to the cloud computing system 

for processing, and returning the results to 

the network's edge. This can be used, for 

example, to turn on a light when motion is 

detected in a smart home situation[2], [25]. 

Various services, such as AWS IoT and the 

Azure IoT Hub, utilize this method because 

it can be implemented easily. 

On the other hand, some drawbacks include 

sluggishness, unnecessary data transfers, and 

the risk of private information falling into the 

wrong hands[3]. AWS Greengrass reduces 
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the need for network bandwidth by 

offloading some processing to the edge node, 

allowing the node to continue functioning 

even when network partitions are present. 

However, this approach is limited by the 

processing power of the network edge, which 

is often insufficient to handle the execution 

of compute-intensive tasks. Utilizing the 

computing power offered by more powerful 

machines, such as cloudlets, that are part of 

the core network is an apparent solution to 

this issue that can be implemented. The term 

"fog" is commonly used to refer to this 

execution environment, which is made up of 

network edge[4], machines located inside the 

core network, as well as the cloud[5], [24]. 

Usually, programmers must think about the 

software architecture, the runtime 

infrastructure, and the Application Software 

Deployment Infrastructure Machine 

Mapping when designing an application for 

the fog[6].  

There are many design possibilities for each 

of the three aspects, and each can be merged 

with possibilities from the other two. 

Because of this, an application could be 

designed in many different ways. When 

deciding on a specific design, one should 

thoroughly analyze how the change will 

affect the quality of service (QoS) and the 

cost. It is meant to carry out such an 

evaluation. However, it is likely to be 

complex because the additional benefits of 

effectively utilizing fog can substantially 

improve IoT systems[7]. This paper aims to 

support such evaluations so developers can 

select a design option more easily. As a 

result, the following are the contributions 

that we make: 

We present an approach that can be utilized 

during the design phase to evaluate 

applications based on fog computing. 

Implementing our methodology, which we 

call Fog Explorer, is demonstrated as a proof 

of concept. We present a scenario illustrating 

how our methodology can be applied[8]. 

When developing a fog-based Internet of 

Things application design, many options 

exist for deployment mappings, application 

architecture, and runtime facilities[9]. This 

opens up a wide variety of potential layouts. 

To help developers assess their designs, we 

have adopted an iterative simulation and 

analysis process. We utilize simulations to 

provide quality of service and cost estimates 

for engagingly adjusting deployment lookup 

tables. The simplified infrastructure and 

application models form the basis for the 

simulations. This information helps 

designers weigh the pros and cons of 

potential design decisions and find a happy 

medium between the quality of service and 

cost[5]. 

2. Modeling and Simulation 

demonstrates the iterative simulation and 

analysis developer workflow: first, build a 

high-level model of the infrastructure (1a) 

and the application (1b). Identifying the 

various machines and how they are 

connected, while the application model 

outlines the application modules and the data 

streams that flow between them. Note that 

there is no need to implement anything to 

carry out the simulation process. This is 

because application modules comprise very 

high-level data on the development tools of 

an implementation that will later need to be 

implemented. After creating the first 

infrastructure and software model, designers 

can create a deployment model by 

positioning software applications on 

infrastructure machines (2) based on those 

models. Every placement update influences 

QoS and cost, so a new simulation run should 

be triggered by it (3)[10]. Studying these 

effects allows for deriving recommendations 

regarding optimizing placements and the 

infrastructure and application model (4). 

Because of this information, developers can 

iteratively improve their designs and 
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compare the merits of various design 

solutions. 

Model of the Infrastructure 

When designing a system, programmers 

usually only have a hazy idea of the backend 

systems used. Of the system they are 

designing. As a result, we cannot assume that 

we have complete information and 

benchmarking results on the currently 

available performance. Therefore, the model 

must support an abstract, high-level 

infrastructure description. This can be 

achieved by concentrating on six properties, 

three of which pertain to the machines and 

three to the connections between them. 

The performance Indicator property of each 

machine evaluates the system's efficiency 

about a standard machine. For example, if 

the performance indicator for a machine is 

4.0, it indicates that the machine in question 

is approximately four times "faster" than the 

machine serving as the reference. In addition 

to the performance measure, machines have 

characteristics that characterize the amount 

of memory (referred to as available memory) 

and the price of that memory (referred to as 

memory Price). If it becomes necessary, 

more features can be added to our model. For 

example, these supplementary properties can 

describe storage capabilities and costs, while 

quality-of-service properties like 

availability. On the other hand, we 

consciously decided to limit our approach to 

the design phase to a straightforward model. 

