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Abstract 

In this study, we present a new gradient descent algorithm method to find first-order iterative 

optimization with one variable as well as a larger number of variables. The main objective of the 

optimization is to improve the value of the objective function taking into account a variety of 

constraints. The new approach algorithm depends on the process of determining the local 

minimum and maximum values of the function. This approach is an effective method using this 

strategy in applied mathematics to reach the optimal solution. The new approach algorithm is used 

for constraint solving and unconstrained numerical optimization. 

Keywords:  Gradient descent algorithm, Numerical Optimization, dynamic and control 

Optimization, Python.

Introduction 

Optimizing processes is one of the most 

powerful approaches in process integration. 

"Best" is a term used in optimization to 

describe the most advantageous option among 

a set of feasible alternatives mathematical 

modeling and numerical simulation. A 

mathematical model is a representation of 

physical reality that can be analyzed and 

calculated. We can compute the using 

numerical simulation, [1,2,3] 

calculate a model's solution on a computer in 

order to make a virtual duplicate of physical 

reality. 

PDEs (partial differential equations) or 

multivariable differential equations will be our 

major modeling tool in this inquiry (time and 

space, for example). 

Applied mathematics has a third fundamental 

feature: the mathematical study of models. 

 Mathematical analysis is a necessary step It is 

possible to get some severe shocks from 

numerical solutions to physical models. 

A detailed understanding of the underlying 

mathematical ideas is required to fully 

appreciate them. and  

Nonlinear problems and applications are the 

driving force behind applied mathematics. 

difficulties that do not have any random or 

stochastic aspects. Finally, something must be 

done in order for this to work. 

In our efforts to be simple and understandable, 

we may occasionally use ambiguous language. 

in our use of mathematics. We may ensure the 

more discerning reader that 
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an example of modeling that leads to the 

equation for heat flow. 

Numerical algorithms must be utilized. This 

goal is to show and analyze several algorithms 

that help us to better understand the world 

around us. 

To tackle real-world problems, all of the 

algorithms covered here may be put to work 

computer-aided  to specific optimization issues. 

All of these algorithms are iterative in nature, 

beginning with a predetermined initial 

u_0condition. 

Each approach creates a sequence (U_n) n ∈N 

that converges under  certain conditions,[ 

4,5,6,19] 

Methodology 

In this section, we talk about  how to solve both 

constrained and unconstrained problems using 

the gradient descent algorithm of numerical 

optimization and solving dynamic and control 

optimization 

Gradient Descent algorithm 

Gradient descent initialize the gradient and 

learning rate at the beginning of each iteration 

to provide new points for each iteration. 

Vector of objective function that contains 

partial derivatives with respect to points' 

dimensions or coordinates. 

In other words, the learning rate tells us how 

close we want to the optimal point and how 

much time it will take us to get there. In 

minimization problems, the gradient is 

negative, and in maximization problems, the 

gradient is positive. 

The Gradient Descent algorithm can be 

visualized as a hill that is gradually descending 

if we are briefed on its principle,[10,11,12] 

goal of descending the mountain in the quickest 

feasible time by meticulous planning and 

adherence to detailed instructions. Our starting 

point, progress rate, and general direction are 

all determined by it. We can get a head start on 

achieving our objective if we use these factors 

as a guide. When the gradient is zero, we know 

we have reached the lowest since the function's 

derivatives are all zero at either the local or 

global minimum/maximum. According to the 

function's nature and location, it might be either 

global or local. In the case of convex functions, 

gradient descent can be used to ensure that the 

function under study converges to a single 

minimum. In more complex functions, most 

algorithms ultimately stabilize (and may even 

be optimum). The gradient is zero) points, 

based on the step size. In order to pick the 

precise step size, there are several criteria and 

approaches to consider, such as. A simple linear 

regression model will be used to demonstrate 

how the gradient descent works to reduce costs 

by optimizing the cost function using intercept 

and slope. 

  

𝒙𝒌+𝟏  =   𝒙𝒌  −   ∆ 𝒇(𝒙𝒌)𝝉 

Where, (𝒙𝒌+𝟏) is the next point we want to go, 

𝒙𝒌   is our current location, the gradient of the 

function at our current location, and " 𝜏" is the 

learning rate,[16,17,18] 
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𝑿 = 𝑿 −   𝜶 
𝒅

𝒅𝒙
   𝒇(𝒙) 

Where       X = input,    F(x) = output based on 

X,    α  =  learning rate  

Data Analysis 

Python Code in Gradient Descent with 

constraint 

 

objective at  

𝑥0 

0.94 

objective at  

𝑥1 

0.875 

jac array([1.66666673, 1.66666668]) 

nfev 7 

nit 2 

njev 2 

status 0 

x array([0.16666667, 0.83333333]) 

Python Code in Gradient Descent without 

constraint 

 

Iteration        x    f (x) 

1 -0.27005033 44.97446 

2 -0.32543103 44.93358 

3 0.41920286 44.80740 

4 -0.59895884 44.28436 

5 -1.01729461 40.77096 

6 -2.36616818 -15.63919 

7 -10.29106235 -5298.51844 

8 -167.09179617 -23297772.99643 

9 -42013.1759599 -370786980175207.31250 

10 

  

-

2.64769404e+09 

-

92805432438404353756032401408.00000 
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this figure above compute the solutions by 

create a line of input vs result 

dynamic and control optimization    

Optimization problems for both linear and 

nonlinear dynamic programming (DP) are a 

common mathematical approach. The word 

"dynamic" was coined because the method is 

typically used to create a series of optimal 

judgments that may adapt dynamically to 

changes in conditions over time.[26] 

Dynamic programming differs from linear 

programming, and Do not assume between 

variables that there is a linear relationship. This 

means that a wide variety of issues can be 

addressed with this technology. It's great that 

there is some difference. However, this comes 

at a cost because it requires a very special 

problem - framing the optimization problem as 

a dynamic program. Therefore, dynamic 

programming structures are usually considered 

works of art. 

