
Journal of Survey in Fisheries Sciences 10(2S) 1113-1119 2023

1113

Prevention of SQL Injection Attacks in Web Applications

Vaibhav Srivastava,
UG Students, Dept. of B-Tech, SRM Institute of Science and Technology, Kattankulathur,

Chennai, Tamil Nadu, India, Email: vaibhavsrivastava1599@gmail.com

Abhinav Majumdar,
UG Students, Dept. of B-Tech, SRM Institute of Science and Technology, Kattankulathur,

Chennai, Tamil Nadu, India, Email: abhi01082000@gmail.com

Jeyasekar A
Associate Professor, Dept. of B-Tech, SRM Institute of Science and Technology,

Kattankulathur, Chennai, Tamil Nadu, India. Email: ajeyasekar@yahoo.com

Abstract

SQL injection attacks are the most basic type of cyber-attacks that execute arbitrary malicious

code to retrieve confidential information from a SQL database. This paper aims to study and

analyze three types of injection attacks and find out their vulnerabilities. Based on that, we propose

a new measure to prevent the occurrence of SQL injection attacks. The proposed measure was

experimented with and tested using a local webserver and found that it accurately detects and

prevents SQL injection attacks. The proposed system could be implemented in the Web

Application Firewall to detect and prevent malicious SQL traffic.

Keywords: SQL Database, SQL Injection Attack, In-Band Injection, Blind Injection, Out-of-Band

Injection, SQL Injection Prevention.

1. INTRODUCTION

Structured Query Language so-called SQL,

was first introduced in 1974. It was used to

operate the relational database management

system (RDBMS) but later became compatible

with many other database systems. The

language SQL comprises various queries used

to organize data in the databases. In recent

decades, Injection attacks have enormously

increased, leading to the hype about cyber-

crimes. An injection is an attack in which

malicious code is injected into a script to

change its working and get access to restricted

data or rights. SQL being a primitive language

has also become vulnerable to such attacks and

are called SQL Injections. SQL Injection is the

infiltration of malicious code into the input

query of a SQL statement on any platform that

dynamically operates with a live

Database, this injection results in the attacker

getting information from a restricted database

which might lead to an immoral use of data for

any kind of profit. SQLI is one of the most

dangerous attacks on any active database

application. The first SQLI was recorded in

1998 and since then SQLI is been on top of all

security threats. According to OWASP, it is in

the top 10 cyber security threat list, from 2017

to 2019 two/thirds of all the attacks were SQL

Injection.

The research objective of this paper is to

develop an application that detects and prevents

the SQL injection attack during the run time,

isolating the attacker from accessing the

Prevention of SQL Injection Attacks in Web Applications

1114

database and alerting the administrator. In this

paper, we will be dealing with all existing SQL

vulnerabilities and providing a prevention

measure for each of them. The proposed

prevention mechanism has five main

components: 1) Sanitization, 2) Hashing of

confidential data, 3) Sending Notification, 4)

Banning and 5) WAF policies.

In sanitizing, the admin restricts the usage of

special characters with a warning. In hashing

the admin encrypts the confidential data. In

Notification, alert notices are sent to the admin

during breaching and in banning the attacker is

restricted to access the website for a certain

time. We have inspected the above five

components and experimented with the

proposed prevention mechanism in the local

host using MySQL, PHP Apache web server,

and JavaScript. It detects and prevents SQL

injection attacks in runtime.

This paper has 6 sections where we are

discussing the workflow of a SQL injection in

section 2 and how SQL injection is performed,

& in section 3 we are stating the prevention

method which has been tested and analyzed. In

section 4 we analyze all the prevention methods

stated in section 3 and their drawbacks.

Sections 5 and 6 are the conclusion and

references respectively.

2. RELATED WORKS:

Fig 1 shows the user interaction with the

database and how the attacker injects the

malicious SQL query into the database.

Generally, the SQLI has been mainly

categorized into 1) Inband/Unsanitized SQLI,

2) Blind/Inferential SQLI and 3) Out-of-band

SQLI. The In-Band and Blind are based on

traditional SQL attacks. They generally use the

same channel to perform an injection attack,

i.e., the attacker injects the malicious code into

the webserver and retrieves it directly from the

database server. While the Out Of Band is a

part of a modern injection attack and uses a

second channel to retrieve the data. It does so

by using a proxy server.