The latency property estimates the time it 

takes for two machines to communicate with 

one another for each connection. In addition, 

bandwidth and bandwidth Price describe the 

available bandwidth and its associated cost. 

A machine can have strong links to another 

machine. This allows for independently 

modeling outgoing and incoming data, as 

well as considering connections that are 

either slow but inexpensive or expensive. 

Building Application Model 

Events frequently drive applications for the 

Internet of Things: "things" produce streams 

of data, the digital data are evaluated to 

identify certain occurrences, and events 

cause actions to be taken by other "things." 

Each feature may be carried out in a different 

location when the fog is present[11]. For this 

reason, the architecture of an application 

should be built on self-contained modules 

that can be executed independently of one 

another and share data and information 

through the interconnection of data streams, 

as is also done[12]. 

About these kinds of We identified three 

distinct categories of application modules: 

sources, services, and sinks. Data is 

generated by sources and processed by 

services, sending the results to sinks, which 

then receive the data. Model of the 

application consisting of four separate 

application modules, including one origin, 

one service, as well as two sinks. Because 

our method is intended to make model 

definitions possible at a very early stage of 

the development process, we have again 

chosen to employ a condensed collection of 

module properties. In our model, sources 

such as Internet of Things Sensors generate 

a steady stream of data at a predetermined 

rate (output Rate), which would be processed 

sequentially by a set of services over a 

predetermined period. A time frame is 

associated with this processing (reference 

Processing Time). With this abstraction in 

place, designers need only worry about the 

rate at which data is generated for every unit 

of time rather than the specifics of how often 

information is transmitted or how much data 

is being generated at any given time. Sent 40 

kilobytes of data to the Aggregator provider 

from the temperature sensors. Five seconds 

are spent by this service grouping the same 

data before it is sent to the first of two 

designated storage locations (Storage 1 and 
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Storage 2). The service's output rate is 

calculated in real-time by dividing the total 

data by a dynamically determined factor that 

comes in with the output Ratio that 

corresponds to it. This output Ratio defines 

how well the service alters the volume of the 

data stream coming in[13]. 

It is important to remember that services 

never "freeze" while processing data but 

continuously receive and process data in a 

series of iterations. We have simplified this 

issue by requiring devs only to estimate how 

long the production process will take on a 

reference device, as benchmarking real 

software on facilities is the only way to 

determine the actual operation time, which is 

not feasible during the design phase. The 

time spent calculating the correct processing 

time is thus reduced[14]. Given the reference 

point of the machine the module will be used 

on and the comparison processing times of 

the subsystem, we can estimate the actual 

computation. Using the reference machine 

(with its performance measured at 1.0) as an 

example, we can infer that it will take the 

Aggregator 5s to process the data. Each 

service, as well as the reference, has a 

corresponding mode that, when chosen, 

specifies how the application module's 

output rate is divided up among the various 

outgoing streaming data. Depending on the 

mode setting, either the total amount of data 

is sent to all subsequent devices at the 

determined rate (mode = "all") or each 

successive device receives the entire 

determined production rate (mode = 

"individual") generates is proportionally 

distributed across all streaming information 

that is sent out (mode = "total"), depending 

on which option is selected. If the 

Aggregator service, for instance, had four 

outgoing streams of data rather than two, 

then the amount of data contained in each 

data stream would be 5 kilobytes per second 

because the 20 kilobytes per second that 

were calculated as the output rate would need 

to be divvied up by four. The amount of 

memory a module will consume during the 

runtime is specified by the required memory 

property, which is present in all modules. 

The only properties developers must specify 

for data streams are the modules they 

connect. The quantity of If you know the 

reach its full potential, output ratios, and 

modes for the module, you can figure out the 

required bandwidth, which we'll call the 

required bandwidth. 

 

Fig 1. Modeling Design and Outline 
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Model -1 

Developers ought to be able to perform an 

interactive evaluation of the effects of the 

module placement alternative on both 

qualities of service and cost based on the 

application and infrastructure model. We 

perform simulations of effects on a total of 

four metrics using the present model's 

properties: processing cost, process time, 

transmission cost, and also transmission 

time. The time metrics define the time it 

takes to process a single data item on a given 

machine or send it over a given connection 

instead of the cost metrics, which describe 

the average price imposed per second in a 

particular configuration. For determining 

these metrics, we suggest using an 

implementation of a tool. After each module 

placement, such an engaging simulation tool 

must carry out several calculations, which 

we will describe in more detail below. 