As a matter of control, system modeling is a 

challenge. The goal is to provide a 

mathematical description so simple that it 

accurately predicts the reaction. 

A great variety of constraints can be imposed 

on the problem of optimal control. These 

constraints limit the range of values that the 

control and state variables can assume. One 

usually distinguishes between point constraints 

and path constraints; Optimum control 

problems may also have equal limitations. All 

these restrictions can be of equal or unequal 

kind. Point restrictions. These constraints are 

routinely used in optimal control problems, 

especially final constraints[23,27] 

python code in dynamic and control 

optimization 

𝒎𝒂𝒙  𝒙𝟐 (𝒕𝒇) 

 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐            
𝒅𝒙𝟏

𝒅𝒕
=  −(𝒖 + 𝟎. 𝟑𝒖𝟐)𝒙𝟏 

         
𝒅𝒙𝟐

𝒅𝒕
 = 𝒖 𝒙𝟏 

                     𝒙(𝟎) =  [𝟏       𝟎]𝑻 

      𝟎 ≤ 𝒖 ≤ 𝟕 

𝒕𝒇 = {𝟎, 𝟎. 𝟏, 𝟎. 𝟐, … , 𝟎. 𝟗, 𝟏}  
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Numerical results for dynamic and control 

optimization problem with large scale variables 

final value CPU sec 

in IPOPT 
0.012 

The  objective - 0.557740968627238 

function final value 
Solution time 8.040000000255532E-002 

sec 
Objective -0.558157637615552 
Solver IPOPT 

iteration Objective INF_pr INF_du LG(mu) ‖𝐷‖ ALPha_du ALPha_pr 

0 1.1899988e-04 1.30e+00 1.00e+00 0.0 0.00e+00 0.00e+00 0.00e+00 

1 -5.5770830e-01 2.22e-16 1.00e-02 -8.0 1.28e+00 9.90e-01 1.00e+00h 

2 -5.5770874e-01 2.22e-16 9.50e-05 -10.0 5.42e-05 9.91e-01 1.00e+00f 

3 5.5774097e-01 1.11e-16 1.11e-16 -11.0 3.63e-03 1.00e+00 1.00e+00f 

4 -5.5815068e-01 2.22e-16 6.30e-02 -8.0 1.06e-01 9.40e-01 1.00e+00h 

5 -5.5815075e-01 2.22e-16 1.09e-03 -9.2 9.09e-06 9.90e-01 1.00e+00h 

6 -5.5815764e-01 1.11e-16 1.00e-16 -11.0 8.40e-04 1.00e+00 1.00e+00f 

iteration: the number of iteration and regular 

repetition during the recovery phase. 

objective: The value of the objective function 

at the current point during the recovery phase. 

INF_pr: Violation of constraint at the current 

non-scaled point. This quantity is the infinity 

(maximum) of the (unscaled) constraints (gL 

≤ g(x) ≤ gU in (NLP)).. 

inf_du: The scaled dual infeasibility at the 

current point.  

LG (mu): log10 value of the barrier coefficient, 

μ. 

|| D ||: Infinity (maximum) criterion for the 

initial step (internal slack variables s and 

original variables x) 

lg (rg): log10 for the value of the Hessian 

settlement term for the Lagrangian in 

alpha_du: the size of the scores for the paired 

variables 

alpha_pr: The size of the scores for the initial 

variables 

 

RESULTS AND DISCUSSION 

In this article, we check how the decent 

gradient algorithm works, it is used in solving 

problems that contain restricted and 

unrestricted optimization using Python 

programming and when solving problems that 

have an objective function and constraints 

when choosing a starting value of   x_(0  )the 

following iterations are found and other results 

as well In this article, we used Dynamics and 

Optimization Control and how to solve 

problems 

As for problems a by the gradient decent 

algorithm that contains a objective function and 

without  constraints when choosing the value of   

 𝑥1 = (−0.27005033) , and  𝑓(𝑥1) =

(44.97446)   then the next iterations were 

calculated until we reached the tenth iteration 
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and its value                𝑓 ( 𝑥10)  =

( −92805432438404353756032401408.00000) 

CONCLUSION 

In this paper, we used a new approach in one of 

the most important numerical optimization 

algorithms in applied mathematics, which is 

called gradient (maximum gradient) and it is an 

iterative first-order numerical optimization 

algorithm to find the local minimum or local 

maxima. 

The idea of this algorithm is to take iterative 

steps in the opposite direction of the gradient 

(approximate gradient) of the function at the 

current point because that is the direction of the 

maximum gradient. In this study, we used a 

new approach to solve constraint and 

unconstrained numerical optimization 

problems in a way that the results of the new 

approach improved through the algorithm that 

the results are more accurate and in less time to 

find the optimal solution. Python language was 

used in all tests. 
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