Fig 1. SQLIA Workflow

IN-BAND / UNSANITIZED

These attacks are generally, easily executed

and exploited and mostly target a client through

the same channel or median.

Consisting of two sub-components

• Error Based:

In this attack, the attacker passes a random

query that leads to some specific errors. The

attacker then uses that error statement and

manipulates it in a certain way to retrieve the

data from the E.g., an attacker can know about

the number of columns in a specific table using

the following order-by query.

If the number of columns is less than 9 then the

attacker will simply get an error that no such

column exists. This allows the attacker to know

that either the table consists of 8 or fewer than

8 columns.

• Union Based:

In this SQLI, generally, the attacker uses the

error statement and executes the further attack

with the help of the union operator [4].

Journal of Survey in Fisheries Sciences 10(2S) 1113-1119 2023

1115

This attack uses the information derived from

the error-based injection attack and aims to find

more information about the table or the data in

the table. Below mentioned are some of the

union statement queries.

This query gives out the probable data type of

column so we can use the extended union

statement as such and get the desired output. It

is a hit-and-trial method and needs to be

executed as many times as to get the right

dataset.

This query uses the basic information we

derived from error-based Injection and uses the

varchar datatype to get information in output as

a union query needs the same number of

columns as in the parent query. The

information schema is a SQL databases table

where the database saves information about the

database and tables and in this query, we are

using this to get all the table names.

This statement is a further extension of the

previous statement. Using the union-based

injection the attacker gets the column name and

data type of a specific column he/she either

aims to attack or suspects to have confidential

data in.

This is the final phase where the information is

extracted from the previous statement to get all

the data from the table. In this example, the

CustomerID and StockCode were given out as

a result of injection after checking the correct

details from the information schema.

2.1 BLIND / INFERENTIAL

This generally occurs when the backend

database considers user input as a query and not

data to be saved.

The error message shown by these websites

initiates a chance of Blind SQLI. Some

common responses by websites result in true

and false responses, giving away some

confidential information. This type of SQLI is

used to gather information about databases and

tables.

Consisting of two sub-components

• Boolean Based:

The attacker makes queries that ask the

database true and false questions in this type.

These questions either return database

semantics or all the data of the database.

This type of SQL injection needs some

prerequisites, using In-Band SQL injection we

can find out the information about the database

and table the column name and the data type,

etc.

We can then use some SQL Boolean query to

get the output may be as simple as,

As 1=1 is always true it will show all the fields

as a result.

This gives results in 1 & 0 or true & false form

if the first character of the database name is

greater than 97 ASCII characters and we thus

can hit and try between all the ASCII characters

to come to a result.

In this, we are using a common SQL query

substring and getting the first word of a specific

string from a specific column from a table, from

the details we got from In-Band Injection. Then

through basic yes or no question, we can predict

the specific letter of string if it is greater than

‘a’ or ‘A’ or less than ‘k’ or ‘K’. Thus, we can

predict all the string letters, thus getting the

forbidden information from the database.

Prevention of SQL Injection Attacks in Web Applications

1116

• Time Based:

Time-based delays the response of the site and

helps in calculating the true and false results.

E.g., if the result to a query to a result is true

delay by 10 seconds, and if no then no delay.

The most common command is WAITFOR

delay.

This injection is used when the webpage isn’t

showing any visible details and no sign of true

or false,

In this, we are using the SQL substring query to

check the database name letter by letter and if

it is true then the SQL database will sleep for 2

seconds resulting in a delayed result or web

page loading otherwise if false no change in

loading time.

Or we can check a desired column data letter by

letter through hit-and-trial and get a definite

result of the content in the column using a

similar sleep query.

 2.3 OUT-OF-BAND:

In this, the attacker uses outer or external

channels to perform the injection attack and

collect important data. The whole injection

attack is based on three things. First, injecting a

malicious query to infiltrate the database data.