1. The routing of data streams: The tool must 

ascertain which connections are utilized. The 

discrete components' streaming data must be 

utilized to achieve this goal. For example, 

let's pretend we have a model of facilities 

comprising three machines, A, B, and C. 

There is a connection between machines A 

and B, and from there to machines C and D. 

The AB connection and the BC connection 

will transmit data between the detector and 

the aggregation site when the detector is 

located on node A. The aggregation site is 

located on node C. In more complex 

scenarios with multiple potential connection 

routes, the tool can utilize the shortest path 

algorithm to ascertain the links offering the 

lowest bandwidth usage price. 

2. Utilization of Resources: The tool needs to 

calculate how the placement of something 

affects the amount of bandwidth and 

memory used by machines and connections. 

The new amount of memory used is the same 

as the previous amount, especially with the 

amount necessary for the placed module. 

Similarly, with the data stream's needs 

factored in, the current rate of used available 

bandwidth for each link is the sum of the 

connection's actual rate and the amount 

needed by the stream. All the data feeds 

included in the module are subject to this 

rule. When a machine has a module 

removed, the free bandwidth and memory 

usage both drop by the values. Putting the 

Aggregator service on machine C, for 

instance, could lead to a memory leak if 

machine C requires 500 MB of memory 

bandwidth utilization of 1500 megabytes, 

and connections AB and BC each utilize a 

bandwidth of 40 kilobits per second. 

3. Under provisioning The tool needs to 

determine the under-provisioning ratio, also 

known for every connection and machine, 

under the Provision Ratio. The ratio defined 

here is the one that resources to available 

resources. If more resources are available 

than utilized, the ratio equals 1. In any other 

case, it is calculated by dividing the 

resources used (such as bandwidth or 

memory) by the total available resources. For 

instance, installing the Under-provisioning 

ratio of 10 would occur if a machine 

provided an aggregator service with only 100 

MB of memory. 

4. Different cost metrics for different 

situations Costs associated with transmitting 

and running individual data streams and 

application modules must be calculated by 

the tool module separately. Because of this, 

it needs to consider the practice of under-

provisioning its resources. 

5. Individual measurements of time The tool 

needs to determine the amount of time 

necessary for transmission and processing 

for every data stream and module. If the 

respective source of information is not 

adequately provided, each time metric will 

be infinite. The system will experience 

internal pressure that will never be managed. 

After all, the input will always exceed the 
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capabilities of either transmission or 

processing. If this is not the case, the 

processing time corresponds to the estimated 

processing time of the machine (which 

considers the machine's performance 

indicator), and the transmission time for each 

connection is equal to its latency. 

6. Total quantitative measurements: The tool 

needs to determine a real and cost metric 

every time. This allows designers to get an 

overall sense of the characteristics of a 

design by looking at a single value. For 

instance, the sum of the modules' processing 

costs equals the total processing cost.

 

Fig 2. Modeling Design on Temperature and Air Edge Devices Communication 

Recommendations: The tool needs to 

provide devs with suggestions on optimizing 

placements and the current application 

model or infrastructure. Data such as under-

provisioned computers and connections can 

be the basis for these recommendations. In 

addition, the recommendations need to assist 

in identifying invalid module placements in 

which a missing infrastructure linkage 

disrupts the data streams. In addition, the 

recommendations should highlight which 

machine and connection resources might be 

reduced without impacting the quality of 

service or the cost. We decided to go with 

this set of measures because they provide a 

comprehensive overview of the effects of a 

particular design on QoS and cost. In 

addition, our tool can calculate these 

performance measures before the application 

is implemented and before the developer has 

complete information about the runtime 

infrastructure. We need modeling data about 

application components and the planned run-

time infrastructure to do this. If the more 

extensive quality of service and cost metrics 

are required, or if additional 

recommendations must be derived, it is also 

possible to expand the properties of the 

application and infrastructure model. 

However, doing so will increase the 

complexity of the analysis. 

 

Fig 3. Server Loading – Fog and IoT with Edge Devices – Communication 
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Scenario 

In this section, we put the modeling and 

simulation procedure to use by applying it to 

a real-world example. Because of space 

constraints, we have chosen to illustrate our 

point with an example from edge computing. 

On the other hand, the procedure is not 

significantly altered for more complex 

scenarios wherein machines have been geo-

distributed across the rim, core network, and 

cloud locations. In the scenario that we have 

planned, a company wants to reduce the cost 

of energy by regulating the temperature 

within one of their houses based on the 

readings from various sensors. Because there 

are multiple possible styles for an application 

like this that involves smart buildings, the 

company must consider the effects on quality 

of service and cost before deciding which 

design must be implemented[15]. Numerous 

factors, such as the strength of the wind, the 

amount of direct sunlight that enters the 

building, the difference in temperature 

between the interior and exterior of the 

building, and the presence of air pollution, 

are important to the climate that exists inside 

of a building and should therefore be 

monitored. In addition, there are numerous 

methods for controlling the climate, such as 

opening and closing the windows, shades, 

and shutters, turning the temperature up or 

down or using air conditioning or heating. In 

addition, predictions of the weather and 

analyses of past data make it possible to 

make more informed choices [13]. 

 For example, when a cold front is coming, it 

makes more sense to put it on hold for a few 

more minutes before bringing the 

temperature down with the help of an air-con 

if the temperature threshold values have only 

been slightly exceeded. This is especially 

true if the temperature thresholds have been 

exceeded for an extended period. We will 

only concentrate on the scenario's heating 

component for our assessment. In addition, 

we only track the temperature on the inside 

and exterior of the building, and we only use 

two methods to control the climate: airing 

and air conditioning. In other words, the 

building must be cooled down as much as 

possible by daylighting at specific moments 

when the temperature outside is lower than 

the temperature inside the building. Air 

conditioning, which uses much energy, 

should only be used if there's no other option. 

The general type of situation set up. Several 

temperature sensors are dispersed 

throughout the building, and interior and 

exterior measurements are taken every 

second. An actuator is installed in each 

building's glass, allowing the window to be 

opened and closed as desired.  

Additionally, several air conditioners are 

positioned throughout the building, each 

controlled by a separate actuator. The 

primary focus of our scenario evaluation is 

the selection of appropriate runtime facilities 

for the Internet of Things application that 

will control the actuators. The decentralized 

and the centralized runtime infrastructures 

will be evaluated as potential options. In a 

decentralized setup, edge devices 

communicate with one another directly to 

share information. In contrast, edge devices 

only interact with a (central) server in a 

centralized setup, which performs most 

processing[16]. Every possible choice for the 

runtime infrastructure has its benefits and 

drawbacks. Decentralized systems, for 

instance, are inherently incapable of having 

a single failure point and, thus, are typically 

able to deal well with network partitioning. 

Data access and bug fixing are made simpler 

using a centralized configuration. Because 

none of these choices is optimal in every 

circumstance, an analysis of each 

circumstance is required. As the evaluation 

needs to occur early in the design phase, the 

proposed approach aims to make this 

evaluation possible and helps decision-

makers make choices despite their limited 
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data on application architecture and runtime 

infrastructure. In addition, our methodology 

is still adaptable enough to assess the results 

of a wide range of modifications, such as 

increasing or decreasing the total network 

edge number or recalculating the resources' 

costs. 

Models for Both Infrastructure and 

Applications 

The first thing we do in our process is build 

an initial continuous integration for each 

runtime environment. We combined all edge 

machines attached to the same category of 

"things" into a single machine to simplify the 

modeling process. Even though this is only 

feasible when all computers and their 

interconnection have identical hardware 

resources, it is still possible for us to build a 

separate machine for each end device if the 

resources are changed. Our centralized 

infrastructure models. At this point, the 

performs analysis on the measurements and 

sends commands to the edge devices. The 

edge devices, in turn, only forward these 

instructions to the actuators without 

performing any additional processing. 

Although the devices at the network's edge 

do not require substantial storage and 

processing capabilities[17], the server in the 

center does. The bandwidth utilization is 

relatively high compared to a decentralized 

system since all raw sensor data must be 

transferred to the centralized server[18]. Our 

strategy calls for creating an application 

model in addition to the infrastructure model. 

Regarding the scenario, we came up with the 

one shown in figure 4. It is suitable for use 

with either of the aforementioned runtime 

infrastructures. Sensor sources constantly 

send information to event dispatcher (ED) 

services, which check to see if they need to 

send out a new event. Air Conditioning 

Manager and Airing Manager are both 

responsible for receiving events and 

performing analysis on them. By the findings 

of the analysis, they issue directives to the 

two electro-hydraulic drains. It is important 

to remember that every actuator "thing" has 

a corresponding sensor because the 

managers need to peruse the current state, 

such as whether or not an air conditioner is 

operating. 