Second, passing the data through an external

channel to the listening server. These channels

are mostly of two types DNS (Domain Name

System) or HTTP (Hypertext Transfer

Protocol). At last, accessing the data via a

listening server.

The working of the whole Out-Of-Band SQLI

process is based on this one formula:

OOB= Fx. (SQL Command+ SvDN)

Where SQL command is the query used to

extract data, SvDN is the subdomain provided

by the server and Fx is the function used for

passing requests.

1. Using DNS channel

Initially to perform this attack a proxy/listening

server is needed. The particular server provides

 a subdomain to create a DNS lookup.

After that, the server fetches all the important

information and allows the attacker to

retrieve/exfiltrate the data.

2. Using HTTP channel

This attack is similar to the DNS attack with the

only difference, that instead of using a file

name an HTTP link is provided to initiate an

out-band request. After that using the domain

and SQL query, the attacks take place and allow

the attacker to retrieve the data.

3. PROPOSED PREVENTION

MECHANISM

The proposed prevention mechanism

comprises five important processes: Sanitizing

the input fields by not allowing any special

characters in the info field, and hashing

confidential data in the database so that the

attacker cannot decode the confidential data.

Notifying the administrator if an attacker tries

to breach the database, isolating the IP address

of the attackers so that they will not be allowed

in accessing the database, eventually the

policies are formulated and set at the Web

Application Firewall to avoid the malicious

traffic generated by the SQL attacker.

3.1 Sanitizing the input fields:

This method is used when the client’s input

fields are not properly sanitized or restricted on

most websites. E.g., the most common

attacking query in an SQLI is ‘1=1’. This is a

Boolean expression that always means true

leads to showcase the entire database. This

easily allows the attacker to manipulate data.

The better way to deal with this is not allowing

to use of any special character in the info field.

This will restrict the attacker from using any

Journal of Survey in Fisheries Sciences 10(2S) 1113-1119 2023

1117

kind of fishy query which may result in an

injection attack.

ALGORITHM:

1. Fetch the input character or string from

the input box.

2. Create a database for storing specific

information.

3. Check if the string contains any type of

special characters.

4. If it contains, then passes a denial

message stating invalid input.

5. Even parse the special character if it’s

typed in the input box.

6. And if not then, simply state-input

corrects.

7. Finally store the improvised data in the

respective database.

3.2 Hashing confidential data:

Hashing is a form of encryption method that

changes the basic structure of any data and

stores it in an encoded way. This ensures the

confidentiality of data. The encryption is done

using various hashing algorithms which can be

varied accordingly. Therefore, it becomes

difficult for the attacker to decrypt the data and

get the important information out of it.

ALGORITHM:

1. Fetch the input strings from the input

boxes.

2. Create a database for storing specific

information.

3. Ask the user about the confidential data

via the message box.

4. Hash the specific approved data using

an appropriate hashing function.

5. Check if the data has been hashed or

not.

6. Store the hashed data in the respective

database.

3.3 Sending Notifications to admin:

If somehow an attacker tries or manages to

breach a database the admin should get an alert

notification indicating the incident. By this, the

admin will get to know about the breaching and

will be able to secure the database. The

notification can be sent in any format i.e., it can

be in the form of mail, an SMS or a voice call,

or even all three of them together.

ALGORITHM:

1. Create a database and store admin

information.

2. Fetch the inputs from the input boxes.

3. Check whether the entered info matches

the ones in the database.

4. If yes then allow the user.

5. Else, then sends the notification to the

admin about breaching.

6. If the admin confirms his or her identity

then allow it.

7. Else simply deny access to the database.

3.4 Banning IP address:

If an attacker tries to pretend as an admin and

is forcefully willing to access the database then

this method forbids doing so. In this firstly the

verification of the inserted information takes

place, if it doesn't match then it gives the user

some specific chance to log in. If the user fails

to do so, then this method collects the remote

IP address of the user and bans it for a specific

period. This forbids the user to enter the site

until the ban is not removed.

ALGORITHM:

1. Create a database with columns such as

IP, ban time, and count.

Prevention of SQL Injection Attacks in Web Applications

1118

2. Fetch the user inputs and check if it

exists or not.

3. If so, then allow access to the user.

4. Else, give a limited trial to the user and

store it in the count column.