 

Fig 4. Application Building with IoT- Fog Edge Devices at Field – Agro Monitoring 

Modelling 

Model -2 

After creating both models, developers are 

now able to begin the process of placing 

sources, services, and sinks on machines. 

The sources and sinks are located on the edge 

devices of both runtime infrastructures. 

While in the centralized configuration, all the 
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services are located on the server, and the 

decentralized configuration places the ED 

and Manager services on the network's edge. 

With the help of these deployment mappings, 

the creators of the smart building will be able 

to start investigating how the quality of 

service and cost metrics are affected when 

the properties of the infrastructure and 

application models are altered[19]. 

Ultimately, the question of which runtime 

facilities are " better " is determined by the 

myriad aspects of a particular situation. 

These considerations include the number of 

actuators and sensors, the frequency and 

volume of different sensors, the tasks and 

analyses carried out by EDs and Manager 

assistance, and the transmission and 

processing resources cost. Developers can 

run the required computer models to receive 

advice, improve their design, as well as 

compare different innovative solutions if 

they follow our approach and do so to obtain 

these goals [20], [21]. We prepared a 

demo10 for this situation using evaluating 

effects on quality of service and cost for the 

centralized and decentralized runtime 

infrastructure but also trying out various 

model properties. The evaluation presented 

in this study is done using a case study. The 

outcomes of the demonstration utilizing the 

default settings. In this scenario, the 

centralized infrastructure has a higher cost 

but good QoS metric values; consequently, 

the centralized runtime infrastructure must 

be selected if a quality level of this nature is 

required. In conclusion, the information 

made available by Fog Explorer enables 

developers to make educated decisions 

regarding issues such as selecting particular 

runtime facilities without the necessity for 

early prototype implementations[22]. 

 

Real-Time Agriculture Application Modelling and Results 

 

 

 

Fig 5. Node-wise Sensors Integration with IoT – Fog and Edge devices 

The figure displays the hardware and 

software used in Experiment 2 to facilitate 

communication between nodes equipped 

with sensors and actuators and the Fog 

layer. The field equipment we used 

included three soil moisture sensors and an 

actuator for the zone's irrigation system. 

Python was our tool of choice. Model both 

parts, including soil moisture progression 

based on irrigation level (on or off)[23]. A 

Rabbitmq messaging server with two 

queues (data input and output) and a 
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module dedicated to the data stream and 

complex event processing (CEP) were 

implemented using the FlinkCEP library in 

Apache Flink, making up the Fog tier. The 

MQTT protocol enabled interaction 

between the Fog layer and the edge devices. 

Because RabbitMQ includes a built-in 

plugin for receiving MQTT messages, it 

was selected as the preferred messaging 

service. 

 

 

 

 

 

 

 

Fig 6. Messages – Responses from the Device 

The outcomes of the experiment we ran to 

evaluate the system's performance in the 

following metrics: number of false 

positives, number of false negatives, 

accuracy, precision, recall, F1-Score, and 

data traffic. Three examples will be 

provided below. 

 

Table 1: Performance Metrics  

This experimental results scenario with 100 

sensors on fog confirms the strategy's 

performance in a network with a more 

sizable number of nodes. As a result, 1800 

soil moisture measurements and 1800 

temperature measurements were taken to 

ensure the proposal could be scaled. The 

proposed method was used to collect soil 

moisture in the field, resulting shown in 

Figure 7. Using CEP and fusion techniques, 

field-collected temperature data is analyzed 

and displayed as a matrix of positive and 

negative results. 

 

Fig 7. Evaluation of the performance 
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3. Conclusion 

In this article, we proposed a method for 

assessing fog-based Internet of Things 

(IoT that can be employed right from the 

beginning of the design phase. When 

developers use our methodology, they can 

compare various design options using 

quality of service metrics and cost 

considerations. This strategy is built on a 

modeling and simulation process in which 

models of runtime infrastructure and 

software architecture are created, and 

simulations of the impacts of application 

module positions on infrastructure 

computers are carried out. Because there is 

a possibility that only a small amount of 

information will be accessible for the 

modeling, the proposed simulation 

procedure only needs high-level model 

meanings. It can, as a result, be used early 

in the development process. We proffered 

Fog Explorer, our prototypical execution, 

as a proof of concept. We also 

demonstrated how our methodology could 

be utilized by providing an example 

scenario. 
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