5. Also fetch the user’s Ip.

6. As the count increases the limit place a

ban time to the respective Ip.

7. Store the Ip and count limits in their

respective columns.

3.5 Using WAF:

WAF stands for web application firewall. The

main usage of WAF is it acts as a shield

between a web app and the internet. It generally

observes and examines all types of data that

passes through the server. If any problem

occurs it blocks the malicious traffic. The WAF

functions by specific rules called policies. It

determines what the threats are and filters them

out. Along with SQL injection, it also prevents

cross-site forgery and cross-site scripting

(XSS).

Fig 2. Filtering safe requests using a firewall.

4. ANALYSIS OF PROPOSED

MECHANISM

The main concept of the sanitization algorithm

is to forbid the user from preventing him to use

any sort of malicious queries that may lead to

basic injection attacks. It not only denies any

sort of usage of a special character but also

automatically removes it if typed. The

algorithm only rectifies the typing of any

special characters. If the attacker tries attacking

with a Boolean query, then the code will simply

not work and the attack will eventually occur.

In the hashing algorithm, the PHP hash

function is used which is based on the concept

of bcrypt. The uniqueness of bcrypt is that it

always creates a 12 key character that the user

wants to hash. Even if the attacker tries to use

the same hashing algorithm and decode the

password, he/she won't be able to do so because

of the one-way property of hashing algorithm

The major drawback of using hashing

algorithm in the proposed mechanism is that if

in any case, the user forgets his/her password

then the whole info about the user needs to be

deleted and a new one should be introduced.

5. CONCLUSION:

In this paper, we have experimented with &

executed different types of SQL Injection

Attacks. To perform this initially we have gone

through every aspect of these attacks and

studied their workflow. We also tested &

implemented their work on our localhost and

evaluated their drawbacks and vulnerabilities.

On its basis, we have studied and implemented

some of the existing and also created some new

algorithms for preventive measures. These

algorithms are general measures of blocking

any SQLI. Our future work will majorly focus

on finding out new ways to counter all types of

attacks within a single application. The existing

work will help in pushing the remaining

forward.

References

[1] XuePing-Chen “SQL injection attack and

guard technical research”, Procedia

Engineering 15 (2011), 4131 – 4135

[2] Vivek Sharma, Subodh Mishra,” SQL

Injection Prevention by Blocking Internet

Protocol Address after Analyzing Error

Message of Database Server”,

International Journal of Computer Science

and Information Technologies, Vol. 7 (2),

2016, 566-569

Journal of Survey in Fisheries Sciences 10(2S) 1113-1119 2023

1119

[3] Raghuraman. K, R.Venkatesan, Rubidha

Devi.D,” STUDY ON SQL INJECTION

TECHNIQUES”, IJPTFI, 12.11.2016,

ISSN: 0975-766X

[4] Ashish Kumar, Sumitra Binu, “Proposed

Method for SQL Injection Detection and

its Prevention”, International Journal of

Engineering & Technology, 7 (2.6) (2018),

213-216

[5] Mohd Amin Mohd Yunus ETAL, “Review

of SQL Injection: Problems and

Prevention”, INTERNATIONAL

JOURNAL ON INFORMATICS

VISUALIZATION, 2549-9610, VOL 2

(2018), NO 3 – 2

[6] “SQL documentation” from

https://dev.mysql.com/doc/ downloaded

on 05/04/2022

[7] “Biggest Threat to Application Security:

SQL Injection Attacks” from

https://www.appknox.com/blog/sql-

injection-attacks

[8] Diallo Abdoulaye Kindy, Al-Sakib Khan

Pathan “A SURVEY ON SQL

INJECTION: VULNERABILITIES,

ATTACKS, AND PREVENTION

TECHNIQUES”, IEEE 15th International

Symposium on Computer Electronics,

2011, No 468-471

[9] Haifeng Gu ETAL, “DIAVA: A Traffic-

Based Framework for Detection of SQL

Injection Attacks and Vulnerability

Analysis of Leaked Data”, IEEE

TRANSACTIONS ON RELIABILITY,

VOL. 69, NO 1. MARCH 2020, No 188-

202

